22 ' ZH, PRIKLAD, MEKH. TEKH. FIZ., JULY-AUGUST 1965

WEAK TURBULENCE IN MEDIA WITH A DECAY SPECTRUM

V. E. Zakharov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 35—-39, 1965

The theory of weak turbulence of a plasma has been investigated
in many papers [1-5]. It has been established that weak turbulence
may be described by means of the kinetic wave equations, Here the
collision term in the kinetic equation is the sum of two substantially
different components, The first of these has the character of nonlinear
wave damping and differs from zero in those cases where interaction
between waves and particles is significant. It has a comparatively
simple mathematical nature and can be analyzed, The second com-~
ponent is specifically a collision term, it depends closely on the form
of the spectrum in the medium and describes the exchange of energy
between different groups of waves. The case when the second compo-
nent plays the principal role in the collision term has scarcely been
studied. The present paper is devoted to a study of this case.

The analysis is carried out for a simple isotropic model of a
medium with an almost linear dispersion law, but with a positive
second derivative; we shall call such a spectrum a decay spectrum,
This model is much closer to reality than the model considered in
[6]. The results obtained from this model are evidently fairly general
in character and express substantially the regularity of behavior of
weak turbulence in media with a weak decay spectrum, The basic
result of the paper is as follows: apart from the Rayleigh-Jeans solu-
tion, there exists another solution which reduces the collision term to
zero. This solution corresponds to a process which is substantially
nonequilibrium, and may be realized in actual problems, where there
are always wave sources or transfer terms playing the same part, only
in cases where there is wave damping in the medium with a coefficient
which increases fairly rapidly into the region of large k, Here the uni-
versal character, as it were, of the nonequilibrium process is realized.

NOTATION

k wave vector;
&€ a parameter characteristic of the dispersion;
o, wave frequency; :
7, density of wave sources;
Vekx-the matrix element describing‘the wave interactions;
I'(s) gamma function;
u a variable describing the medium;
k, boundary of instability region;
a; complex wave amplitude;
yk* damping decrement;
n; wave density in k space;
k, boundary of the region of transparency;
N, wave density in spherical coordinates;
v instability increment.

We consider waves in a medium described by a
scalar function of coordinates and time u. ThlS quan-
tity obeys the equation

Zh—(A—eAd)u = Au (1)

(e>0) (A— Laplacian operator).
We carry out a Fourier transformation with re~
spect to coordinates
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We pass to the new variables, complex wave am-~
plitudes,
“k iy’
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We obtain the equation for these quantities
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We shall consider the case k < 1/ Je. Here we
may set

ka’k”~'__—(|k[ Ik'l ]k” [y . (5)

In order to obtain the kinetic equation, we must
apply the theory of perturbations to Eq. (3). We shall
determine its criterion of applicability. To do this,
we carry out the change of variable

ax = Cx exp (—Iiogl)

ac . .
—#‘ = — SVW.‘» [ewex exp (it (0g — g —
—_ (l)k")) By + ...1dKk'dk" .
We choose ¢k’ = ¢dxx,. Then
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The condition of applicability of perturbation
theory is
‘ a<&e, or n<&16e%® for ny =|cif?. (6)

Condition (6) shows that the less the wave spec-
trum departs from the linear, the smaller is the al-
lowable wave amplitude for which perturbation theory
and the kinetic equation may be used. This is con-
nected with the fact that for spectra which are close
to being linear, resonance interactions between waves
which do not lead to a randomizing of phases may play
a large part.

The kinetic equation for the problem under consid-
eration has the form

a
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We shall seek spherically symmetrical solutions
of this equation. We introduce the new quantity Ny =
= kznk. After averaging over angles, we have
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In averaging we assume that wy = ki approxi-
mately, In these equations 2v:Ny is the density of wave
sources formally introduced.

We now investigate the properties of the operator
st (N, N). It is clear that it is defined for functions
decreasing more rapidly than 1/k? for k — «, At
first sight, it seems that these functions must di-
verge for small k. However, this is not so. Actually,

“all the terms which diverge for small k are grouped
together in the integral
gk 2
2 & Ne (N — 2Ng 4 Nipaw) di/ (k’sz, %ikv;f—)
0

For small k the integrand expression has the form
indicated in brackets, i.e., divergences are confined
to two orders,

Thus, the region of definition for the operator
st (N, N) will be functions which decrease more rap-

i idly than 1/k? for k — « and increase more slowly
than 1/k° for k — 0. Formally, the solution

Ny =Ty (T = const) (8)

satisfies the equation st(N, N) = 0.

This solution is the Rayleigh-Jeans distribution.
However, such solutions do not enter into the defining
region of the operator and one cannot linearize on a
background of these solutions. Physically, this means
that in considering these solutions quantum correc-
tions must be taken into account.

However, the equation st (N, N} = 0 has other solu-
tions appropriate to the defining region of the opera-
tor. We shall seek a solution in the form

Ni==  p<s<i.
Then
12
st (N, N) = FF(S) (L = const) .
Here
Tr2{1—s) 4
FOy=rg—y— 1= T
9)
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Investigation shows that F(3) = 4w, F(2) = -,
This means that the function ¥ (s) must have a zero in
the interval 2 < s < 3.

Calculation shows that the zero of F(s) is s = 2.5.
Thus the equation st (N, N) = 0 has the solution

Ny = Ak™25 . (10)
We shall now consider the problem with wave

sources and determine under what conditions a solu-
tion close to solution (10) may be realized:

2Ny = 20 st (N, V) . (11)

Usually the estimate

N ~ vy [ 0k, (12)

is applied to this equation.
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Here v is the characteristic value of the increment,
and k, is the characteristic dimension in k space in
which the function vy varies.

