
Kinetics of stimulated scattering of Langmuir waves by plasma ions 

B. N. Breizman, V. E. Zakharov, and S. L. Musher 
Computation Center, Siberian Division, USSR Academv of Sciences 
(Submitted November 13, 1972) 
Zh. Eksp. Tear. Fiz. 64,1297-1313 (April 1973) 

The structure of stationary Langmuir turbulence spectra is investigated by taking into ac­
count generation of oscillations and their induced scattering by plasma ions. It is shown . 
that under conditions of the "diffusion" approximation for scattering the spectrum has the 
form of thin jets; the oscillation spectral distribution nk does not vanish on lines or on 
surfaces in k-space. The results are illustrated by the problems of relaxation of an elec­
tron beam in a plasma and heating of a plasma by an intense electromagnetic wave. The 
process of establishment of a stationary spectrum is modelled numerically. 

INTRODUCTION 

A typical situation in a plasma is one in which the 
presence of instabilities excites oscillations that grow 
to a level determined by nonlinear effects, so that a 
stationary spectrum of turbulent pulsations is estab­
lished in the plasma. We consider the problem of deter­
mining this spectrum for Langmuir waves, assuming the 
principal nonlinear process to be induced scattering of 
oscillations by ions (see [1, 2J). The scattering by ions 
limits, in particular, the development of the instability 
in two possible methods of heating the plasma-by a 
relativistic electron beam and by a powerful electro­
magnetic wave. Owing to the sCattering, energy of the 
Langmuir oscillations is shifted over the spectrum from 
the region of instability into the region of long waves, 
where dissipation takes place", ... One of the methods of 
diSSipation of long-wave oscillations can be the collapse 
of Langmuir waves, which was considered by one of the 
authors [3 1. To answer the question of the efficiency of 
heating of the plasma, it is necessary to know the struc­
ture of the turbulence spectrum, and this reason alone 
makes our problem quite timely. 

Up to now, the spectra of Langmuir waves established 
as a result of scattering have been investigated on the 
assumption that these waves are isotropic t2 ,4J. It was 
assumed in fact that the isotropization takes place even 
in the case of anisotropic excitation of the oscillations. 
It is shown in the present paper that the situation is quite 
different, and that even a small angular asymmetry of 
the instability increment makes the stationary spectrum 
of the Langmuir waves essentially anisotropic, and the 
oscillations turn out to be concentrated on lines or sur­
faces ("jets") in k-space. This result was derived 
analytically and was confirmed by simulation of 
Langmuir turbulence with a computer. 

The main results of the present paper are given in 
Sec. 2. It is prefaced by Sec. 1, in which the induced­
scattering matrix element is derived on the basis of the 
simplified dynamic description proposed in[3] for a 
plasma. In Secs. 3 and 4 we consider the applications of 
the general results to problems on relaxation of a rela­
tivistic electron beam and the nonlinear stage of param­
etric instability of a plasma in a homogeneous high­
frequency (hf) field. The results of numerical experi­
ments are given in Sec. 5. 

1. FUNDAMENTAL EQUATIONS 

To find the matrix element of the induced scattering 
of Langmuir oscillations by ions, we obtain an equation 
for slow (ionic) motions of the plasma, in which 
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Langmuir oscillations are excited. In the derivation of 
this equation we average over the "fast" time 1/wp 
(Wp = (41Te2no/m)1i2 is the plasma frequency and no is the 
unperturbed value of the plasma concentration), in 
analogy with the procedure used in[3]. 

We write down the hf part of the electrostatic poten­
tial in the form 

where ljJ(r, t) is a slowly varying function of the time. 
The equation for ljJ can be obtained by linearizing the 
hydrodynamic equations for the electrons (see[3J ): 

Ll (ilp, + '/,O>prD'Ll",) = (0). / 2no) div 6n V ",. (1) 

Here rn = (Te /41Te2no)1i2 is the Debye radius and /in is 
the perturbation of the plasma concentration under the 
influence of the hf oscillations. This action can be des­
cribed with the aid of the hf potential 

U= (e'/4mo>p') Iv",I'. (2) 

Then 

On •• = (no / T.)G .. U ••. (3) 

In the approximation in which the plasma is quasi­
neutral in slow motions, the Green's function Gtw takes 
the form 

L J (kajJav) 
•• = kv-o> dv (4) 

(f(v) is the unperturbed ion distribution function). The 
Green's function ~w in an isotropic plasma depends 
only on Ikl and has·the obvious symmetry properties: 

(5) 

At Ti /Te ~ 1, it has a pole corresponding to the ion­
acoustic waves: 

k'T. 
Gku ::::' I (6) 

M(o>' + 2i,,(.0> - c.'k') 

(cs = (Te /M)1/2 is the velocity of the ion sound and y s 
is the damping decrement). Formula (4) takes direct ac­
count of only the Landau damping by the ions, but one can 
include in the pole part of the Green's function also the 
collision damping and the Landau damping by the elec­
trons. 

