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A microwave method has been used to study diffusion in the afterglow of a helium plasma. The
investigation has been carried out for experimental parameters such that the diffusion across the
magnetic field is due to electron-ion collisions. The measured diffusion coefficients in magnetic
fields ranging from 700-800 Oe are in agreement with those computed on the basis of classical
Coulomb collision theory. At magnetic fields ranging from 1000 to 5000 Oe there is an appreciable
deviation from theory, in which case the diffusion coefficient is proportional to 1/H. We have
obtained an asymptotic solution of the diffusion equation describing the density decay in the after-
glow of a completely ionized plasma in the axially symmetric case.

Introduction

In recent years there has been a great deal of interest in the nature of the diffusion of a fully jonized plasma in
a magnetic field. Experiments in this connection have been carried out with a thermal cesium plasma {1, 2. How-
ever, the coefficients describing diffusion in a fully ionized plasma can be measured with plasmas in which the degree
of ionization is small, provided the conditions are such that the Coulomb collisions predominate in the diffusion flux
across the magnetic field. These conditions can be produced in an afterglow because in an electron gas at low tempera-
tures the cross section for electron-ion collisions is many orders of magnitude greater than the cross section for elec-
ron-neutral atom collisions [3, 4],

The region of diffusion due to Coulomb collisions in a three-
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plasma [ frequency is equal to the electron-neutral collision frequency. The
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Fig. 1. Diagram of diffusion modes in a is described by the usual diffusion equation

three-component plasma,

2~ (DVn). (1)

The investigation of plasma decay is carried out in a long thin tube (L * R) in a fixed longitudinal magnetic field.
nl i
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ﬁe_;_ > 8 condition that is satisfied in the present experiment, the flux along the axis can be neglected and

the diffusion equation for cylindrical geometry becomes
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The coefficient of ambipolar diffusion across 2 magnetic field due to Coulomb collisions is given by [5, 6]
D& = an, (3}
where
8 /ece N2/ m \z
*?(ﬁ) (7@) nA
Here e and m are the charge and mass of the electron; k is the Boltzmann constant; H is the magnetic field; T is

the equilibrium temperature of the plasma (it is assumed that the plasma components reach thermal equilibrium);
In A is the Coulomb logarithm, which is defined as follows [6]:

3 1 7 k3T3N\Vs
ma=m{3+(5)"]. @

In the present case the quantity o can be taken to be independent of coordinates and time,

Converting to the dimensionless variables

no ro. t Rs
y:m’ .’l):f, Tz?o*, ‘I'.'0=aN ' N_.n‘,—o =0, (5}
we write Eq. (2) in the form
dy 1 9/ Ay (6
Fe=ram (i) )
The following boundary conditions apply for Eq. (6):
8y |
Fl=0 vl =0 o
The solution of Eq. (B) is written as a series in even powers of x:
Y=Y+ .y @)
(it is evident that the coefficients of the odd powers must vanish because % o 3.
We obtain the following systemn of equations for the functions y (T):
ay
> = 4Y; }
9y
_1‘ =8 (2yoy. -+ yik
&)
3 hd-1
Y
B=2k+ 10 D) Yifurs-
=0

Now, if yo (T} is given arbitrarily we can obtain all the yk (T). We investigate possible asymptotic forms of the func-
ton y, (7).

¥ ¢, (7T) ~e~VT, then yy(7), starting with k = 2,becomes negative and increases expenentially at large 7.
Consequently, for certain values of X, yp (x, T)increasesas7-> w; this is not physically reasorable.
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Letyo () = atd, Then it can be shown by mathematical induction that g, (t) = v * P2 g1k  yhere
8y is independent of a. In this case the series in Eq. (8) can be reduced to the form of a function:

2
Y (z, 1) =ar'G (T:‘I*l ) , {10)

where G is some unknown function.
If @ =~— 1, solutions of the type given in (10) can not satisfy the boundary conditions, We find
—gric(_1 ;
Y lx=1 = at’G e =0 forall7,i.e., ¥=0-

fg=—1

a /7 zo
y{(z, 1) .rF\a>‘ (i1
The function F can be found from Eqs,(9) in the form of a series;