However, this estimate applies only in the case
when the instability and damping regions are not di-
vided by a region of transparency. In reality the op-
posite is most frequently the case, We shall show
that in just this case a solution of type (10) may be
employed.

For a start, we note that if equation (10) is multi~
plied by k and integrated from zero to infinity, then
the right hand side of equation (11) becomes zero. We
ovtain

§ kviNadhe = 0. (13)

]

This relation expresses the law of conservation of
energy.

Let there now exist an instability region with a
characteristic increment v and characteristic dimen-
sion ky, and, in addition, let damping of the form

T = yatk® (2 >12)

exist.

The meaning of this condition will be clear from
what follows. We shall designate the solufion in the
region of small values of k My; Ny is the solution in
the remaining region. Extending Nj formally into the
region of small k, we may write equation (11) in the
form
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For k > k; the last two terms may be transformed
to

ko
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If v is small encugh, we may seek a solution in the
form

Ny = Bk?5 (15)

Then the first terms of the equation are of order
B%k™4; terms of type (14) are of order ABK™'5, and
consequently their effect may be neglected for large
k. A solution of type (15) will be valid right up to
those values of k at which none of the integrals enter-
ing into the collision term is comparable with the
damping term, i.e., to k defined by the relation
(16)

k%258 ~ B4, or ky~ (%)UMLB
t

The solution decreases rapidly for k > ky,
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We use relation (13) to determine the quantity B.
We have ‘
B Iy
e D ~1.5+a,
Vi o5 ~ B ) ks, (17)

[

All this is correct if the chief contribution to the
integral on the right hand side of relation (17) comes
from large k (otherwise neglecting the effect of the
instability region is not legitimate), We thus obtain
a > 1/2, It follows from (17) that

S ' ate
B~v a—iy [V (ot 1/2)} | (18)

T

ko 12

All this is true if ky » k;. Calculation of k, gives
the condition

vi{a — ) > vhe® . (19)

This inequality may be satisfied for small enough
Y. ,

Comparison of (18) and (12) shows that estimates
of solutions in these two limiting cases are signifi~
cantly different.

It is clear from the above that a solution of type (10) may be
realized in the presence of two conditions: a wide region of transpar-
ency and a fairly rapidly increasing damping coefficient. The latter
requirement demands an essentially nonequilibrium problem. Under
these conditions the solution in the transparent region has a universal
form. A similar phenomenon is observed in ordinary turbulence, where
a Kolmogorov spectrum is established in the region of transparency.
However, the mechanisms determining the universal solution in these
two cases are significantly different, To be specific, in the case of
ordinary fluid turbulence, scales of the same order interact with each
other, so that we may introduce the concept of energy flow through
the turbulence spectrum and obtain the spectrum from dimensional
considerations. In our case all scales interact simultaneously. Here
the solution can not be obtained from dimensional considerations;
generally speaking, it depends on the character of the wave inter-
action.

We shall consider the possibility of generalizing
the results obtained above. In the general case decay
turbulence is characterized by two factors: the wave
spectrum wy and the matrix element Vi ke describ-
ing the interaction; in addition wy is a positive func-
tion which is convex downwards and Vig i n is a posi~
tive function which is symmetric with respect to the
last two indices. We choose

o= k(s >1),

Then, considering isotropic solutions of the kinetic
equation, we may pass to the variable w = k5, We
obtain

Visw = ([k | [K'[ [K"[),  (20)
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Just as in the case considered above, the structure
of the first three integrals in the collision term is
such that the divergences at zero are reduced by two
orders, We shall seek a solution which reduces the
collision term to zero in the form -

No=1Ljw .

It is not difficult to see that the allowable values of
q lie in the interval

2pgqg<p+3. (22)

Hence it follows that p < 3, The result of applying
the collision term to the function q is the expression

I2
T Q) .

where the function Q(q) tends to infinity at the bound-
aries of the interval (22). Elementary investigation
shows that for g = p + 3 the infinity is always positive,
while for g = 2p the sign of the infinity is opposite to
the sign of p. The requirement that these infinities
should have different signs, sufficient for the exis-
tence of a power solution, leads to the condition 0 <

< p < 3. Hence we obtain

s—2<t<lhs—2.

For such conditions on t and s the equations of
decay turbulence for a problem of type (20) have a
universal noneguilibrium solution,

It may be supposed that the results obtained are
valid for more general wy and Vi ricn.

In conclusion the author thanks R. Z. Sagdeev for
discussing the paper.

REFERENCES

1. M. Camac, A. Kantorowitz et al,, "Collision-
less shock waves in plasma," Nuclear Synthesis.
Supplement [in Russian], Pt 2, p. 423, 1962,

2. A, A, Galeev, V, I. Karpman, and R. Z.
Sagdeev, "On a soluble problem in turbulence theory,"
DAN SSSR, vol, 157, no. 5, p. 1088, 1964,

3. A, A, Vedenov, Questions of Plasma Theory [in
Russian], Gosatomizdat, vol. 3, p. 203, 1963,

4, A, A. Galeev and V. I, Karpman, "Shock waves
in a plasma situated in a magnetic field," ZhETF,
vol, 44, p. 592, 1963,

5. B, B, Kadomtsev and V. I. Petviashvili,
"Purbulence of a plasma situated in a magnetic field,"
ZhETF, vol. 43, p. 2234, 1962,

6. V. E. Zakharov, "A soluble model of weak
turbulence,” PMTF, no. 1, 1965,

28 October 1964 Novosibirsk



