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Waves with nonlinear dispersion are shown to be capable of second harmonic generation in inhomo­
geneous plasma. The second harmonic power emitted by the region of plasma and electromagnetic 
wave resonance is determined and it is shown that the coefficient of energy transformation into 
second harmonic can be of the order of unity for an arbitrarily small incident wave amplitude. 

1. Second harmonic generation in nonlinear homogene­
ous media is possible only if we satisfy the matching 
conditions1 >.[1J 

In the case of homogeneous plasma with no magnetic 
field the electromagnetic wave dispersion precludes the 
satisfaction of the matching conditions. Nevertheless 
experiment demonstrates an observable second har­
monic generation in the ionospheric reflection of elec­
tromagnetic waves as well as a considerable admixture 
of the second harmonic in the radio emission spectrum 
of the solar corona [2 1. Here the second harmonic band 
of the solar radio emission roughly repeats the fea­
tures of the fundamental radio emission band. There 
were attempts to attribute this effect by Raleigh scat­
tering of the second harmonic of the plasma wave into 
electromagnetic radiation or by Raman scattering of 
plasma waves by thermal fluctuations (see also [2 , 31 ). 

The present paper suggests another (and it seems to 
us, a more direct) mechanism of second harmonic 
generation based on the inhomogeneity of plasma; this 
mechanism is retained also in cold plasma. The law 
of conservation of the "quasi-momentum" is no longer 
exact in inhomogeneous plasma so that second harmonic 
generation is possible, generally speaking, with any 
dispersion law. We consider here the quasi-classical 
case of a medium with slowly varying density (in com­
parison to the wavelength). In such a case the departure 
from the exact conservation of the quasi-momentum 
and the attendant second harmonic generation become 
exponentially small effects. Thus the neighborhood of 
points that violate the quasi-classical approximation 
should provide the main contribution to the second 
harmonic generation. There is a point in inhomogeneous 
plasma in which (for an electromagnetic wave whose 
electric vector lies in the plane of incidence) the quasi­
classical property is violated in the greatest degree; 
at this point the dielectric permittivity turns to zero, 2 > 

and the electric field turns to infinity in the absence of 
dissipation. 

1 >These conditions can be interpreted as energy and "quasi-momen­
tum" conservation laws. 

2 > R. Z. Sagdeev told us about the possibility of an anomalous emis­
sion of the second harmonic in the region with E = 0. 
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Second harmonic generation in the region E = 0 was 
previously discussed by Forsterling and WusterE4 l. 
They considered that the amplitude of the first har­
monic is limited by the nonlinear terms (nonlinear 
contribution of spatial dispersion). However dissipa­
tion is the controlling mechanism that limits the first 
harmonic when the field amplitudes are small enough. 
Therefore the independence of the second harmonic 
amplitude from the field as reported by the authors 
ofr4 J is possible only in the region of sufficiently high 
fields where dissipation can be neglected. On the other 
hand (see below) these conditions give rise to a multi­
velocity motion, so that the analysis in[4 J is incorrect. 

In the present work we compute the second harmonic 
generation due to nonlinear effects in the region where 
the quasi-classical approximation is disturbed. 
Throughout this work the ions are considered fixed, 
thus assuming that the durations of all processes are 
sufficiently short. 

2. Let us briefly discuss the results of the linear 
theory (seer3 ' 5l). Let the plasma be inhomogeneous 
along the z axis, the electric field have the compon­
ents Ey and Ez, and the magnetic field the component 
Hx. All quantities are proportional to exp(iwt- ikyY ). 
The magnetic field obeys the equation 

d2H 1 de, dHx w2 

~----~-+- (e,-o.,2 )Hx= 0. 
dz2 e1 dz dz c2 

(2 .1) 

Here l!o = cky/w is the angle of incidence of the wave, 
considered small from now on, E1 is the dielectric 
permittivity of plasma at the fundamental frequency: 

