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It is shown that self-focused light beams that are uniform along the propagation direction are unstable 
in a nonlinear transparent medium. It is also shown that the superposition of two monochromatic light 
waves is unstable. 

1. INTRODUCTION 

As is well knownl1-3 J, self-focusing of light can occur 
in some nonlinear media; stationary trapping of light in 
the form of a plane or cylindrical beam of constant cross 
section is possible in these media. However, as shown 
by Bespalov and Talanovl4 J , in the same media a plane 
monochromatic light wave is unstable and has a tendency 
to break up into individual light beams. This raises the 
natural question-is a self-focused (plane or cyclindri­
cal) beam of light stable? 

The present paper is devoted to a proof that self­
trapping of light in the form of a plane or cylindrical 
beam of constant cross section is unstable to small per­
turbations. We actually formulate the question in a more 
general form. In a nonlinear medium, we consider a 
near-monochromatic light field the envelope of which 
moves without shape distortion with a velocity close to 
the group velocity at the carrier frequency. We call 
such a field the stationary envelope wave. The self­
focused beams whose envelope depends only on the 
variables perpendicular to the wave propagation direc­
tion are particular cases of such waves; stationary 
waves whose envelope depends on the longitudinal varia­
ble are also possible. Stationary waves whose envelope 
depends only on the longitudinal variable were consid­
ered by OstrovskitrsJ . We note that stationary envelope 
waves can exist not only in those media where self­
focusing is possible, but also in arbitrary transparent 
nonlinear media with dispersion. 

We investigate in this paper the stability of station­
ary envelope waves. The investigation can be carried 
through to conclusion for one class of envelope waves­
namely, for waves whose phase is constant in all of 
space. Plane and cylindrical self-focusing beams be­
long just to this class. To investigate the stability of 
waves of this type we shall use a variational method, 
which makes it possible to deduce the instability of the 
wave without knowing the explicit expression for its en­
velope. It becomes possible to prove here that all the 
stationary envelope waves with constant phase are un­
stable in media in which self-focusing is possible. It is 
interesting that in defocusing media stationary envelope 
waves can also be unstable. This fact is connected with 
the more general fact of instability of a biharmonic 
field, i.e., a superposition of two monochromatic waves 
which we shall show to take place in arbitrary nonlinear 
media. 

2. FUNDAMENTAL EQUATIONS 

Let us consider the propagation of light in an iso­
tropic transparent medium with cubic nonlinearity, des­
cribed by a dielectric constant in the form E = Ea(w) 
+ E1IEI 2 • For simplicity we shall assume the light to be 
plane-polarized. In addition, we confine ourselves to a 
case in which the light dispersion law w(k) is a function 
that is convex downward (w" (k) > 0). Assume that a 
wave with an average wave number ko propagates in 
such a medium in the x direction. For the complex en­
velope of the field-intensity vector we have the equation 
(seersJ) 

. ( aE aE ) 1 " a•E vgr • 
t -+vgr- +-w (k0)--+-/',._1_E = qjEj E. 

at ax 2 ax• 2ko 

Here 

aw I Vgr=- ., 
ak k=ko 

Self-focusing is possible in the medium if E1 > 0 and 
accordingly q < 0. 

We introduce new variables 

61 = (x- Vgrt) V w"1(ko) , 

We obtain 

Vko 
S.= y -. 

Vgr 

aE 1 iat -t- 2 /',.E = qjEj 2 E, 

a• a• az 
/',. = a€i + as.• + a~;.• · 

Vko s• = z -. 
Vgr 

(1) 

(2) 

By introduc.ing E = Aei<P we transform (2) into the sys­
tem 

a . OtA2 + d1v A2 V<I> = 0, 

The stationary envelope waves constitute the solutions 
of Eq. (2) in the form 

E = Eo('S- vt) exp {-i(s + 1/zv')t + iv6}. (4) 

We have for them the equation 

sEo+ 1fzMo=qiEoi 2Eo, (5) 

or, writing Eo= A0exp(i<Pa) -a system of equations 

div Ao2 V<I> = 0, 
1 1 
-(V!Ilo) 2 =s-qAo2 + -/',.Ao. 
2 2Ao 

We note that Eq. (1) is written with a certain degree 
of arbitrariness, namely, the choice of the carrier wave 
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number ko is arbitrary. To exclude this arbitrariness, 
we introduce the additional requirement that the phase ol> 
be bounded in all of space. We then have for the function 
ol> the representation o1> = - (~ · v) + ~, where i is bounded. 