The system (1)-(4) can be conveniently reduced to a 
single equation by introducing the variable 

a.=....!:.-.(~)-'I."' •• 
Bne 2mo>p 
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defined in such a way that the quantity 

e = S (i)p(1 + 'l,k'rD')la.I' dk 

coincides with the total energy of the Langmuir oscilla­
tions. This equation takes the form 

(7) 

= S T kk,.,.,a.:a.,a.,6 (k + k, - k, - k,) dk, dk, dk" 

where wk = (3/2)wp(krn )2, 

(kk.) (k,k.) Gk,-k,. 00.,-00k3 + (k,k.) (kk,) Gk,-k" .'''- OOke 
T.k.k,kak. = "Ie Ie It' -~----- • , , . 

The right-hand side of (7) is assumed here to be suffi­
ciently small and is taken into account by perturbation 
theory. The left-hand side includes the term -iYkak, 
where Yk is the Langmuir-oscillation instability incre­
ment. 

We note that Eq. (7) contains amplitudes of Langmuir 
waves only, since the ion-sound oscillations are as­
sumed to be "static." This means that the characteristic 
sound-damping time is smaller than the time of the non­
linear process. The criterion for the applicability of 
Eq. (7), expressed in terms of the energy density of the 
Langmuir oscillations W, is 

( m )'" for krD< M 

(8) 

(k is the characteristic value of the wave vector of the 
Langmuir waves). 

The kernel of the integral in the right-hand side of 
(7) has the following symmetry properties, which follow 
from the symmetry of the Green's function (see (5)): 

t:,.k (m )'" 1 -- - -<1. 
k M krD 

It is then possible to change over the so-called differen­
tial approximation for the kernel Tkk, (see [1,2J ). Taking 
the anti -symmetry of Tkk, into account, we have 

2 lit 1 (i)/ '( '(I 'I 1 1 T .. '::'---,-cos'~ l-cosQ)a6 k -k). 
9 M rD noT. 

(11) 

Here n is the angle between the vectors k and It', the 
prime on the 0 function denotes differentiation with 
respect to the argument, and the dimensionless quantity 
QI is given by the following formulas: 

S Im(F(z»dz 
a=, z 11-(T,ITi )F(z)I" 

F(z)=_l j uexp(-u'/z)du. 

l'2n_= z-u+iO 

(11a) 

(llb) 

The integral (lla) can easily be calculated1), (see, for 
example, [5J ). D: is equal to -71'. 

Equation (11) has a somewhat simpler form in the 
presence of axial symmetry. We denote bye and e' the 
angles between the chosen direction and k and k', and 
obtain ultimately 

oN(k,x) 

ot 
o ' 

N(k,x) {l(k'x)+-ad T(x,y)N(k,y)dy}. 
-, 

We have introduced here the notation x = cos e, 
y=cose', 

N(k, x) = k'n(k, x), 

(12) 

n'm 100' 
T(x'Y)=-9-M -2~T !1-x'- y'+3x'y' -3xy +3xy' +3x'y-5x'y'} 

r D no e 

We note that the kernel T(x, y) is of definite sign 

T(x, y) ;;. 0 

and is symmetrical: 

T(x, y) = T(y, x), T(-x, -y) = T(x, y). 

(9) In addition 

In addition, we have the obvious relation 

Assuming the phases of the quantities ak to be random, 
we can carry out the averaging 

n.6(k - k') = (a.a" •. ) 

and obtain from (7) a kinetic equation for the Langmuir 
waves, describing the generation of oscillations and their 
induced scattering by ions: 

(i)p' (kk,)' 
T •• , = - T.,.,= 2 1m T •• " •• ' = 2noT, k'k,' 1m G._." •• _ • • " (10) 

At Yk == 0, Eq. (10) conserves the quantity 

1= S 1 a. I' dk, 

which has the meaning of the total number of Langmuir 
quanta. 

From the energy and momentum conservation laws it 
follows that at krn > (m/M)ll2 the change of the modulus 
of the wave vector in one scattering act is small in com­
parison with the modulus itself: 
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T(l, 1) =T(-t, -1) =0. 