4ne2 [ v eff J e,=1--.-N(z) 1+i-.~ 
mw2 w ' 

and veff is the effective collision frequency. 
The solution of (2.1) has the form of a standing wave 

that attenuates beyond the turning point z0 ( E 1z0 =a~) 
towards the plasma interior. The electric field com­
ponents 

ic iJHx 
E,=-­

we, ay 

at Veff = 0 have a singular point at Re E 1 = 0. The 
origin of this singularity is due to the fact that the 
frequency of the wave penetrating the plasma equals 
the frequency of the longitudinal plasma oscillations at 
this point. A resonance occurs leading to the oscilla­
tion of intense longitudinal fields in the region of the 
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singular point: 

. E, det 
d1v E1 = 4nen1 =---. 

e1 dz 

We translate the origin of the coordinates to the 
point where Re E 1 = 0 and assume a linear variation of 
density 

N(z) = No(1 +z/L); e1 = -(z/L+ iVeff /w). 

We then introduce the quasi-classical property 
parameter p = wLI c >> 1 and from now on assume that 
the distance from the turning point to the point where 
Re E1 = 0 is large, pag >> 1, while the resonance region 
is narrow Veff ~ wag. Under these assumptions the 
solution of (2 .1) near the point z = 0 has the form 

If;> = - Ho v 2 e;n/4-S, 
ao np 

[ p2ao2 ( z Veff) ( z 'Yeff \] 
X 1 + -2 -- T + i-w- In pa0 '£-+ i-;,;-- J (2 .2) 

Here Ho is the magnetic field amplitude at the plasma 
boundary and So ,= %pa~. The electric fields have the 
form 

E~) =H(O)po:02 1nky(z+it..), 
E<•> __ aoepH(O) 

' - _w-=:(....:.z -:-+--'i-:-1.'-) ' (2 .3) 

where 

H(O)= H~'l (0), f..= Lverr/w. 

It also follows from the theoretical results that the 
energy flow in the reflected wave does not equal the 
energy flow in the incident wave; a portion of the energy 
is absorbed in the region E1 ~ 0. In the limit of Veff 
- 0 this energy can be computed from the formula 

~ mN(z)veff lvzl'dz = W, = _!!_H02e-2B•. {2.4) 
2n 

Thus a finite portion of energy is "captured" in the 
neighborhood of the singular point. 

3. We now consider the nonlinear effects assumed 
to be small. The smallness criteria are given below. 
Representing the magnetic field of the second harmonic 
in the form H2 = H2 ( z )e2i(wt- kyy) we obtain for H2 (z) 

d2H2 1 de2 dH2 4w2 
-----~-+-(e2 -ao2)H2 =F(z), {3.1) 

dz2 e2 dz dz e2 

where E 2 = 1 - wg ( z )I 4w2 is the dielectric permittiv­
ity for the second! harmonic and F( z ) are nonlinear 
sources of the second harmonic. The expression for 
F( z) has the form 

F(z)= -~ne3ez [ 2ikyE,2 dN +!:._f ~ dN \ 
m'w'c e,e, dz dz \ s1e2 dz J 

ik d N] +-" (El+E,2) --- • 
2 dz e2 

(3.2) 

We note that F( z) is proportional to the density grad­
ient and vanishes in a homogeneous medium. Insofar 
as the width of the resonance region >c = Lveff I w ~ L, 
we neglect the derivatives of E2 and separate out the 
main term in F( z ). Finally we obtain 

d'H2 ea03H 2 (0)p2 d In ky(z +if..) 
--+k,'H,=-· , {33) 

dz' mw2 dz (z + i/..) 2 • 

where k~ = 4w 2 (E: 2 - ag)lc 2 • 

We set the boundary conditions of radiation for (3.3): 

for z--oo. Then C1 and C2 are determined by 

We note the fact that the singular point F( z) lies 
in the lower half-plane. Since the function e.!.!~2Z de­
creases in the upper half-plane, C1 = 0. The zero 
value of C1 means that the second harmonic is emitted 
only "backwards" and is present only in the reflected 
signal. Computation of C2 yields 

nep'ao3H2{0) ( . 11 J (3 5) C2 = C -1 +In ao + '-. e-P"eff/"' • 
me'k2 2 

Here C is the Euler constant. 
We now compare the energy flows of the first and 

second harmonics. The flow ratio 
s, ( eHo )' p2ao2 [ :rt2 J { Veff 1 -=\-- -- -+(1+Ina0 -C) 2 exp -1So-2p-· f' 
St mew e2(0) 4 "' 