The class of solutions of interest to us, with constant 
phase, is determined by the condition ol> = const. Ob­
viously, the function Ao then satisfies the equation 

(6) 

and the propagation velocity is v = 0, so that waves of 
this type propagate with a velocity equal to the group 
velocity at the carrier frequency. 

The simplest solution of {5) is the constant Eo = /Slii.. 
This solution is a plane wave of finite amplitude. It is 
therefore possible to treat s as a frequency shift due to 
the nonlinear interaction. We call attention to the fact 
that Eq. (2) coincides in form with the equation for the 
Heisenberg operators, describing in the classical wave 
limit a weakly non- ideal Bose gas [?J. A plane wave of 
finite amplitude is the analog of a Bose condensate. Let 
us consider small perturbations against the background 
of a plane wave: 

Substitution in (3) and linearization yield 

Q2 = qiEol 2k' + kl f 4. {7) 

Formula (7) coincides with the known Bogolyubov 
formula for the spectrum of a Bose gas [BJ. When q < 0 
the plane wave experiences an instabilityl4 J that is per­
fectly analogous to the instability of the condensate in a 
Bose gas with attraction. 

Let us consider those solutions of {6) which depend 
only on one variable 

6 = a161 + a262 + aaS-1 (a12 + ,a22 +a:(= 1). 

They satisfy the equation 

(8) 

which coincides formally with the equation of motion of 
the particle in a field with a potential 

U(Ao) = sAo2 - 1hqAo4• 

The character of the solution depends on the value of the 
energy integral of (8) 

l = 1/2(dAo/ d6) 2 + U(Ao). 

We consider first solutions for which s < 0. Obvi­
ously, they can exist only when q < 0. The energy inte­
gral for them lies in the range -s2/q < ~ < oo. When 
~ =- s 2 /lql, the solution goes over into a plane wave of 
finite amplitude, and when ~ > - s 2 /q it is a periodic 
modulation against the background of a plane wave. With 
increasing ~' the depth and period of the modulation in­
crease, and when ~ = 0 the period becomes infinite. In 
this case the solution takes the form 

v2s" 1 
Ao = -;; ch i2ss · (9) 

If ~ 1 x, then this solution is a plane self-focused 
beam l2 , 3 J, and if ~ 11 x, this is an elongated wave 
packetlsJ; when ;g > 0, the solution remains periodic 
and the period decreases with increasing ~- The ampli­
tude of the wave goes through zero in these cases. 

We now consider the case s > 0. In this case the so­
lution is a periodic function, which goes over for suffi­
ciently small ~ into a purely harmonic solution: 

A (6) = const ·cos }'285. 

Thus, this solution is the nonlinear analog of a super­
position of two plane waves with identical amplitudes 
and opposite wave vectors. 

The behavior of the solution with increasing ft de­
pends on the sign of q. When q > 0, periodic solutions 
exist for arbitrarily large f£, and their period decreases 
with increasing ft. When q > 0, the period decreases 
with increasing ft, and V becomes infinite when 
ft = s 2 /2q. In this case we obtain the purely aperiodic 
solution 

A (6) = y"S/9. th l'~. (10) 

In analogy with the one-dimensional solution, there 
can exist also cylindrically-symmetrical and spheri­
cally-symmetrical solutions of (6). The cylindrically­
symmetrical solution corresponds to a cylindrical self­
focusing beam was obtained by Chiao, Garmire, and 
Townesl3 J 

3. INSTABILITY OF ENVELOPE WAVES WITH CON­
STANT PHASE 

We consider the stability of stationary envelope waves 
with constant phase. We seek the solution of (3) in the 
form 

ct> = -st + llct>e-'"', A= A 0 +Me-'"'· (11) 

Linearizing in the small quantities o ol> and oA, and 
eliminating o ol>, we arrive at the eigenvalue equation 