2. JETS IN k-SPACE 

Let us consider the stationary spectra of Langmuir 
turbulence. The stationary spectra nk satisfy the equa­
tion 

(13) 

At first glance it may seem that this equation determines 
nk with a great degree of leeway; one can assume, for 
example, nk == 0 in any prescribed region of k-space. 
This leeway is eliminated by requiring that the station­
ary states be stable with respect to wave excitation in 
those k-spa~e regions where nk = O. The stability con­
dition, together with the stationarity condition (13), leads 
to the relations 

1. = 'Y. if n. =1= 0, 

1. < 'Y' if n. = 0, 

where Yk = - fTkklUk,dk ,· 

(14) 

Relations (14) determine the spectral distribution 
together with the region where this distribution is dif­
ferent from zero. In the particular case when the 
Fredholm equation of the first kind Yk = Yk has a regu-
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lar positive solution, this region can be all of k-space. 
Relations (14) are similar to the "external stability" 
conditions in nonlinear theory of parametric excitation 
(see[6]). 

The conditions (14) can be interpreted geometrically. 
To this end, we consider them at a fixed modulus of the 
wave vector. Then the quantities Yk' and Yk become 
functions of the solid angle; their plots can be repre­
sented in the form of two surfaces. Formulas (14) sig­
~ify that the surface Yk is located inside the surface 
Yk' Tangency between-these surfaces is possible; the 
aggregate of all the tangency points constitutes the 
"carrier" of the function nk-the set of points at which 
nk ~ O. 

We assume the differential approximation (11) for the 
kernel Tkk,. Then the angular dependence of the func­
tion Yk has a perfectly defined meaning,. and represents 
a third-degree polynomial of the sines and cosines of the 
angles. The function Yk' generally speaking, is arbi­
trary. Therefore tangency of the surfaces is possible 
only at a discrete set of points, or else, if Yk has axial 
symmetry, on a discrete set of circles2 ). 

We note further that in the differential approximation, 
the relations (14) with different Ikl are independent and 
can be regarded as a set of equations for nk' This means 
that the set of points at which the surfaces Yk and Yk 
are tangent has a continuous dependence on Ikl. In other 
words, each element of this set "(point or circle) gener­
ates a line or surface of revolution in k-space. These 
lines (or surfaces), on which the spectral distribution is 
concentrated, will be called one-dimensional or two­
dimensional "jets," respectively. We confine ourselves 
henceforth to the axially-symmetrical situation. The 
conditions (14) now take the form 

Here 

l(k, x) = 'Y(k, x) if N(k, x) "'" 0, 

l(k, x) <'Y(k, X) if N(k, x) =0. 

a • 'Y(k, x) = --J T(x, y)N(k, y)dy. 
ak _. 

(15) 

In accordance with all the foregOing, we must seek 
the spectral density N( k, x) of the oscillations in the 
form 

N(k,x)= 1:N,(k)6(x-x.(k». (16) 

Here xi(k) is the shape of the jet and Ni(k) is the inten­
sity distribution along the jet. In the axially-symmetri­
cal situation, the jets are two-dimensional; the only 
possible type of one-dimensional jet is x = ± 1, when the 
surfaces Yk and Yk are tangent at their poles. 

Let us assume that we know the number of jets r and 
their shape Xi (k), i = 1, ... , r. Then, substituting (16) in 
(15), we obtain a system of ordinary differential equa­
tions for the determination of the intensities: 

~ dN; 
1 (k, x,(k» + .l..l T(x,(k), xj(k»"dk" (17) 

~ a dx;(k) 
- .l..l-T(x,(k),xj(k»--Nj(k)=O. 

j ax; dk 

The number of jets and the fact of existence or ab­
sence of one-dimensional jets on the poles should be de­
termined from geometrical considerations. To determine 
the shape of the i-th two-dimensional jets it is necessary 
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to use the obvious relation 

~[l(k, x)- 'Y(k, x) ]1%-% (') = O. (18) 
dx ' 

Substituting N(k, x) in (18), we obtain an additional set 
of equations which makes the system (17) closed. 

The jets transport the flux of Langmuir quanta over 
the spectrum into the region of small wave numbers. 
Let us determine the value of this flux P k. To this end, 
we integrate (12) over the angles and introduce the sym­
bol . 

N = fN(k, x)dx. -. 
We have 

(19) 

l' • 
P'=2 J J T(x,y)N(k,x)N(k,y)dxdy>O. 

-1 _t 

Substituting (16) in (19), we express Pk in terms of the 
intensities of the jets: 

P. = 41: T(x.(k) , x;(k) )N,(k)Nj(k). (20) 
i,j 

It is seen from (20) that the spectrum cannot consist of 
merely one one-dimensional jet, since a single one­
dimensional jet N !.(k, x) = No (x ± 1) would lead to a zero 
flux, by virtue of the conditions T(1, 1) = T(-1, -1) = O. 

We consider now several examples of the determina­
tion of the shape of the jets. 

