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The influe ce of thermal noise on the nonlinear periodic regimes arising in a continuous medium with a 
parametr· instability under the action of a temporally periodic field is studied in this work. It is shown 
that tw cases can occur: either a" smeared-out" periodic regime and the formation of a finite spec-

_ _,OO<H-.uidth, or the conservation on the background of the fluctuations of the periodic component, which is 
coherent within the system. In the latter case the loss of stability in a continuous medium can be com­
pared with a phase transition of the second kind. 

INTRODUCTION 

WE consider in the present paper phenomena occurr­
ing upon parametric excitation of waves in a nonlinear 
medium in the presence of thermal noise. We assume, 
however, that this investigation has a more general 
physical meaning and can be regarded as an example of 
an investigation of the influence of fluctuations on the 
onset of turbulence in a nonlinear medium. 

The problem of onset of turbulence arose in hydro­
dynamics. In the study of the nonlinear stage of develop­
ment of certain hydrodynamic instabilities it was estab­
lished that a periodic motion sets in, with amplitudes 
proportional to .JR- ~. where R is the Reynolds num­
ber and~ is its critical value (see, for exampleu1 ). 

L. D. Landaul21 advanced the hypothesis that further 
increase of R is accompanied by successive occurrence 
of a large number of such periodic motions, which ulti­
mately form a completely disordered motion-developed 
turbulence. 

It was subsequently established that the occurrence 
of periodic regimes following loss of stability is a wide­
spread phenomenon in the physics of continuous media. 
It occurs, for example, in magnetohydrodynamics and in 
many problems of plasma physics (see the reviewl31 ). 

In each concrete case, the role of the Reynolds number 
is played by some parameter characterizing the degree 
of instability of the system. 

Thermal fluctuations are present in all real systems, 
and great interest attaches to an investigation of the be­
havior of the fluctuations as R - ~. Obviously, as 
R - ~ the level of the fluctuations in the system increa­
ses. When R > ~. there are at least two cases possi­
ble: either the fluctuations in the spectral region close 
to the frequency of the periodic motion increase to a 
macroscopic level, in which case a quasiperiodic regime 
with a certain line width sets in, or else a strictly 
periodic regime is established as before, and is coher­
ent over the dimension of the entire system, where the 
fluctuations remain "frozen" at a certain level. 

Such an occurrence of a coherent periodic regime 
can be compared with a second-order phase transition, 
for example, with condensation of a Bose gas or with a 
transition to the superconducting state. The phase tran­
sition is a realignment of the state of the system, due to 
the instability of this state at T < T0 , where T0 is the 
transition temperature. With this, long-range order is 

established in the system, and the ordering parameter 
depends on the temperature like .JT0 - T. 

In establishing an analogy with a phase transition, 
we can set the existence of a coherent periodic regime 
in correspondence with long-range order, the amplitude 
of the periodic motion with the ordering parameter, and 
the temperature with the Reynolds number or with an 
equivalent parameter. Continuing the comparison, we 
note that near the phase transition, as T- To, ti1e fluc­
tuations also increase strongly, and it is precisely the 
behavior of the fluctuations at T < To which determines 
whether a phase transition does or does not occur. 

The study of the onset of turbulence in a weakly non­
linear medium (weak turbulence) is much simpler than 
in an incompressible liquid. Weakly-damped waves 
exist in such a medium, a continuous distribution of the 
waves ink space is excited in the case of developed 
turbulence, and the phases of the individual waves can 
be regarded as random with a high degree of accuracy. 
Such a turbulence arises, for example, in parametric 
excitation of waves by applying to the medium a homo­
geneous field that is periodic in time. 

Parametric excitation of waves is widely used for the 
generation of spin waves in ferromagnets (see, for ex­
ample, the reviewl41 ). In general form, the problem of 
the nonlinear stage of parametric instability of waves 
was investigated by the authors together with S. S. 
Starobinets inl51 , henceforth cited as I. 