(3 .6) 
According to (3.6) the emission strongly depends on 
the angle of incidence and has a maximum at the angles 
of incidence a 0 ~ p-113• We note that the second har­
monic emission effect is strongest when Veff I w $ 11 p, 
i.e., when the width of the resonance region is less than 
or of the order of the wavelength. The criterion of ap­
plicability of the above approximation resides in the 
smallness of the nonlinear corrections to all the physi­
cal quantities. According to computations the most 
significant nonlinear correction is oE~1 > for the first 
harmonic of the electrical field E 1 • We compute it from 
the formula 

where 

In the region E 1 ~ 0 where 

IEzl ~ ~ = ~H(o)l_ aow2 

IE1 1 mew pv~ff ' 

we obtain 

I bE~'>_ I ~ B'w 
£(~) i Veff . 

Hence the criterion of small nonlinearity is: 

e I H (0) I < _r:_ (.:"!f!. )% . 
mew ac w 

(3.7) 

Substituting (3.7) into (3.6) we obtain in our approxi­
mation the result for the greatest possible second 
harmonic generation: 

Sz 2 ( Veff )' {' Veff ) -~ ao p -·-·- exp - 29 ---- 2So ·; 
St W (JJ ) 

when PVefflw ~ 1 we have s 2 ls 1 :5 age-2 so. 
Comparing the last formula with (2 .4) we find that 

in our case only a small portion of the energy dissi­
pated in the region of the singular point converts into 
the second harmonic. When thermal motion is taken 
into account, the resulting longitudinal plasma waves 
carry off the energy from the singular region Re E 1 

= 0 and thus limit the longitudinal field. As noted in r3 l 
we can in this case introduce the effective dissipation 
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We evaluate the effect of the pressure gradient, using 
equations of motion:* 

iJv Vp e ( 1 ) --verrv= --+- E+-[vH] . 
iJt mNm c 

Hence 
I Vpj ( rD )''• 
JeNEJ ~ L ~1· (3.8) 

According to (3.8), when rn « L the role of pressure 
is reflected in all the above formulas merely by the 
addition of the term 11 ~~f to lleff· 

In our case there is another point where the quasi­
classical approximation is disrupted: this is the 
"turning point." We should therefore expect an in­
crease of the second harmonic emission also in the 
neighborhood of this point. The contribution to the 
emission from the "turning point" region is deter­
mined from the magnitude of the matrix element 

co 

V ~ ~ llJ2e-ik,zdz, 

where <I> ( z ) is an Airy function characterizing the be­
havior of the first harmonic in the neighborhood of the 
"turning point," while the behavior of the second har­
monic is described for the sake of simplicity by an 
exponential factor (we can readily see that V deter­
mines the ''power'' of the nonlinear source of the 
second harmonic in the neighborhood of the ''turning 
point"). It is well known that matrix elements of this 
type are exponentially small and the exponent is pro­
portional to L1 where 

L, ~ Jll>/ll>'lz=-<>o'L, Ill'= dll>jdz 

(see for exampler6 l ). Making use of these relations and 
evaluating d<I>/dz we find that if pa~ >> 1, then L1 
RJ ( c/w)p 213 and for a 0 < p-119 the emission of the 
second harmonic from the resonance region exceeds 
that from the neighborhood of the "turning point". 

4. It is now convenient to examine some features 
of the phenomenon in cold plasma in Lagrangian coor­
dinates. We first note the following consideration. 
According tot he preceding discussion the special fea­
ture of wave behavior is associated with the longitudi­
nal portion of the field into which the energy is pumped. 
It is therefore clear that we can directly separate the 
transverse portion of the field, to be henceforth con­
sidered as given by the linear approximation formulas: 
E = - Vcp + F, where F is determined from the equa­
tions 

1 iJH 
rotF = ---;;Tt• divF = 0, 

F = (0, Fy, F,), H = (Hx, 0, 0), 

Hx is a known function from (2 .1 ). 