1. Assume that the condition Y (k, x) == 0 is satisfied 
in a region of k-space, kl < Ikl < k2• What is realized 
in this region is the Kolmogorov Situation, which corre­
sponds to constancy of the flux of the Langmuir quanta. 
The Kolmogorov solution of (12) is obviously of the form 

N(k, x) =f(x), 

where f is an arbitrary function of x. We see therefore 
that the trajectories of the jets on the (k, x) plane should 
be straight lines parallel to the k axis. The position of 
these lines is determined by the condition that they be 
joined together at Ikl = k2 • 

2. Let y(k, x) have a sharply pronounced maximum 
at x = ± 1. In this case there are two one-dimensional 
jets 

N(k, x) =N.6(x-1) +N,6(x+ 1), 

with 
dN, l(k, -f) dN, "(k,i) 
dk'=- T(-f,f)' 7ik=- TO,-f)' 

The condition of "external stability" (15) yields the 
necessary and sufficient criterion for the existence of 
two one-dimensional jets: 

l(k, x) < J/z{(x'+x'h(k, f) + (x'-x'l'y(k, -i)}, (21) 

-i<x<1. 

This criterion takes on a particularly Simple form in 
the symmetrical situation, when y(k, x) = y(k, -x). We 
then have 

l(k, x) < X'l(k, i), Ixl < 1. (22) 

3. Let y(k, x) be a symmetrical function of x and let 
it have a sharply pronounced maximum at x = O. We 
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consider the possible existence of one two-dimensional 
jet at the point x = O. Putting N(k, x) = N(k) I) (x), we ob­
tain 

1(k,0) =-T,(O,O)dN(k) Idk. (23) 

The external-stability condition (15) yields 

1(k, x) <1(k, 0) (i-x'). 

The situation with one two-dimensional jet is also char­
acteristic of the case when y(k, x) has a sharp maximum 
at sufficiently small x. 

In the general case, the problem of determining the 
number of jets and their shapes is quite complicated; 
nor is the question of the uniqueness of such a distribu­
tion trivial. 

We now raise the question of the real thickness of the 
jets. To this end we include in the kinetic equation (10) 
small terms connected with the thermal noise and four­
plasmon processes. Then Eq. (10) takes the form 

iJ~. = 2nk ( 1k + S T .. ,nk' dk' ) + 2n SIT .. ,.,k,I'Il.(oo. + 00., - OOk, - ook.) 

x 15 (k + k, - k, - k.) (nk,n",n", + n.n.,n., 

- n.n.,n., - n.n.,n.,) dk, dk, dk. + F •. 
(24) 

Here F k R: II ei Te Iwp is the contribution from the thermal 
nOises, and" i is tlie frequency of the electron-ion 
collisions. Tlie four-plasmon collision term becomes 
much simpler in the diffusion approximation. 

We note first that when calculating the quantity 
1Tkk Ir k 12 we can neglect the crossing terms and put 

1~ 3 

, ,_ ( 00. )' [ (kk,)'(k,k.)' I' 
IT .. , •• k,1 - 8n,T. I k'k,'k,'k,' IG.'-••.• k,-.k. 

For the squares of the moduli of the Green's functions 
we have in the differential approximation an expansion 
in terms of the even derivatives of the I) function: 

, 1/ 2m Ik, - k,l ( T, ) 
IG.,-••.•• ,-•• ,I "" V 9M~a, T. ll(lk,I-lk,l) 

+21'2 (~)'/' Ik,-k,I' a2(~)Il"(lk'I-lk'I)+... (25) 
27 M k,' T. 

Here 

( T,) (T.)·f,·S IF(z) I'dz 
a, T. = T, _00 11-(T,/1',)F(z) I' ' 

( T') (T.)'" S· z'IF(z)I'dz 
a, T. = T. _~ li-(T,IT,)F(z)I" 

The function F(z) is defined by the formula (Ub). The 
coefficients a1 and a2 show a strong dependence on 
Ti/Te. At Te ~ Ti we have 

i (T. )'" 
a, "" 2l'2n T. . 

Here Ws is the ion-sound frequency and Ys is the decre­
ment of the Landau damping by ions. It is easy to show 
that if the damping by the ions is small, then y s should 
be replaced by the decrement for the sound damping by 
the electrons. 
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The expansion (25) enables us to replace the four­
plasmon collision term in (24) by the model expression 

(ilnk I ilt) ,,"" s, + S2i1'nk I ilk'. (26) 

Here 

( m )',. i (W)' 
s, "" (!lp M (krD) 3 noT, a,nk, 

(27) 

W is the energy density of the Langmuir oscillations. 

The first term in (26) can be interpreted as an effec­
tive increment to the thermal noise, resulting from the 
four-plasmon processes (intrinsic noise), and the sec­
ond term as "diffusion" in k-space as a result of the 
four-plasmon processes. 