In I, no account was taken of the thermal noise, and 
use was made of a definite simplification of the wave­
interaction Hamiltonian, reminiscent of the BCS ap­
proximation in superconductivity theory. Under these 
assumptions, we traced the sequence of nonlinear per­
iodic regimes that arise at different values of the ex­
ternal-field amplitude. All the regimes constituted 
singular distributions of waves ink- space, concentrated 
at points, on a line, or on a surface. We shall show 
below that in most cases, when account is taken of the 
thermal noise, and also of the discarded terms of the 
Hamiltonian, these distributions become "smeared out," 
but under certain rather stringent limitations a phenom­
enon of the phase-transition type takes place. 

1. FUNDAMENTAL EQUATIONS 

Just as in I, we shall describe the medium within the 
framework of the canonical Hamiltonian formalism. We 
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choose the Hamiltonian of the medium in the form 

(1) 

Here ak is the canonical variable-the complex ampli­
tude of the traveling wave, "'k is the dispersion law, Hp 
is the Hamiltonian of the interaction with the external 
field (with the pump): 

H.={.E[h'(t)v.-a.a_.+ c.c.], (2a) 

h(t) = h exp (iwpt) is the pump field, and Hi is the wave 
interaction Hamiltonian: 

H, = + .E T.,,,.a,•a,•a,a,~(k, + k,- k,- k,) (2b) 
t2,3l 

(~(k) is the Kronecker symbol, ~ = 1 at k = 0). The 
function T1,a,3,4 is assumed to be real and continuous. 

The equations of motion of the medium are 
aa. bH 
-a +v•a•=-i-+f.(t), t oo •• 

(3) 

where Yk is the damping of the waves. Parametric exci­
tation of the waves takes place if 

max(hV./y.) > 1. (4) 

In (3) we have introduced phenomenologically the 
term fk(t), which represents a Langevin random force 
with a correlator 

(j.(t)f••'(t')) = 2y.n,(w.).S(k- k').S(t- t'), 

where 11o(w) = (1 + ehw/Tr1 is the equilibrium distribu­
tion function. 

The main approximation assumed in I consisted of 
replacing the interaction Hamiltonian (2b) by the ap­
proximate Hamiltonian 

H, = .E [ T ... a.a .. a •. a.: + +s ... a•a-•a •. a_.,] (5) 
k,k' -+ .E (To.aoata•at + zs •• a .. a_ .. a0a_.), 

• 
Tkk' = Tt.t', tk', Stt' = T~~.. -t; ",' -t: 

The Hamiltonian (5) is diagonal in pairs of waves with 
equal and opposite wave vectors. Within the framework 
of the Hamiltonian (5) it is possible to obtain exact equa­
tions for the correlation functions nk = (akak) and 
ak = (aka_ kexp(- iwpt)): 

where 

1 dn. 
--+Y•(n0 - no)= ImPt'a., 

2 dt 

1 da. --+ Y•O• = in•P• - iiiloOo, 
2 dt 

From (6) follows the relation 

(-1-~+ 1} (lo•l'- n.')+n.n, = 0. 
4y. dt 

(6) 

In I it was assumed. that 11o = 0. Then lakl relaxes to 

~within times ~ 1/y and in the stationary state we 
have lakl = nk. 

The approximation in which we use the diagonal 
Hamiltonian (5) and put 11o = 0 will be called the S model. 
The solution of the problem of stationary distributions 
of nk within the framework of the S model leads to singu­
lar distributions ink- space and is strongly ambiguous. 
The ambiguity is eliminated by requiring that the distri­
bution be "externally stable," i.e., that it be stable 
against the appearance of new pairs of waves. The ex­
ternal- stability condition causes the distribution of I1tt 
to be concentrated on the surface 

iil•=O (8) 

and to fill this entire surface at sufficiently large ampli­
tudes of the external field. 

At smaller amplitudes, the distribution of the waves 
on the surface (8) depends essentially on the structure 
of the coefficient vk. 