- 1-divA02 V _!_[~MA +sM -3qA02M l = Q2M. (12) 
2Ao A0 2 ·' 

We introduce the operators 
1 1 1 

L1= ---divA02V- £ 0 = --2 Ll-s+3qA02, 
2A 0 Ao' 

The operators L1 and Lo are self-adjoint. The opera­
tor L1 is positive-definite, since 

'ljl" ' 'ljl 1 ( ¢" ¢ \ (¢1Ldtp)=-~"--divA02V-dr=-~ Ao2 1 VA-, VA-Jdr>O 
J 2A 0 Ao 2 \ o o 

and consequently there is a bounded inverse operator. 
For the inverse operator we have the estimate 

(13) 

where.\ 1 > 0 is the smallest eigenvalue of the operator 
L1. 

Equation {11) can be rewritten in the form 

(14) 

It is possible to apply to (14) a variational principle, 
namely, it can be stated that the first eigenvalue is the 
minimum of the functional 

(15) 

Let Ao be the minimum eigenvalue of the operator 
L0 • We then get from the relation 

(16) 

the estimate 

Q2.;:;;; AoA!· (17) 
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Inasmuch as i\. 1 is always positive, to prove the insta­
bility it is sufficient to establish that i\.o < 0. We con­
sider the equation 

This is a Schrodinger equation with a potential 
V = 3qA~- s. 

(18) 

Differentiating (6) with respect to an arbitrary direc­
tion, we obtain 

1 OA 8A 8A (19) 
- 2/l 86 - 8 86 + 3qAo• 86 = O, 

from which we see that BAja~ is the eigenfunction of 
(18) with eigenvalue i\.o = 0. This is the consequence of 
the fact that Eq. (6) is invariant to a shift by an arbi­
trary vector. We must still determine whether the 
eigenvalue i\.o = 0 is the smallest one. The smallest 
eigenvalue should be nondegenerate. Therefore only 
one-dimensional solutions can be stable, since differen­
tiation with respect to different directions yields differ­
ent nonvanishing eigenfunctions in the case of multi­
dimensional solutions. In additions, the wave function of 
the ground state should not have any zeroes. Therefore 
only one-dimensional solutions for which Ao(~) is a 
monotonic function can be stable. It follows therefore 
that, regardless of the sign of q, all periodic solutions 
with constant phase are unstable. As to aperiodic solu­
tions, when q < 0 the only aperiodic solution is the self­
focused beam (9), which is unstable because the function 
Ao(~) is nonmonotonic. When q > 0 the aperiodic solution 
is (10), which is stable by virtue of its monotonic char­
acter. 

Let us estimate the increment of the instability of a 
plane self-focused beam. The envelope of the beam is 
given by (9). We choose a perturbation in the form 

For the operators Lo and L1 we have 
1 d" k2 6s 

Lo= ----+-+s- , 
2 dz2 2 ch"l'2s z 
1 d" k2 2s 

L 1 = ---+--+s+ . 
2 dz2 2 ch2 "}'2s z 

The smallest eigenvalues of these operators are 
(seel 91 ) 

J..o = -3s + k2 I 2, J.., = k2 I 2. 

(20) 

(21) 

We put s = qE~/2, where Eo is the amplitude at the cen­
ter of the beam. According to (17) we have the estimate 

(22) 

Comparing (22) with (7) we see that the instability incre­
ment of the self-focused beam is of the same order of 
magnitude as the instability increment of the plane 
wave. 

The wave function of the perturbation can be approxi­
mated by the smallest eigenfunction of the operator L0 : 

'i'o = 1 I ch2yz; z. 

The most intense instability takes place at 
k ::::J ( qE~) 112 . It follows therefore that a plane self­
focused beam breaks up in "bunches" with dimension 
L ~ (1/ko)(qE~/wr112 , and these bunches have a tendency 
to contract without limit. 

We note that it follows from the foregoing results 
that instability should set in against perturbations with 
k = 0, but more accurate estimates are necessary to 
obtain its increment. 