The contribution made to Eq. (24) by the four-plas­
mon processes exceeds the contribution from the thermal 
noise, provided the following inequality is satisfied: 

Under conditions when the diffusion approximation is 
valid, the second term in (26) is essentially smaller 
than the first. Finally, to determine the structure of the 
jets, we have the equation 

n(k, x)['Y(k, x) -"I(k, x)] +e, =0. 

Let x = xo(k) be the shape of the jet at £1 = 0, i.e., the 
line where the functions y(k, x) and y(k, x) coincide. At 
£1 = 0 we can put near x = xo(k) 

1(k,x)-V(k,x)"" ~.[x-xo(k)]', 

Recognizing that £1 is finite, the functions y(k, x) and 
, y(k, x) are equal only accurate to £~. With the same de-

gree of accuracy we have . 

1(k, x) -"I(k, x) =a.e.'+ ~.[x-'X(k)]'+ ... 

Here x(k) is the jet shape "renormalized" on account of 
£1' For the jet structure we obtain the formula 

- e, 
n(k,x)= • 

a.e.'+ ~o[x-x(k)]' 

To determine O!k' we note that in the zeroth approxi­
mation in £1 the integral intensity of the jet should re­
main unchanged: 

, 
S n(k, x)dx = no, 
-, 

from which we get 

For the characteristic thickness of the jet we obtain 

L\x"" (e, 11.n.) (L\xo)'. (28) 

Here 6Xo is the characteristic angular width of the in­
stability increment. 

The arguments advanced above concerning the thick­
ness of the jet are suitable only for two-dimensional 
jets. In the one-dimensional problem, the conservation 
laws wk + wk = wk + wk and k + k1 = k2 + ka are satis-

1 2 3 
fied only at k2 = k, ks = kl or kz = kl1 ks = k; the collision 
term vanishes in this case. This means that to deter­
mine the thickness of the jet it is necessary to use 
higher orders of perturbation theory. 
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In concluding this section, we obtain an estimate of 
the effectiveness of plasma heating in the case when the 
k-space contains a region where oscillations are genera­
ted. Let us assume, for concreteness, that the problem 
is axially-symmetrical and that one two-dimensional 
jet is produced in the generation region. We denote by ko 
the characteristic value of the wave vector, by t>ko and 
t>xo the parameters of the region in question, and by y 
the characteristic instability increment. Then, as fol­
lows from (12), the following estimate holds for the jet 
intensity N: 

N -lnoT.!!.korD'M / m. 

From this we easily obtain the total energy density of 
the oscillations in the jet 

noT.l !!.ko M 
W -----(kOrD)'-. 

CUp ko m 

The energy contained inside the instabiU.ty region is 
!!.ko noT.l M w,--w ---(!!.kOrD)'-. 

ko Wp m 

Consequently, the energy dissipated per unit time in the 
plasma is 

We present also an estimate of the jet thickness t>x 
(see (27) and (28)): 

W, 1 (M)'" !!.x--- - ct,(!!.xo)'. 
noT. krD m. .. 

The condition for the validity of our theory includes the 
requirement (8): 

which means that even in the case of a ''broad'' incre­
ment, when t>xo ~ 1, the jets are narrow (t>x « 1). 

3. INSTABILITY OF ELECTRON BEAM 

We consider the question of the system of the 
Langmuir oscillations excited in a plasma by a beam of 
relativistic electrons. As noted in [7], under the condi­
tions when the beam is used to heat a dense plasma to 
thermonuclear temperatures, the principal mechanism 
that limits the growth of the Langmuir oscillations is 
induced scattering by ions, which leads to a transfer of 
energy from the instability zone (k > wp Ic) into the 
region of smaller wave numbers. The characteristic 
time of establishment of the quasistationary spectrum of 
the oscillations then turns out to be significantly smaller 
than the time of the variation of the distribution function 
of the electron beam. Thus, the distribution function of 
the beam electrons can be regarded as specified in the 
problem of determining the spectrum. 

We denote by E the energy of an individual electron, 
by t>() and t>E the angle and energy spreads of the parti­
cles, and by nl the beam concentration. If the angle 
spread t>() is not too small, 

( n' me')'" 
!!.9> --

no E ' 

then the instability is kinetic, i.e., the beam does not 
influence the wave dispersion law, and determines only 
their growth increment. If in addition 

me' (!!.E)'" 
!!.9>T E ' 

then the spread of the beam electrons relative to the 
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absolute value of the velocity can be neglected in the 
calculation of the increment, and we can put v = cp/lpl, 
where p is the electron momentum. The onlyoscilla­
tions that can interact with the beam are those whose 
wave vectors satisfy the Cerenkov resonance condition 

wp-kv=O 

or 

IWple-klll- (wple) (!!.6)'+k.c!!.6, 

where kll and k 1 denote the longitudinal and transverse 
(with respect to the beam axis) components of the vector 
k. The instability increment y(k, x) is given by the 
formula (see [8J ) 

n' (Wp)'" dx' [ (' keX) ag ] 
1(k,x)=nwp-;;: kc S'[(x'-x,)(X,-X')]'" -2g- x -~ ax' , 