(4.1) 

According to the linear theory the motion can be 
considered quasi-onedimensional (see (2.4) and (2 .5)). 
In Lagrangian variables the system of equations re­
quired for the perturbation of electron density n and 
the electron coordinates z and cp then assumes the 
following form 

*[vH] =v X H. 

e iJcp e 
z=----;;;: 02 -vi+-;;;:Fz, 

{)z 
n oa = no(a), 

{}2q; {jz 
oziJa = -4ne(n-N(z)) 0a. (4.2) 

Here z =z(a,t) and a=z(a, -oo). 
For a linear density behavior we obtain from the 

system (4.2): 

( z) { a) e z+w2z 1+- =w2at1+- -vi+-F,. 
2L \ 2L m 

(4.3) 

The nonlinear terms in (4.3) due to the inhomogeneity 
of the initial density can in principle lead to a multi­
velocity flow. In our case however due to the weak in­
homogeneity the multi-velocity flow occurs earlier as 
the unambiguous relationship between z and a is dis­
turbed. Here n(z, y, t) turns to infinity at a certain 
time instant. The condition for the absence of multi­
velocity flow, i.e., the convergence of the Fourier 
density series, is based on 

eH(O) ~___£__( v'err_) 2 • 

mew ao ro 
(4.4) 

5. The above discussion concerned the second har­
monic emission under conditions when the field in the 
resonance region is determined either by collision 
absorption or by energy dissipation by plasma waves. 
A self- consistent analysis for the case when nonlinear 
effects determine the field characteristics in the reso­
nance region is difficult and therefore we are limited 
to some qualitative estimates. We first note the fact 
that the mathematical problem is reduced to a system 
of two second-order equations with nonlinear coupling 
that takes the interaction of the first two harmonics 
only into account. Nevertheless the analysis of both 
mechanisms, the energy dissipation by plasma waves 
and the second harmonic emission, can be limited by 
the following considerations. The conversion from 
electromagnetic to plasma waves is in the final analy­
sis due to the TVn term in the electron motion equa­
tion (as is noted in r51, a straightforward reasoning 
comparing this term with the friction force yields the 
magnitude of the field in the resonance region in the 
linear case). Similarly the nonlinear terms of the type 
(v2 V)vi determine the energy transfer into the second 
harmonic. 

Under conditions such that I mN( V2 V )vi I> IT Vn1 I 
the second harmonic emission is the controlling factor. 
Substituting the expressions for v~11 and v<;,> found 
above, we obtain the following criterion 

e\H(O)J Veff 1wrn --'---"--..:...:.. > ----. 
mew w ~ c (5.1) 

Furthermore, according to (2.4), th~ energy ab­
sorbed in the region €1 RJ 0 does not depend on lleff in 
the case of weak dissipation. This quantity is maximum 
at So ~ 1. Under the conditions of solar corona: 
L ~ 1010 em, N ~ 108 cm-3 , v ~ 10 sec-\ and rn ~ 1 em 
for wavelengths of ~100 em the energy absorbed in the 
singular region is of the order of the incident wave en­
ergy for angles of a 0 ~ 10-2 • It is clear that the second 
harmonic energy flow cannot exceed the total energy 
dissipated in the region € 1 RJ 0. We can expect that the 
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coefficient of energy transformation into the second 
harmonic is close to unity when (5.1) holds So~ 1 
and I (v2V)v! I> v~{ll v1l. We note that when So ~'1. 
(5.1) holds and collision dissipation is low, one process 
competing with the second harmonic emission still re­
mains; in a sense it resembles collision dissipation 
and consists of the formation of a multi-velocity flow. 
However according to (3.7) and (4.4) there is a regime 
where the formula for s2/s1 no longer holds and the 
multi-velocity motion has not yet occurred. Whether 
under these conditions the emission increasing with the 
field can reach its maximum value equal to the energy 
absorbed in the singular region is an open question. 

In conclusion the authors thank R. Z. Sagdeev for 
valuable advice. 
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