It also follows from the foregoing results that a self­
focused beam entering into a semi-infinite medium 
should have spatial instability against small perturba­
tions of the condition on the boundary. Indeed, if we dis­
card from (1) the time derivative and neglect the second 
derivative with respect to x, we obtain an equation of the 
type (2), but with a two-dimensional Laplacian. All the 
preceding arguments remain in force, and we find that 
an arbitrarily small "entry inaccuracy" will cause the­
self-focused beam to be completely broken up in the 
medium within a distance 

L ~ ~( qEo• )-'I• 
·ko {I) ' 

i.e., the self-focusing distance. We note also that for a 
cylindrical beam the picture of the instability is quali­
tatively the same. 

The results raise doubts concerning the possibility 
of stationary self-focusing of light in nonlinear media. 

4. INSTABILITY OF A BIHARMONIC FIELD 

It was shown in the preceding section that periodic 
envelope waves with stationary phase are unstable re­
gardless of the sign of q. In particular, waves with s > 0 
and with sufficiently small amplitude are unstable. 
These waves are the nonlinear analog of a superposition 
of plane monochromatic waves (biharmonic field). In 
this section we shall show that the biharmonic field is 
unstable in a wide class of transparent nonlinear media. 

Let us take the Fourier transform of (2) with respect 
to the coordinates: 

i 8!1<-~~Ek = q S Ek:Ek,Ek,f!(k + kt- kz- ka)dktdkzdks. (23) 

Equation (23) can be obtained by variation of the Hamil­
tonian 

H =iS k2EkEk"dk +f SEk"Ek:Ek,Ek,f!(k+ k1 - k2 -k3) 

X dkdk1dk2dka 

in accordance with the rule 

(24) 

Let us c:onsider a more general model of a nonlinear 
medium, described by a Hamiltonian 

H= S w(k)akak"dk+'l• S V(k,k,k.,ks)ak•a.:a.,a., (25) 
X 6 (k + k1 - k2- ks) dkdk1dk2dk3• 

Here ak is a complex variable describing the medium, 
w(k) the wave dispersion law, V(k, k1, k2, ka) is a func­
tion describing the interaction (the Hamiltonian for 
electromagnetic waves if calculated in the Appendix). 

Varying the Hamiltonian, we obtain 

~ak+ iro(k)ak =-iS V(k,kt,k2,k3)a.,"a.,a.,O(k+ k1 - k2- k3) 

t ~~ 
X dk,dk.dks. 

The biharmonic field is an approximate solution of this 
equation, in the form 

a" = A 1e-i•><tO (k- k1) + A 2e-i""16 (k- k2), 
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where 
rot= ro(k,) + 2V(k~, kz, kz, kt) 1Azl 2 + l'(k~, kt, kt, k,) lAd•, 

ro2 = ro(k2) + 2V(kt, kz, kz, k,) 1Ad2 + V(kz, k2, kz, kz) 1Azl 2 • 

It is assumed that terms proportional to the squares 
of the amplitudes are small. 

We subject this field to a perturbation of the type 

6a = a(t)e-i•>''6(k- k') + fl(t)e-iw"t6(k- k"), 

where 

ro' = ro(k') + 21Ad 2 V(k', k,, k,, k') + 2IA2 12V(k', kz, k2, k'), 

ro" = ro(k"} + 2IAd 2V(k", k,, k,, k") + 2IAzi 2 V(k", kz, kz, k"), 

with w1 + w2 = w' + w ", k1 + k2 = k' + k". Then a(t) and 
{3(t) are connected by the equations 

oa = - 2iV (k', k", k,, k•) 13•, at 
These equations yield 

ofl = - 2iV (k', k", k,, kz) a·. at 

k = k1 + k2, ro(k) = ro(k,) + ro(kz}. 

We see therefore that the biharmonic field is unstable 
for any law of interaction and for any law of dispersion. 
In particular, a standing wave is unstable in any non­
linear transparent medium. 

Application to Eq. (2) yields instability of a stationary 
envelope wave when s > 0 regardless of the sign of q, 
and the order of the instability increment is 
y ~ WEtiEol 2/e:o, where Eo is the characteristic amplitude 
of the wave. An estimate of the increment by a varia­
tional method gives the same result. When k1 - k2, this 
instability goes over into the plane-wave instability 
considered in LloJ. 