" 

x',., = (wpl ke) [x ± (1- x') '" (k'e' 1 w; -1),"], . 
g(x')= me jf(p,x')p dp (29) 

(f is the beam distribution function). For the maximal 
(at fixed k) value of the increment, which is reached at 
x ~ wp/kc, the following estimate holds true 

n' mc2 1 OOp2 

'"( - WP-;;:T (!!.9)' k'e' . (30) 

A plot of y (k, x) at fixed k is shown in Fig. 1. The 
function y (k, x) has a narrow maximum with a width on 
the order of t>(). This circumstance greatly simplifies 
the problem of finding the stationary spectrum of the 
oscillations in the case when the angle spread of the 
beam is small (t>() « 1). 

When k »wp/c, the maximum of the function y(k, x) 
lies close enougn to the point x = O. In accordance with 
the results of Sec. 2, in this case the spectrum should 
consist of one two-dimensional jet, the position of which 
coincides, accurate to t>(), with the position of the maxi­
mum of the increment. Therefore in the region k 
» wp/c the spectrum takes the form 

N(k,x) =N(k)6(x-wplke), (31) 

where the intensity N(k) can be obtained from formula 
(17) by using (30): 

N(k) = {T (xo (k), xo(k» }-'I, S'"( (k') (T(xo (k'), xo(k'» }-'I, dk', 

• 
where xo(k) == wp Ikc. 

Calculations show that at k < 1. 52 wp Ic the spectrum 
(31) does not have external stability. Consequently, 
form ula (31) holds true only at k > 1. 52 wp Ic. From the 
fact that y(k, x) is a polynomial of third degree in x, we 
can see that in addition to the initial jet (31), there can 
appear in the region k < 1.52 wp Ic not more than two 

FIG. I. Plot of the instability 
increment of a relativistic electron 
beam against the angle (x = cos () 
at a fixed modulus of the wave 
vector. 
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additional jets, and in the case of two jets, one of them 
must be one-dimensional. 

All the foregoing calculations are based on the use of 
the diffusion approximation. Strictly speaking, this is 
possible only in the case of a sufficiently "broad" incre­
ment of the two-stream stability, i.e., for beams with 
not too small angle spreads: 

(M)' > '/3 (m / M) 'I·C / VT ,. 

It is obvious, however, that when the condition 

(1/rD) (m/M)'I. ~ (j)p/e (VTe/e> (m/M)'I.) 

is satisfied for sufficiently large wave numbers 

k-(j)p/e> (1/rD) (m/M)'I. 

the conditions for the applicability of the diffusion ap­
proximation are satisfied independently of the angular 
width of the beam. Thus, a jet picture is always obtained 
in the region of large wave numbers. The question of 
the behavior of the spectrum in the region of small wave 
numbers for narrow beams still remains open, although 
apparently the spectrum is essentially anisotropic in 
this region. 

4. PARAMETRIC EXCITATION OF WAVES 

Let us examine the parametriC instability of a plasma 
placed in a homogeneous oscillating electric field. 
Equation (7) can easily be generalized to include this 
case. To this end, it suffices to make the following 
change of variable in (7): 

k (2m(j)p )'" a,~a,+- -- (EoVIS(k»eiO'. 
8:rte no . 

It is assumed that the external electric field has a fre­
quency wp + S1 which is close to the plasma frequency 
(S1 «wp)' 

Assuming the amplitude of the external field to be 
small, we take it into account only in the approximation 
linear in EOo Then the equation for ak takes the form 

oa, + '- V' 210' + . S T at lWkak = ka~k e l kklk2ks (32) 
; a" ·ak,a.,1S (k + k, - k, - k,) dk, dk, dk" 

where 

Equation (32) is valid if 

~«(~ )'" (~) 'I •• 

8:rtnoT, (j)p . M 

Linearizing Eq. (32) and putting ak ~ exp(iS1t + iS1kt), 
we obtain the dispersion equation 

(-Q.+w,-Q)(Q.+6>-.-Q) = [Vk[', 

whence 

(33) 

Formula (33) describes the parametriC instability of the 
plasma. In a narrow interval of wave numbers 

[Q - Re Wk[2< [V,[' 

we have two-stream oscillating instability[91. At 
Ti « T , however, a larger increment and a lower 
threshord are possessed by decay instability of first 
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order, for which 

Q"" (j), + c,k. 

At Ti ~ Te, the two instabilities have increments and 
thresholds that are of the same order of magnitude. 

