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We study both numerically and analytically the evolution of two kinds of distributions for the initial 
density in a plasma and for the Langmuir oscillation amplitude in it. In the first case we consider the 
motion of a one-dimensional spherical soliton towards the center, and in the second we study the 
nonlinear stage of an instability in the two-dimensional case of a plane soliton. We consider both small and 
large Langmuir wave amplitudes. We show that Langmuir-wave collapse-the concentration of plasma 
oscillations in regions where the plasma density is lowered-is possible in principle. 

INTRODUCTION 

The problem of the dissipation mechanisms for the 
Langmuir wave condensate produced as a result of the 
evolution of Langmuir turbulence is one of the central 
problems in the theory of plasma turbulence. One of the 
authors of the present paper has formulated in [lJ the 
concept of the dissipation of the condensate due to a non­
linear dissipation mechanism -the Langmuir collapse. 
Langmuir collapse is the concentration of the Langmuir 
oscillation energy in regions where the plasma density 
is lowered, which appear self-consistently as the effect 
of the expelling force of a high-frequency field; it is the 
nonlinear stage of the development of the instability of 
the long-wavelength Langmuir turbulence. (2J The col­
lapse is accompanied by a strong absorption of Langmuir 
waves owing to their Landau damping. However, the ac­
tual model of the collapse, proposed in (lJ -the self­
similar spherically symmetric collapse-cannot be real­
ized in reality. In the present paper, which is a develop­
ment of [3J , we shall, without touching upon the problem 
of the role played by the collapse in the kinetics of 
Langmuir turbulence, study both numerically and analy­
tically some kinds of initial distributions in the density 
in the plasma and in the Langmuir oscillation amplitude 
in it which after a finite time lead to the collapse, i.e., 
to a singularity in the Langmuir amplitude. In that sense 
the present paper is a proof that the existence of a col­
lapse is possible in principle, both for small and for 
large amplitudes of the Langmuir waves. 

1. BASIC EQUATIONS 

We start, as in [lJ , from a set of equations for the 
complex amplitude I/i(r, t) of the high-frequency electro­
static potential, 

q>(r, t) =Re {'i'(r, t) exp (iropt)} 

and for the variation On in the plasma density 

div (-2i'1 ~-2ro.rD''1'1''i'+rop~ '11\l) =0, 
ryt 2 n 

{}' , 2 2 I V1jlI' , T.· • T. 
fjffJn-c. 'iJ 6n='V 16nM 1 rD = 4ne2n' c. = M . 

It is convenient to introduce as follows dimensionless 
variables in Eqs. (1): 

bn :2 C/' 
- -+ -;---,-Iln, 

n 3 VTe 

3 ' rD 
t -+ 2 Wp -;;:;- t, 

64 co' 
1'1",1' -+ -;;-l'r[c.'-,-I V1jlI'. 

21 Vr. 

They then become 
div (-2i'11jl,-VV'1jl+6nV1jl) =0, 
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(1) 

(2) 

8' 2 21 I' -Iln-V 6n=V V·h . (it 2 't' 

Equations (2) and (3) have the integrals of motion 

[= S IV",I'dr, 

H = S (Iv' ",I'+nl V",I' + '/,n'+'/,(V<I»')dr, 

where 
V'I!J=-n,. 

(3) 

(4) 

If w/nT « m/M (in dimensionless coordinates when 
JV1/i 12« 1) we can in Eq. (3) neglect the term a20n/ae. 
Then 

on=-I '1~'I', '1<1>,=0 

and Eqs. (2) to (4) become 

div (2iV",,+v'1'>t+lv'i'I'v'i')=0, 

H= S (Iv''i'I'-'/,IVIjJI')dr. 

We shall call this approximation the static one. 

(5) 

(5a) 

Equations (2), (3) admit an exact solution-a plasma 
soliton. Let On and I/i depend only on one coordinate x. 
For E = -l/ix and On we then have 

E=Eo eh-' [i E.(x-vt-x.) ] e", 
Y2 (i-v') 'I. 

s=-Qt+vx+so=- ----.-- t+vx+so ( V' E') 
2 4(i-v') , 

6n=-JEI'jO-v') . 