If Vk is maximal at the point k = k1 (we assume for 
simplicity Yk = y = const), then near the threshold of 
the instabilify there arises at this point a pair of waves 
whose amplitude n1 and phase '1111 are given by the form­
ulas 

sin'¥, =y__ 
hV 

(9) 

(Vis the value of Vk at the maximum point). With fur­
ther increase of the amplitude h, there appear new pairs, 
which at a certain h = hs fill the entire surface. 

If Vk is maximal on a line (for example, in the case 
of axial symmetry), then at small excesses above the 
instability threshold only this line is filled, followed by 
the filling of new lines which gradually "cover'' the en­
tire ~urface. Finally, if Vk = const, then the entire sur­
face "'k = 0 becomes filled immediately beyond the 
threshold. 

All the foregoing have pertained to the case of a 
sufficiently "good" function SJ.ck'. If this function, re­
garded as the kernel of an integral operator, turns out 
to be degenerate, then there is either a "collapse" of 
the stationary regime, or a loss of its uniqueness. Thus, 
at ~' = S = const there exists no stationary regime at 
Vk #- const, hV > /2y, the distribution is arbitrary and 
satisfies the condition 

~ "}'(hV)'-y' ""-'n" = S for v. = V = const. 
k 

A similar picture occurs also in a physically two­
dimensional medium, in which pair distributions are 
possible in the form of individual points or lines in the 
k-plane. 

In I the regime in which one or a finite number of 
pairs exists was called dynamic, and the regime in which 
there exists a distribution of pairs on a line or on the 
surface was called stochastic, under the assumption that 
the individual phases of the pairs are random in this 
case. In the present paper greater importance attaches 
to the dimensionality o of the space in which the problem 
is considered (o = 2, 3), and also to the dimensionality 
o8 of the stationary distribution in the S model (os = 0, 
1, 2). We shall show in the next section that the influ­
ence of thermal noise on the distribution depends essen­
tially on the difference of these numbers. 
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2. INFLUENCE OF THERMAL NOISE ON THE 
STATIONARY REGIME 

Let us consider the possible physical causes of 
''smearing'' of a distribution that is singular in k- space 
in the presence of thermal noise. 

The resultant singular distribution of the waves 
changes their damping decrement. For the effective 
decrement we have within the framework of the S model 
(see I) 

V·"=v-IPI, 

where Pis given by (7). 
The principle of external stability requires that Yeff 

be positive in all of space with the exception of the 
points at which the distribution is concentrated; at these 
points y eff = 0. Near these points, at a distance K from 
them, we have 

The amplitude of the thermal noise increases by a fac­
tor y /y eff compared with its stationary value, so that 

n, = n,y I V•li· 

"Smearing" of the singular distribution occurs in the 
case when the singularity is nonintegrable. It occurs if 
6 - lis = 1 (the distribution is concentrated on a surface 
in three-dimensional space or on a line in two-dimen­
sional space)-in this case the divergence is propor­
tional to 1/«-and also in the case o- lis= 2 (line in 
three-dimensional space or a pair in two-dimensional 
space)-in this case the divergence is logarithmic. The 
singularity is integrable only if o- lis= 3 (a pair in 
three-dimensional space), and only in this case can one 
hope to get a "phase transition"-the occurrence of a 
singular regime in the presence of noise. 

We now analyze quantitatively the smearing of the 
singular distribution. In the stationary case we write 
Eqs. (6) with allowance for 

in the form 
V•(n.-n,) = ia•i [sin'I'.(hV.+A•) -B.cos'¥.], 

-w.(n.-n,) = la•I[B.sin'¥.+ (hV.+A.)cos'¥.]. 