Pl M __ A A A {12)

4 64 288 1024 -’

where

This function is positive at small values of A and vanishes when A = Ay,

When F = 0 the series in (12) conveiges very slowly so that
A can not be found directly from it. In order to find Ay we sub-
0 stitute y =(1/7)F (x%) in Eq. (6). The equation for F is then

—F= (x%lﬂ) (13)

g
W
AR

=% dz

We multiply this equation by 2x, integrate between the limits of
! \ 0 and x, divide by x, and integrate over the limits (0, Aq), We find
; 2
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Fig. 2, Aysmptotic form of the radial density
distribution in a plasma diffusion across a
magnetic field: for the upper curve D; = an,  Substituting F in the form of the series in (12) we obtain anequation
for the lower curve D = const, for hg:
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This series converges rapidly. Retaining the first three terms we find A5 = 2.4. The higher terms give a correction of
approximately 1%.

To satisfy the boundary conditions we write a = 1/ A%, Finaily,

y (@, 1) = 37 F (M), (15)
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Investigation of the function F (x) shows that near the points x = 1 it is of the form F# ~vconst ¥/ 1 —z so that

ar

- = 00.
L |x=1

This relation has a simple physical meaning.

Near x = 1 the density vanishes and for a nonvanishing flux the density gradient must become infinite.

Evidently, a wide class of physically reasonable sclutions of the boundary value problem (7) for Eq. (6) will have
the same asymptotic behavior. This follows from the fact that in regions of space where n is large there is a. rapid
equalization of the density whereas at the walls there is an infinite gradient,
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Fig. 3. Block diagram of the apparatus.
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In particular, if C = 1 we obtain a function that describes the diffusion process when the initial density at the axis of
the tube is Ny. In this case the change in density at the axis of the tube ng(1) is given by

1

ng (t) o

where A% = R’/2.4 is the square of the diffusion length.

A_a
No T AT

(16)

In Fig, 2 we show the asymptotic form of the radial density distribution computed from Eq. {12) for the case
of diffusion across a magnetic field caused by Coulomb collisions, For purposes of comparison, in the same figure
we show the density distribution when the diffusion coefficient is independent of density [the lower curve y=J (#osx)l.
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Experimental Method

In contrast with measurements of the diffusion coefficient (caused by collisions of charged particles and neutrals),
for the determination of which it is sufficient to know the relative plasma density, in the present case the accuracy in
the measurement of the diffusion coefficient depends on the accuracy of the determination of the absolute density.
To determine the mean density in the present experiment the discharge tube is placed in a long cylindrical resonator
in which the THg,e mode is excited, The resonator simultaneously serves for producing the plasma by means of a
microwave pulse.
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points while the solid line is predicted by the
Fig. 4. Typical experimental curves. Spitzer-Braginskii theory [5, 6].

The long resonator length allows us to neglect end effects in analyzing the interaction of the microwave with
the plasma column and also yields the possibility of obtaining a uniform plasma over the length of the tbe. A
diagram of the apparatus is shown in Fig. 3 and a detailed description has been given in [7].

The determination of the transfer coefficient from the shift of the resonant frequency of the cavity as a function
of plasma density requires analytic investigation of the interaction of the THpy; mode with a plasma in a magnetic
field,

However, because the plasma radius in the present experiments is small compared with the cavity radius, the
transverse components of the electric field can be neglected, This procedure is valid when kj; < ky and @ = W,
where ky =in/Lg; k; = % /Ry (Lo and Ry are the length and radius of the cavity; gy is the first root of the zero-
order Bessel function); @ is the resonance frequency of the cavity; W, is the electron cyclotron frequency.

In this case the shift of the resonant frequency of the cavity in the presence of plasma is given by the usual per-
turbation-theory expression [8):

wlE? dV
Aw = — _L plasma ’ an
20 | By
cavity,

where Wy is the plasma frequency.