The soliton exists, if v < 1; it moves with subsonic 
velocity. 

One can easily prove the fact that collapse exist in 
the static, spherically symmetric case. 1 ) Introducing 
E = -al/i/ar we write Eq. (5) in the form 

{}E {} (1 {} 0) , 2i-+- --. roE + lEI E=O at or ,.' iI,. . 

From this equation we get the relation 
a' - - aE' 1 -

-Sr'IEI'dr=3H-Sr'I-1 dr--S lEI' dr. at' ar 2 " , 

(6) 

(7) 

(8) 

Here H is the integral (4) of Eq. (7) which in the present 
case is of the form 

-(I aE I' lEI' 1 ) H=S Or +2-;:Z-T IEI '. rdr. (9) 

Integrating Eq. (7) we find 
~ 3 
S r'IEI'dr<'2 Ht'+c,t+C,. (10) 
, 
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If H < 0, inequality (10) can be satisfied only for not too 
large values of t. Hence it follows that the solutions of 
Eq. (7) for which H < 0 must after a finite period t = to 
end up to be singular. 

2. SPHERICALLY SYMMETRIC COLLAPSE 

We consider a model of spherically symmetric col­
lapse in the form of a spherical layer which converges 
to the center and which has the local soliton structure. 
Let such a layer have a radius R and a thickness 0. The 
characteristic value of the field in the center of the layer 
E ~ 1/0 and it then follows from the conservation of the 
integral I that 

(11) 

As R - 0 the condition for the applicability of the "quasi­
planar" approximation thus becomes easier to satisfy, 

The way the soliton behaves can in the static case be 
found from (8). Substituting (11) into (8) and bearing in 
mind that as R - 0 the second term in (8) turns out to be 
much larger than the conserved quantity H, we get 

d' 1 
-R'",,-- (12) 
dt' R' ' 

whence R ~ (to - t)li3, where to is the time of collapse. 
The soliton velocity is then dR/dt R> (to - tf2/3, and the 
soliton accelerates as t - to, When dR/dt ~ 1, the static 
approximation breaks down so that it is necessary to use 
the exact Eqs. (2) to solve the problem of the spherical 
soliton. 

We shall look for a solution of (2) in the form 

E(r)=E,(R)ch-'[ 1 (r-R)E,(R)] e", 
12 (1-v') 'I, 

v' E,'(R) dR 
s=-( 2- 4(1-v') )t+vr+s" v=a;-' 

(13) 

Substituting (13) into the conserved integrals . 
1= J riEl' dr, 

, 
- 6 2 '2 

H= J (IE,I'+6nIEI'+++ ~' +-;:-IEI')r'dr, (14) 

1 fj rJ -,:;- a;: r'v, = - at On, 

we get after some simple transformations 

E'(R) = E' Ro'(1-v,') 1=2·2'1'(1-v ')'" E R 2 
, [f'(1-v') , 0 0', 

H=I[v2 - 1-5v' Eo'(1-V"')Ro']. 
6(1-v')' R" 

(15) 

This relation is a differential equation connecting the 
soliton velocity v = dR/dt with its coordinate R. If v « 1 
it follows from (15) that v2 ~ R-\ in agreement with (12). 
When v ~ 1 this approximation can no longer be applied. 

If H > 0, Eq. (15) does not contain a turning point. In 
that case solitons can move out to infinity. One must, 
however, remember that for sufficiently large R the 
soliton, in accordance with the estimate (11), becomes 
"thick," and the quasi-planar approximation breaks 
down, When H < 0, the equation has a turning pOint. 
Taking Ro to be that point, we get 

H = -~Eo' = 12 Eo'Ro'. 
6 3 

Near the turning point Eq. (15) can be Simplified to read 

V'=!.!....-(~-1) 
6 R' ' 

(16) 
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whence it is clear that the soliton moves from the turn­
ing point to the center. The turning point is unique, 
which means that a spherical soliton collapses into the 
center, When v « 1 the motion is performed according 
to Eq. (12), otherwise with a nearly constant velocity 
v -I/{5. 