We have introduced the quantities 

A.= ~Su•la•·icos'¥ •. , 
"' 

B. = ,E S••·l 0'••1 sin'¥ •·· .. 
in terms of which the solution of (11) is expressed: 

~= IP•I' IP•I' 
n, 

where 

(10) 

(11) 

(12) 

"•'=y.'-IP•I'. IP·I'=(hV.+A•)'+B.', (13) 

K 11 is the deviation from the surface W{k) = 0 in the 
normal direction, vn = aw/aK 11 , and for Ak and ~we 
obtain the system of integral equations: 

B -\"'1s (k')y..(hV •. +A •• )+w • .B •• 
k- "'-.J Jdvno 

•· W•·'+ v • .' · 

(14) 

Assuming that the quantities Yk, hVk, and S!dt' depend 
only on the angle variables n, we find that the quantities 
Ak, Bk, Pk, and Vk are also functions only of n. It fol­
lows therefore that the distributio~ function nk has a 
Lorentz form with a maximum at Wk = 0 and parameters 
that depend on n. This result is in accord with the 
consequence of the ''external stability'' condition in the 
S model. 

The width vn and the intensity Nn of the Lorentz 
function, as follows from (12), are connected by the re­
lation 

No= _1_f (n - n )d N v'-vo' 2n :~~,,.. o x, u = --n,. 
2Vo\lo 

(15) 

Integrating (11) with respect to K 11 , we obtain 

A _ n, \"'1 Soo• [ y80 , l 
o--2 "'-.!-- --+ao.(hvo.+Ao,) , 

v,.., 'Vg, 

"' 
B _ n, \"'1 Soo• [ y(hv0 • + Ao•) ] 

g - 2 £....-;;;,- Vo' + ao,Bg, . 
. o• 

(16) 

Here the parameter an is of the order of unity; it can 
have either sign and arises when the integral 
J wdw I (w 2 + v2) is cut off in the region of low frequen­
cies as a result of the decrease of the density of states 
and in the region of high frequencies as a result of the 
decrease of the thermal-noise amplitude. 

In the limit as no- 0 it follows from (13) and (15) 
that the width of the packet vn tends to zero, and n,c n 
- Nnli («), corresponding to a transition to the S model. 
As already noted, the influence of the thermal noise de­
pends on the value of li - liS· Let us consider the case 
o- Os = 1. For simplicity we confine ourselves to the 
case when Vk and stdt' are constants, and Wk depends 
only on lkl. We then obtain from (11) a biquadratic 
equation for the width of the packet v: 

v'(1- a§,)'+ v'[(hV)'- v'(1- ai;,)' + y'§o']- y'§,' = 0; 

here the small parameter ~ li, namely 

,;;, = n,k,'S I 2nv, (;, = k,S 1 2v, 

depends on the level of the thermal noise no and the non­
linearity of the medium S. For parametric excitation 
of spin waves in ferromagnets in the usual experimental 
situation we have 

T T 
(;, ~ -(ak,)' ~ ak,- ~ 10-• -10-' 

hw Tc ' 

where a is the lattice constant, ko is the characteristic 
wave vector of the pairs (wko = 0), T is the crystal tem­
perature, and Tc is the Curie temperature. For a 
hypothetical two-dimensional exchange ferromagnet 

§, :o:: T I Tc. 

The expression for the total amplitude is obtained by 
integrating ( 12) : 

SN=(hV)' 6v 
v'(1- avs)+(vs)' 

(17) 

We note that the case Vk = const, ~' = const is 
strongly indeterminate in the S model. On the other 
hand, the distribution obtained by us for nk is a unique 
solution of Eqs. (11). Thus, the introduction of the 
thermal noise lifts the indeterminacy of the distribution 
in the S model. 
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The concept of instability threshold loses its rigor­
ous meaning when account is taken of thermal noise, 
and can be defined accurate to ~ 2 y. We introduce never­
theless the notation he V = y (1 - a~). For V(hc- h) 
< y~ 2 we then get 

h') ( y' ) 
v'=v'(t-h,'. i+s' (h,'-h')'V' , 

sh'V . ( t 6, v' ) 
SN= yh/-h' . - 2(h/-h')'V' . 

Above the "threshold," when V(h- he) > y~ 2 , we 
have 

s'v' [ , v' ] 
v' = V'(h'- ho') i-s 2V'(ho'-h')' ' (18) 

SN= Vy~[ i+s'ZV'(h,~·-h')']. 
It is seen from these formulas that the influence of 

the thermal noise on the parametric excitation of the 
waves has led, first, to a shift of the threshold ampli­
tude of the field by an amount that is linear in the small 
parameter of the problem ~, second, to the appearance 
of a width v ~ y~ , and third, to the appearance of incre­
ments that are quadratic in ~ to the dependence of SN 
on h2 - h~, compared with the result obtained by the 
S model. 