APPENDIX 

ELECTROMAGNETIC WAVE INTERACTION HAMIL­
TONIAN 

Interaction Hamiltonians of the type (25) describe 
either nonlinear media whose equations contain no quad­
ratic nonlinearity, or media in which the wave disper­
sion laws are such that three-wave process of the type 

a, f1 ~ evt, Y = 41 V(k', k", k,, kz) 1"1Ad 2 1Azl 2 

are impossible. 
Even in these cases, however, the interaction Hamil­

tonians of the electromagnetic waves have a more com­
plicated form than (25), since, generally speaking, it is 
necessary to take simultaneously into account the inter­
action of waves with different polarizations. We confine 
ourselves to the simplest case, for the description of 
which a Hamiltonian of the type (25) is suitable. We 
consider electromagnetic waves in an isotropic medium 
without spatial dispersion, and assume that the electric 
intensity vector is directed along the z axis and depends 
only on the variables x and y. The equation of the med­
ium takes the form 

( k'- ~e(ro) )Enro = ro• r e<1l(roTro,, roz, ros)Ek,ro,Ek,oo,Ek,ro, 
c2 , c' J (A.1) 

X ll ( ro + w1 - w0 - w3) ll (k + k, - k 2 - k3) dro,dw,dw3dk,dk,dk,. 

Here e: and e:<o are respectively the linear and non­
linear parts of the dielectric constant. In a transparent 
medium e:(w) is real, and e:< 0 (w, w1, w2, w3) is not only 
symmetrical in the indices Wt, w2, and w3, but is subject 
to an additional symmetry relation 

and to the relation 

which follows from the fact that the vector E{z, t) is 
real. 

Let w(k) > 0 be the wave dispersion law determined 
from the equation c2k2 = w2e:(w). We represent the 
Fourier component of the electric field in the form 

• w(k} 
Ekro = (ak., + li-k-ro) [ol'e(w)J' (A.2) 

W=OJ(k) 

(the prime denotes differentiation with respect tow), 
akw being different from zero only when w > 0 and 
having a short maximum at w = w(k). We substitute 
(A.2) in (A.1) and assume that w ~ w(k). We can then 
expand the left side of (A.1) in powers of (w- w(k)), 
confining ourselves to the first term. The integrand in 
the first part breaks up into a sum of terms, in each of 
which the integration is over a region near the surface 
defined by the equations 

w(k) ±w(k,) ±w(kz) ±w(ks) =0, k±kt±k2 ±ks=O. 

Since the dispersion law is such that processes of the 
type w(k) = w(kt) + w(k2), k = kt + k2 are forbidden, then 
processes of the type w (k) = w (kt) + w (k2) + w (k3), k = k1 
+ k2 + k3 are all the more forbidden. Therefore the only 
terms remaining under the integral sign are those corre­
sponding to processes of the type 

(J)(k) + w(kt} = w(k2) + w(k3), 

k + k, = kz + ks. 

Gathering all these terms and replacing the argu­
ments in e:< 0 (w, w1, w., w3) by their values at the 
maxima, we obtain 

(w- w(k) )ak., = \ lF (k, k1, kz, ks)a:,..,,ak,m,ak,.,, 
. (A.3) 

X ll(k + k 1 - k2 - k3)1l(w + w 1 - w2 - w3)dk,dk2dksdw1dwzdw3 

or, after taking the inverse Fourier transform with 
respect to time, 

o;tk + iwkak =- i ~ W(k, k~, kz, ks)ak,"ak,ak, 
(A.4) 

Here 

W(k k k ks)= 6w(k)w(k,)w(kz)w(ks) 
T 1' 2' [w2e(w)]'(w,2e(w,)]'(wz2e(wz)]'[w32e(w3)]' (A. 5) 

X e<1>(w(k),- w(k1), w(k2), w(k3) ). 

Obviously, W(k, kt, k2, k3) is symmetrical with respect 
to the substitutions k- k1 and k.- k3 , and goes over 
into its complex conjugate when the k, k1 pair is re­
placed by k., k3. These relations show that Eqs. (A.4) 
can be obtained by a variational method using formula 
(24). The Hamiltonian is then given by (25), for which 
purpose it is necessary to substitute for V the value of 
W from (A.5). 
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