Substituting in Eq. (17) the expressions for the density distribution (12} and the electric field distribution in the
THyy; mode, we have
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Integrating with the experimental parameters Ry = 4.25 cm, Ly = 75 cm, R= 0.8 cm and W = 27 * 3.24. 10% sec™ we

find

ny = 2.1-10A0. {19

Discussion of Experimental Results

The measurements of density in the afterglow were carried out in the range 10"-10" ¢cm®, The lower limit of
the measured densities is determined by the lower limit for Coulomb diffusion (cf. Fig. 1) while the upper limit is
determined by the time required for the electron gas to cool and the capabilities of the experimental apparatus. The
experiments were carried out in a glass tube filled with spectrally pure helium at pressures 5- 1072~ 2.10"  mm Hg.
The system was first outgassed at a temperature of 400°C for a long period of time after which the residual vacuum
was of order 10~ mm Hg. In addition, the walls were processed by a microwave discharge operating at the electron
cyclotron resonance,

-3

Several experimental curves from whichthe diffusion coefficients were determined are shown in Fig. 4. Inas-
much as the experimentally observed time dependence of the density is in good agreement with Eq. (16) it is evident
that the process responsible for the removal of charged particles has a quadratic dependence on density.

The deviation from Eq, (16) at the beginning of decay (extrapolation of the curves kt = 0 gives Ny < 0) is due
to the fact that in the initial stage of decay in the plasma caused by microwave breakdown there are other mechanisms
in operation which have an important effect on the density distribution; these include cooling of the electron gas and
other factors which are not taken into account in Eq. (186).

In Fig. 5 the points show the measured values of the coefficients @ as a function of the magnetic field. The
solid line in the same figure comresponds to Eq. (3) for the coefficient of diffusion in a fully ionized gas. It follows
from an analysis of the experimental results that up to the field values of 700-800 Oe we have a Déi ~ 1/H? depend~
ence, The deviation in the absolute value of the diffusion coefficient from the theoretical value is possibly due to
systematic errors in the determination of density. An estimate of the errors in the experimental method gives a value
of +30%, which is somewhat smaller than the observed discrepancy.

In the region from 1000 to 5000 Oe the dependence approaches 1/H, The coefficient for volume recombination
of electrons and ions as well as the coefficient for Coulomb diffusion are directly proportional to the density of charged
particles. Hence, the experimentally observed coefficient for the removal of particles is actually the sum &= 0 +
+ ogif/ A Starting from these considerations, the deviation in the coefficient & at H> 1000 Oe from the theoretical
dependence (ogis~ 1 /H ) can be easily attributed to volume recombination (for example of the form He2 +e) ifit
were not so close to the 1/H dependence on magnetic field. Under these conditions one must make some artifical
assumptions as to the dependence of 0'yg, on magnetic field.

In conclusion the authors wish to thank I, F. Kvartskhava for his interest, R. Z. Sagdeev for valuable discussions
of the theory, and G. G. Podlesnov for help in the experiments.

LITERATURE CITED
1 N. D' Angelo and N. Ryan, Phys. Fluids, 4, 275 (1961).
2. R. Knechtli and J. Wada, Phys. Rev. Lett., 6, 215 (1961).
3. A, Dougal and L. Goldstein, Phys. Rev., 109, 615 (1958).
4, V. E. Golant and A. P, Zhilinskii, * Zh. wekhn. fiz.", 30, 745 {196C).
5 S. 1. Braginskii, "Plasma Physics and the Problem of a Controlled Thermonuciear Reaction” [in Russian]. Moscow,
Izd. AN SSSR, p. 178 (1958).
8. L. Spitzer, Physics of Fully Ionized Gases [Russian translation]. Moscow, Izd. inostr. lit. (1957).
7. S. G. Alikhanov et al., "Zh.tekhn. fiz.", 32, 1205 (1962).
8. G. Suhl and L. Walker, Problems of Waveguide Transmission in Gyrotropic Media [Russian transiation]. Moscow,

Izd. inostr. lit, (1955).

132