We now consider the case 6- 6s = 2. Assuming as 
before that~' = const, wk depends only on lkl, and Vk 
has a maximum in the region where the solution is con­
centrated in the S model and decreases quadratically 
with increasing distance from the maximum, namely 
Vk = V(1- (3 202), {3 ~ 1, we obtain formula (17) for the 
total amplitude, where 

t ' da ' de 1 
-;- = [ 7." ~ ~ fv,' + y'a' ~-y-In v~ (19) 

(h V)' 
v'v,' -' -,- + v'V'(h'- h/) + v,'v's'- y'5' = 0. 

y 

Solving these equations, we obtain above the "threshold" 
at 

V(k-h,) >vexp(-fh'-ho'/sh,) 

the expressions 

SN= Vfh'-h,'[1 + (hV)'exp (-fh'-ho'/sh,)], 
v, = y exp (- fh' - ho' /5h,), v,' = v,• + y'~'a'. 

We see therefore that when 0- lis= 2 the threshold 
amplitude shifts in the same manner as when 0-0 8 = 1; 
however, the influence of the thermal noise on the am­
plitude N has an exponential smallness. 

3. INFLUENCE OF THE "INTRINSIC" NOISE 

We now examine the role played by the interaction­
Hamiltonian terms discarded in the S model. As noted 
in I, within the framework of the S model the sum of the 
phases of the waves making up the pair is fixed, whereas 
their difference can be arbitrary. Actually, in the 
derivation of the S-model equations, it was assumed that 
these differences (and with them also the individual 
phases of the waves) are random. Physically this is 
justified by the fact that the phase difference in the S 
model has no stability margin and can be randomized by 

an arbitrarily small external action, say by thermal 
noise. 

That part of the interaction Hamiltonian (2) which is 
not diagonal in the pairs depends on the individual pha­
ses, and on this basis it was disregarded in the S model. 
It leads, however, to a certain correlation between the 
individual phases, and can be taken into account by a 
perturbation theory that uses the S model as the zeroth 
approximation. To do this, it is necessary to carry out 
a decoupling of sixth- order correlations with allowance 
for the correlation of the phases of the waves in the pair. 

The result is a system of kinetic equations for the 
correlation functions in n and a and containing terms 
that are cubic in these variables. The solution of this 
system of equations turns out to be a much more com­
plicated problem than the solution of the corresponding 
equations for thermal noise, and we shall therefore 
disregard in this paper the influence of the nondiagonal 
terms of the Hamiltonian in the order- of- magnitude 
estimates. In this case we can neglect in the cubic terms 
the correlations of the phases within the pair, (in spite 
of the fact that I a I ~ n), and use the known expression 
for the collision term, which takes into account four­
wave interactions (see, for example,l61 ), 

(an,) = 2n E JiT.,,,.I'd(k, + k,- k,- k,)ll(ro, + ro,- ro,- ro.) 
iJt " 

x [n,n,n, + n,n,n,- n,n,n,- n,n,n,]. (20) 

The collision term (20) has terms of two types: 
a stochastic external force with spectral density 

vn,(k) = 2n _L.ITu,,.l'd(k, + k,- k,- k,)ll(ro,+ ro,- ro,- ro,)n,n,n,, 
(21) 

the introduction of which is equivalent to introduction of 
an "intrinsic" noise with a distribution ni(k), and an 
effective nonlinear damping of the wave due to the four­
wave interactions 

2ynl = 2n ,L.ITu,,.l'd(k, + k,- k,- k,)ll(ro, + ro,- ro,- ro,). 

X (n,n, + n,n,- n,n,). 