A consistent statistical description of parametric. 
instability of a plasma entails certain difficulties, since 
in addition to the "normal" averages (~a,;) it is neces­
sary to take into account also the "anomafous" averages 
(a~k) (see, for example, [6J ). In addition, there are 
no grounds in the problem of parametric excitation of 
waves for changing over to the differential approximation 
in [k[, since the instability increment and the kernel of 
integrand vary in k-space in one and the same charac­
teristic scale (~Sl/rn)(m/M)1/2 at Ti ~ Te)' Nonethe­
less, followingt1o and claiming only an order-of-mag­
nitude estimate, we describe the nonlinear stage of the 
parametric instability by means of Eq. (12), in which we 
put 

_ (j)plEol' 2 

1 (k, x) - -8--1-" x 1m G"Q-Ok' 
:n:no e 

(34) 

It follows from (34) that y(k, x) = y(k, -x) and, in addi­
tion, 

1(k, x) < x'1(k, 1). 

From this, in accordance with the criterion (22), it fol­
lows that within the framework of the considered model 
the spectrum of the Langmuir turbulence excited by a 
homogeneous oscillating electric field consists of two 
one-dimensional jets at x = ± 1. Putting T· ~ T and 
recalling that D-krp ~ (m/M)ll2, we find t6at th: total 
energy contained ill the Langmuir oscillations is of the 
order of 

W IEol' (m )'" ----kr -
noT, 8:rtnoT, D M . 

Formula (35) differs significantly from the result 
of [lOJ (see alsot 11J): 

(35) 

(35a) 

The point is that the conditions for the applicability of 
relations (35) and (35a) are different: the first is valid 
in the case of a low-frequency of Coulomb collisions lIei' 
and the second is valid for sufficiently large values of 
lIei' when 

'II,,>(j)p~_l_(~)'" . 
8:rtnoT, krD M 

Taking this circumstance into account, we can write for 
W the following interpolation formula, which gives a cor­
rect result in both limiting cases: 

W (IEol' )2/ 'II" m 'I, IEol2 
noT, - 8:rtnoT, [ -;;;; + (M ) 8:rtnoT,krD ] . 

5. NUMERICAL EXPERIMENT 

To verify the ideas concerning the jet character of the 
spectrum and to investigate the kinetics of the jets, we 
solved Eq. (12) with a computer with a four-plasmon 
collision term in the form (26). Specifically, we consid­
ered the following equation: 

aN' (k', ,r) a 1 

---a-t,--=N'(k',x) (1'(k',X)+W f T'(X,Y)N'(k',y)dy) 
-1 

+ ,a2N'(k',x) 
£2 8k'2' (36) 

where 1', k', N', y', T', and E~ are dimensionless quan-
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tities determined by the relations 

t' = "(moxt, k' = (wp/c)k, "(' = "(m::"(, 

-t n' m 1 CW p 

N'(k',x)="(mox-g M-'-T N(k,x), (37) 
rD no e 

'1" (x, y) = 1 - x' - y' - 3xy + 3yx3 + 3xy3 + 3x'y' - 5X3 y3, 

£,'= "(m~:wp (;)'/, (kr~)3 r:'(n;,)'a2 (;). 

Y max denotes the maximum instability increment. 

The term corresponding to thermal noise was not 
introduced in explicit form in (36), but it was assumed 
in the calculations that N' (k', x) has a lower bound No 
~ 10~-1O-2; the diffusion coefficient E~ ranged from 
2.5 x 10-4 to 5 X 10-3 • We applied to Eq. (36) a difference 
scheme of the Krank-Nicholson type of second order of 
accuracy in time (see, for example, [12J). To integrate 
with respect to the cosine of the angle x in (36) we use 
Gauss quadratures of suitable order of accuracy, with 
nodes that condense toward the points x = ± 1, thus en­
suring the best accuracy for solutions of the type of 
one-dimensional jets. 

In typical variants, the number of points was 100 for 
the modulus of the wave vector and 30 for the angle. The 
initial conditions corresponded to the minimal level of 
the oscillations N' (k', x) = No. The instability zone was 
located at 2 > k' > 1; at small k' < 0.2 we introduced 
linear damping that increased towards k' = 0 and en-

b 

o 
'--_.L, --...Jo:-----f:r 

kc/wp 

o 

FIG. 2. Level lines of the function In[N'(k, xl/No 1 at different 
instants of time: a - t' = 8, b - t' = 20; c - t' = 100. The lines are 
marked with the values of the functions. The oscillations are excited 
by a relativistic electron beam. In the shaded region we have N' (k, x) = 
No. 
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sured a "sink" for the energy. Thus, we expected real­
ization of the Kolmogorov regime in the region 0.2 < k' 
< 1. In addition to the usual methods of verifying the 
difference scheme, we monitored the conservation of the 
total number of quasiparticles at y'(k', x) == 0 up to 
t' = 100. 

