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1. When light propagates in a self-focusing medium, local regions of large
amplitude - foci -~ are produced. The present paper is devoted to a study of
the structure of the wave fleld near foeci of this type, and also to the struc-
ture of a beam with a large number of foci.

From the quasioptical equation [1, 2]
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there follows (see [3]) the relation
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is the integral of (1), and C; and C, are constants.

When I, < 0, relation (2) cannot be satisfied for all z > 0, since 1ts
right-hand side becomes negative as z » «. Therefore the propagation of a beam
with negative I, leads to a certain z = z¢ to formation of a singularity in
the field.

We put E = A exp(id); we then have for A and &:
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We assume that near the singularity A and & takes the form

A=R(r/f(2))/ f(z) - A +8A+ .,
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Formulas (4) satisfy Egs. (3) accurate to small terms. For the correc-
tion 8A we have:
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has, as shown in [#], exactly one finite eigenfunction ¥,(r). The condition
for the solvability of (5) is that its right-hand side be orthogonal to
Yo (r/f). This condition yields for f

£7° = - 3aA_/f2, (6)

where
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From this we get

A 1/3
f - 3(379) (z ~ 10)2/3

as z + zg. Thus, near the singularity the field increases like A ~ (2o -
z)=%/% and the power concentrated in the singularity 1s exactly equal to the
critical power I, = [R*(r)rdr.

For intense beams (I = fAzrdr >> I,) the position of the singularity de-
pends in an unstable manner on the beam shape.

2. Theoretical predictions concerning the character of the singularity
were verified by numerically solving Eq. (1). As the initial conditions, we
chose Gaussian beams with powers 5 and 13.5 times critical. We succeeded,
without appreciable loss of accuracy, in reaching amplitudes on the axis, ap-
proximately 100 times larger than the initial wvalues. A reduction of the
table of the actual values of A(z) has shown that, accurate to 0.1%, sections

of this curve can be approximated by the hyperbolas A = A¢/(z - zo)a, with
a/0y ranging from ~0.75 at A =~ U0 to 0.9 - 1.1 at A = 100. Here ap = 2/3 is
the theoretical prediction.

In accordance with the theory, when z + zo the structure of the beam near
the axis constitutes a plateau on which there is a sharply pronounced bell-
shaped profile. Regardless of the beam power, the power concentrated in the
peak was equal to the critical value (accurate to ~5%).

We verified also the dependence of the position of the focus on the

initial beam profile. To +this end, the initial Gaussian beam shape was per-
turbed by a sinusoidal increment

U(r, 0) =exp(—r2/oz)(l + ccos&;—’).

at € v 0.1, the position of the focus was shifted by 50% from the initial posi-
tion, thus confirming the sensitivity of the position of the focus to the
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detailed structure of the beam.

3. With the field at the focus limited by multiphoton absorption, the
field grows until a power on the order of the critical value is absorbed. If

the effective absorption coefficlent is v e = B]E!Zn, then the rate of energy
absorption is €

_ifAzdr =rBA/FI7(2), A =[R¥*2(r) dr.
dz

From this we have for the field at the maximum
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For two-photon absorption (n = 1) we have E ax ™ 1/8%2. If n < 3/4, then

the nonlinear absorption does not limit the field. 1In particular, the field
is not limited by linear absorption (n = 0).

The field can be limited by saturation of the nonlinearity. This, for
example, is the situation with self-focusing in a plasma. Then the nonlinear
term in (1) is replaced in the next-higher approximation by f(|E|?)E =
(]E|? - €|E|*)E. Then Eq. (6) goes over into

f"=-3aA°/fz'+€/f’. (7)

The quantity f now executes periodic oscillations with f ., % (s/3aAo)1/3,

corresponding to a periodically oscillating waveguide [5]. Such a waveguide
can be treated as a sequence of singularities.

I, The fact that a plane wave is unstable in a self-focusing medium [6]
allows us to assume that propagation of an intense beam willl be accompanied by
development of stochastic phenomena. To verify this, the propagation of beams
with I v~ (10 - 50)I¢ in a medium with saturation of the nonlinearity and in a
medium with three-photon absorption was simulated numerically. In a medium
with saturation there occurs, immediately past the first focus, a stochastic
picture consisting of a thin filament with power on the order of critical,
executing irregular axial oscillations, and a broadly diverging halo, in which
stochastic radial and axial oscillations take place. The amplitude of the
field in the halo is smaller by 2 - U4 orders of magnitude than in the filament.

In a medium with absorption, at not very large distances from the entry,
there is observed the multifocus picture described by Lugovol and Prokhorov
[7, 8]. With increasing =z, the character of this picture becomes consecu-
tively more complicated, and at z ~ 15 - 20 it becomes utterly stochastic. The
largest (~10%) sinusoidal perturbations of the initial beam shift the posi-
tions of the foci, decrease their number from 9 or 10 to 5 or 6, and shift the
stochasticity boundary to z ~ 10.

Thus, the behavior of an intense beam in a self-focusing medium becomes
stochastic at any mechanism of amplitude limitation at the focus. The de-
velopment of stochasticity leads to violation of the radial symmetry and to
scattering of the main energy of the beam through an angle 8 ~ (no/nnl)l/z,
which for powerful beams greatly exceeds the diffraction angle.
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In this paper we investigate the possibility of passage of electromagnetic
radiation through sufficiently thick films of a pure superconductor; this pos-
sibility i1s connected with the large mean free path of the normal excitations.
The field, of frequency w << A, 1is screened by the Meissner current, malnly at
the penetration depth §. Normal excitations with energy e(p) = (g% + A%2)1/2
are accelerated by the electric field: (3p/dv)v = eE, where at € - A << A we
have

Vavef/elp)and dv, /dp, =~ vg,vg, /A (1)

During the time t % 6/vZ that they stay in the skin layer, the excitations ac-
quire a drift velocity v along the electric field

vie)w v}oE& /v, =~ 6Evgd /Net -A%cos 6.
The current produced by the normal carrier outside the skin layer
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will be offset by the current of the "superconducting" electrons js =
(—Nsez/mc)Al, so that the total current in the interior of the plate vanishes.

We see therefore that the electric field E; = -i(w/c)A,, which is connected
with the potential A;, could attenuate in a superconductor more slowly than
the total current:

de
w8 N i
E, —VF—F:E[T Wh(e). (2)

The doubly-logarithmic singularity in the integral (2) (u = cos 6) 1s con-
nected with the singularity in the expression for the exciltation velocity (1)
along the surface and with the well-known square-root singularity in the state
density of the superconductor p(e). The principal logarithmic terms are deter-
mined by the condition that the time required for the excitation to cover the
distance z >> § from the surface be small compared with the period of the
field: z/vZ << 1/w, with ¢ - A << A, Expressing the electric field at the

surface E in terms of the field of the incident wave Hy, namely E ~ (w/c)8Hy,
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