At not too large amplitudes, 

SN /v~ (u•/y) %, (22) 

to which we shall henceforth confine ourselves, the 
linear damping y is much larger than the nonlinear one, 
and the latter can be neglected. To the contrary, the 
"intrinsic" noise ~ may turn out to be much larger 
than the thermal noise n0 , so that the intrinsic noise 
must be taken into account. 

Let us examine the influence of the intrinsic noise in 
the case (22), when it is sufficiently small. The integral 
intensity of the excited waves will be described as be­
fore by the S-model formulas. However, the intrinsic 
noise affects the magnitude and form of the broadening 
of the singular distribution. 

1. We start with the case o - 0 s = 1. Then the dis­
tribution is concentrated, as before, near the surface 
(or line) w(k) = 0 and has a certain width v (with respect 
to the frequencies). Obviously, the distribution of nk 
near the surface will no longer be Lorentzian, since the 
intensity of the intrinsic noise itself depends strongly on 
k and is concentrated in a narrow layer, the width of 
which is also of the order of v. 
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We shall obtain a self-consistent estimate of the 
width v for the simplest situation Vk = V = const, 
T12, 31 = S = const. Estimating (21), we note that if 
nk ~ O(Wk- Wo), then alSO yni(k) ~ O(Wk- Wo), SO that 
expression (21) contains a large factor wlv. Taking this 
into account, we have 

• w (SN)' S'N' 
yn, ~ ---n(ko);::::; --n(k,). 

v w v 

This intrinsic-noise intensity corresponds to a dimen­
sionless parameter ~ eff ~ (SN) 31 wy v. Assuming that 
the condition V(h- he) » ye is satisfied, we shall use 
formula (18) v ~ ~ yiSN, from which we get 

( y ) 'h ( SN) ' s,tt~- - · 
w v 

(23) 

The quantity y~ ~ff I (h V- y) remains small if SN/y 
« (wly) 112• It follows from (18) that the correction to 
the total wave amplitude, oNIN ~ ylw, is small at all 
excesses above threshold. As seen from (23), the width 
of the v distribution, due to the intrinsic noise, increa­
ses with increasing amplitude of the waves, whereas, to 
the contrary, the width due to the thermal noise decrea­
ses. These effects become comparable at an amplitude 

SN/y ~ (w/v)'1•s'l•. 

For ferromagnets, this corresponds to a rather 
small excess above threshold: 

at larger amplitudes, the influence of the thermal noise 
can be neglected. 

2. We consider now the influence of the intrinsic 
noise in the case o - o s = 2, when in the S model there 
is realized a distribution concentrated on a line in 
three-dimensional k- space. Just as before, we confine 
ourselves to consideration of an axially symmetrical 
problem in which Vk has a maximum on the equator and 
decreases in accordance with the formula V 8 
= V(1- a 282 ), where 11/2- 8 is the azimuthal angle, 
a ~ 1. We also put Skit= S = const. 

We note that the intrinsic noise leads to a different 
character of the distribution of nk than the thermal 
noise. The thermal noise, uniformly distributed over all 
of space, leads to a weak localization of the distribution 
near the equator. If v is the width of the distribution 
with respect to frequency, then the intensity of the dis­
tribution decreases along the surface like 118 at 
8 > v/y. Unlike thermal noise, intrinsic noise is 
strongly localized near the equator in the angle region 
8 ~ vly, corresponding to the interval of the values of 
the transverse (with respect to ko) component of the 
wave vector ok1 ~ k 0 vl y. By comparison with the 
width along the wave vector ok 11 ~ viV ~ vkolw, we get 
ok 11 1ok1 ~ ylw. The distribution along the wave vector 
k0 (across the surface) is thus better localized, by a 
factor y I w, than along the surface. 