In the first run of experiments we substituted for 
y' (k', x) the real instability increment of a relativistic 
beam of electrons with total angle width 6.8 ~ 15°. The 
development of the instability for this case is illustrated 
in Fig. 2. We see that a stationary spectrum of the jet 
type develops in the course of time. In the inertial reg­
ion (k' < 1) there are two one-dimensional jets, and in 
the region of large wave numbers (k > 1.5) there is one 
two-dimensional jet, as predicted by the theory. In the 
intermediate region (1 < k' < 1.5), two two-dimensional 
jets are formed, and they "stick" at x = 1 to the ends of 
the interval Ixl = 1 and are transformed into one-dimen­
sional ones. 

We note that the point at which the second jet appears 
coincides with the value (k' = 1.52) obtained analytically 
in Sec. 3. 

The development of the nonlinear instability picture 
proceeds as follows. At first the oscillations grow ex­
ponentially in the region where the increment is positive, 
and the first two-dimensional jet is formed. Then, at 
x = -1, a "germ" of the second two-dimensional jet and 
of the one-dimensional jets is produced. 

The development of the one-dimensional jet recalls 
the propagation of shock waves in k-space (c.f. [13J ) in 
the region of small wave numbers. The thickness of 
these shock waves increased with increasing diffusion 
coefficient. 

The complete steady-state picture is established 
within a time on the order of 30-40 reciprocal incre­
ments, and a stationary flux of the number of quasiparti­
cles is produced in this case in the inertial region. The 

Pk (t=100) 

0,1 

o ~----~~o~----m~o 
rmux t 

FIG. 3. 

if . 

-/ 0 / x 

FIG. 5. 
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FIG. 4. 

FIG. 3. Time dependence of the 
flux of Langmuir plasmons at k' = 0.7. 

FIG. 4. Plot of the flux of Lang­
muir plasmons against the modulus 
of the wave vector t' = 100. 

FIG. 5. Level lines of the function 
In[N'(k, xl/No 1 in the case of para­
metric instability (t' = 15). The shaded 
region has N'(k, x) = No. The point 
k = ko , x = I corresponds to the maxi­
mum increment of the parametric 
instability. 
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character of the establishment of the flux at the point 
k' = 0.70 is shown in Fig. 3 (it shows the instant t' = 10 
of shock-wave arrival), and the dependence of the 
steady-state flux on k is shown in Fig. 4. The value of 
the flux in the region of small wave numbers, Pk = 0.06, 
which is expressed in terms of dimensionless variables 
(37), agrees with the estimate Pk ~ (~k' /k')2 (see (19» 
at an effective width of the increment ~k' /k' ~ 0.25. 

The second series of experiments was carried out to 
study the nonlinear stage of the parametric instability. 
Taking into account the model character of this problem, 
we chose for the increment not the exact value (34), but 
an approximate value taken from [10J : 

x' 
,,(k x) = ex 1 
r' "1+[(k-ko)l6kj" 

Here O! is the dimensionless excess over the instability 
threshold, ok is the width of the instability region, and 
ko is the point of the maximum increment. In typical 
variants it was assumed that O! = 10 and ok 
= 3rj)(m/M)1/2 (strictly speaking, one should put ok = 
rj)(m/M)1/2, but this would make it impossible to use 
the difference scheme). The experiment confirmed the 
existence of a quasi -one-dimensional spectrum in the 
form of two jets localized at x = ± 1. The development of 
one-dimensional jets also had the character of the 
propagation of shock waves; the steady-state picture is 
shown in Fig. 5. 

CONCLUSION 

As shown in Sec. 5, numerical experiments confirm 
the concept of jet-type spectra. Let us now dwell on the 
questions that call for further research. First among 
them is the question of the stability of the jets. One can­
not exclude the possibility that the jets may turn out to 
be unstable, for example, against self-modulation. In 
this case one should expect the spectrum to retain its 
jet character, but the jets to become "turbulent," and 
their width to be determined by the instability charac­
teristics. 

Another important problem concerns the character of 
the spectra for increments that are "narrow" in k-space, 
when the conditions for the applicability of the differen­
tial approximation no longer hold. In this case one should 
expect the appearance· of spectra that are even more 
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singular than jets, for example, spectra in the form of 
discrete sets of monochromatic waves. 

In conclusion, the authors thank D. D. Ryutov for a 
discussion of the work. 

OWe are grateful to A. A. Galeev for calling our attention to this 
circumstance. 

2)In the particular case when I'k is also a polynomial of third degree, 
partial or complete coincidence of the surfaces I'k and ::y k is 
possible. However, even a small change of I'k will lead to "stratifi­
cation" of these surfaces. 
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