We give in Fig. 1 the behavior of IE(r)12 and on(r) 
illustrating the successive stages in the collapse of a 
spherical soliton. Initially we specify a soliton at rest­
the motion started from the turning point. When the 
soliton accelerates its "density well" gets deeper and 
the plasma is expelled from it to the center. Inside the 
spherical soliton the plasma density increases, but this 
increase is small compared to the depth of the "density 
well" of the soliton and cannot check the soliton collapse, 
although it affects the way the soliton velocity approaches 
its limiting value v = 1/15.2) In fact, of course, the soli­
ton cannot reach the center. When its dimensionless in­
tensity reaches a magnitude of the order of Wm 
(~2 x 103) strong Landau damping comes into play and 
the energy of the Langmuir waves is absorbed. The 
numerical experiment was performed up to intensities of 
just such an order of magnitude, which is a direct num­
erical proof that collapse can possibly exist as a non­
linear mechanism for the damping of Langmuir waves. 

The collapse of a spherical soliton considered here 
is essentially a general case of a spherically symmetric 
collapse. At least, it refers to quaSi-linear initial condi­
tions. Using a numerical experiment we showed in r6 ] 
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that a sufficiently strong initial condition collapses in the 
"planar" case before the formation of a soliton. We 
must in the general "spherical" case expect the "splitting 
off" of several collapsing spherical solitons from the 
initial condition. 

In concluding this section we discuss the problem why 
the self-similar supersonic collapse considered in [lJ 

can not occur. For the case of the collapse of large 
amplitude waves, w/nT »m/M we can neglect in the 
wave Eq. (3) the term v 26n and use in Eq. (2) the adia­
batic approximation and replace ilf!t by -E(t)if!. After 
these simplifications Eqs. (2) and (3) permit the self­
similar substitution 

lin .... (t,-t) -'I'lin m, 
1 

Vl~ = t,-t 1jlm, 

~=r(t,-t)-'I'. 

After twice integrating Eq. (3) over ~ we get in the 
spherically symmetric case 

1 (j ." aEC;) 
TiI~;-~ 

~E 9 Ii 
=1'+10+ 4 %' 

, a 
x S":'-(sE')dl: 

'0 a~ ~, 

R=-f)~l/a~, E (0) =0. 

Considering the solution of this equation in the form of 
a series in odd powers of ~: 

E=a,s+a,~'+. " , 

. 27/ 3 2n-1 we fmd 0'2 = /14 0'1 and also Q1 n = CnQl 1 ' where all 
Cn > O. It is clear that the function E(~), given by the 
series for E, cannot decrease as ~ - 00, and the self­
similar spherical solution is the collapse of an exponen­
tially growing density well and has no physical meaning. 
This fact is explained by a simple physical cause: due to 
the boundary condition E(O) = 0 the potential of the high­
frequency force has a minimum at the origin and there­
fore the plasma accumulates near the center, preventing 
the self-similar collapse. Self-similar collapse is pos­
sible only, if IEI2 has a maximum in the center of the 
well, which can occur only for less symmetric configura­
tions of the oscillating field. 

3. COLLAPSE OF A QUASI-PLANAR SOLITON 

To realize a spherical collapse we need specially 
produced spherically symmetric initial conditions which 
normally do not occur when Langmuir waves are excited 
in the plasma. Moreover, it was shown in [7J that a plane 
plasma soliton is unstable under the development of a 
perturbation with a wave vector in its plane. We study in 
the present section in more detail this instability and 
show that its development is a quasi-one-dimensional 
Langmuir collapse which conserves the local soliton 
structure. To derive the equations which describe this 
kind of collapse we use a variational principle. 