When estimating expression (21) it must be borne in 
mind that if nk ~ O(Wk- Wo)o(kl), then also yni 
~ o(wk- w0)o(k 1), and therefore expression (21) con­
tains the large factor (wlv)(kolok1). Taking this into 
account, we have 

w k, (SN)' Y (SN)' (k) yn, ~ ----n(k,);::::; 2 n o · 
v 6kl. w v 

(24) 

Specifying a certain distribution ni(8) of the intrinsic 
noise with respect to the angle, we substitute it in (11). 
Integrating, we obtain 

where 

B- s,11 (hV +A)= 0, 

1',,11 = Sk,' s' n,(S)de. 
2nV, v(8) 

SN =(;,liP' 
v ' 

(25) 

(26) 

Solving Eq. (25), we substitute A and B in the formula 
for P 2 , from which (assuming v « y) we determine ~ eff: 

s - (hV)'-v' (27) 
ejf- Y2 . 

Hence SN = vro(h:-cV)=n2---y..,.2 (accurate to terms of order 
(vly )2). 

Using formulas (24) and (25), we obtain the estimate 

{;,II = (SN) 3/ w-v'. 

Comparing with (27), we have 

v ~ (y/w) '!.SN. 

For the width v of the distribution over the frequen­
cies, we obtain the same estimate as in the case o - o S 
= 1. Estimating the value of vly, we verify that it re­
mains small when SN/y « (w/y) 112 , i.e., in the entire 
region of validity of our analysis. 

From a comparison of ~ eff with the parameter ~ for 
thermal noise, we find that the intrinsic noise becomes 
comparable with the thermal noise at an external- field 
amplitude 

(h- h,) 1 h, ~ s', 
i.e., at much smaller excesses above the instability 
threshold than in the case o - o s = 1. This is connected 
with the fact that in the case o - o s = 2 the intrinsic 
noise turns out to be much stronger. 

The case when a regime in the form of one pair of 
waves is realized in the S model must be considered 
within the framework of the exact Hamiltonian, as will 
be done in the next section. 

4. DYNAMIC REGIME IN THE PRESENCE OF NOISE 

In this section we shall show that situations are 
possible in which the dynamic regime in the form of a 
single pair in a three-dimensional medium (o- os = 3) 
remains in force in the presence of thermal noise. To 
this end it is necessary, first, that the growth increment 
of the noise wave not be positive and, second, that the 
total intensity of the waves of the background in the sta­
tionary state be finite. Accordingly, we obtain, first, the 
conditions necessary for the stability of the pair within 
the framework of the exact Hamiltonian, and second, we 
estimate the integral value of the noise in a stable situa­
tion and show that it is small. 

Using the Hamiltonian (2), we have written out in[BJ 
linearized equations of motion for perturbation waves 
with wave vectors ko ± " and- (ko ± K), and obtained an 
expression for the instability increment y eff· For 
(Kik0 ) 2 » SNI w, it reduces to the simple form 

(28) 

which follows directly from the diagonal Hamiltonian. In 
I we investigated expression (28) and showed that in or-
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der to have y eff ~ 0 it is necessary that the wave vector 
ko of the pair satisfy the external-stability condition 

(29) 

and that it be directed such that Vk = V = maxVk· The 
0 

amplitude and phase of the pair are then determined by 
formula (9). 

The condition (29) thus ensures stability of the pair 
for (K/ko) 2 » SN/w, and we shall therefore present in 
the present paper an expression for the increment y eff 
at small K/k (K/k « SN/ w) for the stationary state of 
the pair (9) 1 >: 

( Lx')' L • (y," + y)'- y' = - xv- y'Wx'- 2 - T(2S + T)N 

- S(2S + T)N' ±{(xv)'[ (Lx')' + 2Lx'(2S + T)N 

+ 4S(S + T)N']' + S'N'[Lx' +(2S + T)N]'}'k. (30) 

The coefficients Ta(:3yO have been replaced here by their 
limiting values asK- 0, and we have used the expan­
sions 

and 

~ '\1 il'w 
Lx' = ~ --•-x.x, 

"·' fJk. fJk, 

V•,±• = V(f + 'f2Wx'), 

· 1 E a•v Wx'=- --xx v •.• fJk.fJk, • ,. 

