The measured maximum temperature of the helium amounted to 200 eV. The doubling of the tem-
perature on doubling the magnetic field agrees with formula (5).

3. To determine the rate of heating it is necessary to know the noise energy density.
It seems obvious that the amplitude of the electron-velocity oscillations v cannot exceed
the phase velocity of the oscillations w/k = u. The energy density of the oscillatory motion
of the electrons nmv?/2, can therefore be assumed to be the limiting noise energy w. If we
substitute this estimate in (4), we obtain for the ion heating rate the expression
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We chose for y i the maximum possible increment,. We can now estimate the damping decrement of
the electromagnetic wave & =h-nPi/HE. For a forward megnetosonic wave:

2nf H. (2nf)?
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The value of 5 caleulated from (7) agrees with the experimentally measured value.
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The measured temperature of the ions in the center of the heating circuilt are given
in [1].
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It is well known [1-3] that a plane wave in a nonlinear self-focusing medium is un-
stable. We shall show in this paper that if account is taken of the finite relaxation time
of the nonlinearity, the wave turns out to be unstable also in a defocusing medium. In addi-
tion, introduction of a finite relaxation time changes strongly the character of the insta-
bility of a plane wave in a self-focusing medium.

We write down the equations for the elkonal ¢ and the amplitude A 1in the form

(see [3])
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Here Q = —w?ce/(w2ew)', P is the polarization, which satisfies the relaxation equation (see

(41) o
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and t is the characteristic relaxation time. For the Kerr nonlinearity mechanism, the value
of L 4is of the order of 1 mm.
Let us linearize Eqs. (1) against the background of a plane wave with amplitude A

2
and assume that the perturbations of all the quantities are proportional to the factor
exp[-1at + i(kr)]; we obtain the dispersion equation
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kO is the characteristic reciprocal dimension of the self-focused beam with amplitude AO.
Positive and negative signs in (2) correspond to defocusing and self-focusing media, respec-

tively. The presence of an imaginary part in (2) indicates the existence of the instability

regardless of the value of k or the sign of gq.

The characteristic parameter of the problem is the quantity kOL' Iet us consider the
case kOL << 1. In a defocusing medium, the maximum of the increment lies in this case in the
region k ~ 1/L and its order of magnitude is Y max ~ qu, i.e., the same order of magnitude as
the shift of a plane wave as a result of the nonlinearity. 1In a self-focusing medium, the
instability increment has two maxima. The first lies in the region k ~ ko - this is the
ordinary instability of the plane wave [1,2], and the finite character of the relaxation af-
fects it little. The second maximum is in the region k ~ 1/L, where the instability has the

same character as for a defocusing medium. In both maexima, the order of the increment is

2
¥~ qAO.
In the case kOL >> 1 the self-focusing and defocusing media behave in similar fashion.
The maximum inerement lies in the region kx ~ 1/L, k ~ ko and is of the same order, y ~ qu.

The appearance of additional instabilities when allowance is made for the finite re-
laxation time can be explained in the following manner. When 1 = O Eqs. (1) are equations of
the hydrodynamic type; their integrals of motion are
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These integrals can be identified with the hydrodynamic "mass,” "momentum,” and "energy" in-
tegrals. Allowance for the finite relaxation time makes the "momentum" and the "energy" quan-
tities that are no longer conserved, so that allowance for the finite relaxation time is equi-
valent to introducing some dissipation mechanism, which incidentally conserves the true energy
of the light field - the "mass" integral. It follows therefore that the instability obtained
above can be set in correspondence with the "dissipative" hydrodynamic instabilities that
arise when account is taken [5,6] of small dissipative terms (say viscosity). Just as in our
case, the maximum increment of these instabilities may be independent of the magnitude of the
dissipation [6].

Let us see the consequences to which "dissipative" instability can lead. When koL << 1
the real part of the frequency  in the region of the maximum increment is much larger than
the imaginary part, and we can expect a "weak turbulence'" of the modulation wave, with char-
acteristic length on the order of I, to develop against the background of the plane wave;
the phases of these waves become randomized. In final analysis this should lead to broadening
of the line to a value Aw ~ ©(1/kL) (2n/L is the wavelength of the light), and also to the
appearance of additional collective dissipative effects for the motions, with dimension on
the order of 1/ ke

If kOL >> 1 the real and imaginary parts of the frequency in the region of the maximum
increment are of the same order. At the same time, strong turbulence of the light field takes
place and leads, during the initial stage, to the formation of light bunches with longitudi-
nal dimension L and transverse dimension 1/ ko. Allowance for the finite dissipation also
should cause the self-focused beam to break up into segments of length on the order of L.

The author is grateful to R. Z. Sagdeev for a discussion.
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