In[sJ we investigated expression (30) in detail and 
showed that for y eff ~ 0 it is necessary to satisfy the 
following conditions: 

S(2S+T) >O (31) 

(the condition of ''intrinsic stability'' (see I)), 

ST<O (32) 

and 

(TN)'~ ISINy'W /L. (33) 

For most media T ~ S, and then for ~ ~ 1 and L~ 
~ w the condition (33) is satisfied for small excesses 
above threshold 

SN y h -· h, ( y ) • 
-~- or--~- . 

y (J) h, (J) 

(34) 

Thus, for small excesses above threshold, the pair is 
stable if the coefficients of the Hamiltonian S and T 
have opposite signs (32) and ITI < 21SI (31). 

In order for the pair to be stable at SN ~ y (i.e., at 
h - he ~ he), it is necessary to satisfy the stringent re­
quirement 

IT I Sl ~yyrr;;; (35) 

satisfaction of which can be attained when T depends on 
external conditions-temperature, pressure, magnetic 
field, pump frequency- and ca.n reverse its sign. 

Estimating the summary noise amplitude, we note 
that in the case when the conditions (31)-(33) are satis­
fied, the contribution of the n~gion (K/k) 2 ~ SN/w 

!)The problem of the stability of the pair in the case when the 
amplitude is limited by nonlinear damping was investigated by us to­
gether with S. S. Starobinets in [7]. 

(where the diagonal- Hamiltonian approximation is not 
valid) turns out to be small [sJ. 

For (K/k)z » SN/w we obtain from Eqs. (10)-(11) 
in the approximation quadratic in the noise amplitude 

n.-n,= IP•I' (36) 
n, v'-IP•I'+ fil•'' 

where Pk = hVk + ~ Neiw, from which it follows that 
0 

S .E (n. - n,) :::::l Ys ~ y. (37) 
• 

Using this estimate and the equations of motion for the 
"condensate" with allowance for the "noise," which 
follow from the Hamiltonian (2), we can verify[sJ that the 
influence of the noise on the condensate is indeed small· 
it leads to a shift of the transition point by an amount o~ 
the order of y ~ and to corrections of the order of y ~ 2 

to the amplitude SN. 
In the case of instability of the pair, one should ex­

pect turbulence to arise with a characteristic scale 
l ,-1 8 ; )-112 ~ "'0 ( N w • There are no grounds for assuming 
that this turbulence will be weak, since the instability 
increment is y eff ~ SN ~ LK2 , i.e., it is of the same 
order as the characteristic differences of the wave fre­
quencies. 

CONCLUSION 

Thus of all the variants of the stationary distribution 
of the pairs in k space that are possible within the 
framework of the S model, only one regime, namely an 
isolated pair in a three-dimensional medium, can retain 
its coherent character in the presence of noise. It 
should be noted, however, that the analysis in Sec. 4 
cannot be regarded as rigorous proof of realization of a 
coherent regime even in this case. As was shown, the 
distribution function of the noise has as K - 0 a singu­
larity 11t< ~ 1/ K2 and therefore it is incorrect to confine 
oneself at small values of K to an approximation that is 
linear in the noise amplitude. Moreover, near he there 
exists a narrow region of values of the external-field 
amplitude in which the intensity of the pair is of the 
order of the summary intensity of the noise in the 
"nonlinear" region near the singularity. Here our des­
cription is generally incorrect. A rigorous determina­
tion of 11t< as K - 0 and of the character of the regime as 
h- he is a very difficult problem, at any rate no less 
difficult than analogous problems in the theory of second­
order phase transitions, and any discussion of these 
problems is beyond the scope of the present paper. Ap­
parently, the case of a pair in a two-dimensional medium 
is just as complicated. In this case we cannot advance 
even qualitative ideas concerning the character of the 
steady- state regime. 

On the other hand, if a distribution concentrated on a 
line or on a surface is established in the S model then 
the influence of the thermal and that of the intrin~ic 
noise can be considered within the framework of our 
scheme at all external-field amplitudes from zero to 
h ~ he (w/y)1/2. 

In conclusion, the authors consider it their pleasant 
duty to thank S. S. Starobinets for a discussion of the 
problems considered in the present paper. 
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