We restrict ourselves in our stUdies to the collapse 
of a "standing" soliton and we shall assume that 

E=-~= B'e"· (17) 
ax ch(B'x!Y2) 

Here Band 4> are slowly varying functions of the time 
and the transverse coordinates: 

aB/at<B', IV,LBI<B'. (18) 

By virtue of inequalities (18) we may assume that varia-
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tions in the plasma density are slow and we can solve 
the wave Eq. (3) approximately: 

a' 1 a" • 
n""-IV1jlI'-"8t'~ I V1jlI'''''-IV1jlI'--at' S d.x S IEI'dx. (19) 

, , 
We used here the fact that lEI »V 1 if!. Using (19) we can 
rewrite Eq. (2) in the form 

a iJ" • • 
\Z2(2i1jJ,H1jJ)+div IV¢I' V1jJ+ ax ("8t'S dxS 11jJ.1 2 d.x1jJ.). (20) 

, , 
This equation can be obtained by the variation of the ac­
tion 

8=i S W·v'1jl,-IjJV' ¢,')drdt+ 5 IV'1jJI'drdt-~-5 IV1jJI'drdt 

(21) 
1 a •• iJ 

+-S (-'tl1•
"
5 dxS-I1jl.I'dx) drdt. 2 iJt at 
o 0 

We choose a trial function if! of the following form: 
we shall assume that 

, aEo 
v 1jJ=p=­

ax 

E = B'(r,L)e'O>(',L) . 

ch (B' (r,L) x!Y2) 
(22) 

Eo(r l' x, t) is the longitudinal electrical field of the plane 
soliton which formally depends on the transverse coor­
dinates. In first approximation in V 1 the quantity Eo 
satisfies the equation 

(23) 

Equation (23) for If! can be solved in the form of a series 

a'¢o 
-=p, 
ax' 

1jl=IjJ,+1jJ,+ ... , 
_ . B'x 

1jJ,= 1'2 e'" arcsin th -=-, 
1'2 

a'1jl,/ax'+v2,LljJo=O. 

We have for the electrical field E 

(24) 

The first term of the action (21) can be transformed 
to the form 

8,=i 5 Wv' 1jJ,-IjJV'1jl,}drdt=i 5 Wp,-1jlp.")drdt (25) 

""i 5 (1jl.E.,·-1\·x'EOI )drdt""i J (EoEOI'-E,'E.,) dr dt+ J (1jl,.Eo'+1jJ,;E.,)drdt 

We can transform the last term in (25), using Eq. (23). 
Evaluating then the quantity -7'2 J IEI 4 dr, using Eq. (24) 
and taking into account the first nontrivial terms, we get 

8=i J (EoEOI'-E,'EOI)drdt + J (IEo.I'-'/,IEol')drdt+ 5 IV,LEol'drdt 

a •• iJ (26) - 5 IEol' I v ,L1jlol' drdt+'/, 5 at IEol' (S dxJ at IEol'dX) drdt. 
o 0 

Evaluating the integrals in (26), we find finally 

S=41'"2S(BZ<lJ,- B' +~a,B2(V ,L<lJ)' +'.!...a,(V,LB)'-..!..a.IB,I') dr,Ldt, 
12 2 2 2 

+J- (arcsinthx)'-n'/4 d -50 
a,=1- ch'x x- , • 

(27) 
+- '( h' 3) , 

a, = S x c x- dx=2 - ~ "" 0.32, 
ch'x G 

• x' 2 (n' ) a,=25--dx=- --2 ""0.8599. 
Chi x 3 3 

We normalize the variables: 

- ,/a, 
r .... r'la,. 1ll ..... 1ll v.-. 

a, 
,/ a, 

t ..... tv -. 
a, 

In the new variables the equations for 4> and B have 
the form 
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~B'+V 1.B'V 1. «It =0, 
at 

2B(«It'+'/'(V1.<<It)')='/,B'+V.i B-'(B", (28) 
,(=a,a./a,. 

In the static approximation when the term Btt is neglec­
ted, it .is convenient to introduce the complex variable 
X = Bel •. The equation for X has the form 

2i1(.t+V11(.+I1(.I'1(.=0. (29) 

Equations (28) allow us to solve the problem of the 
instability of a plane plasma soliton against long-wave­
length transverse perturbations (see also [7J ). Putting 

we find 

Q' 
.Ii' (2Bo'-k') 

4+1k' 
(30) 

Equation (30) shows that in the whole wavenumber 
range 0 < k < B~ there is an instability. In the static 
case B~ « 1 the maximum of the growth rate is reached 
for k ~ B~, but the criterion for the applicability of Eq. 
(30) is the condition k «Bt so that it only gives an 
estimate of the maximum growth rate. In terms of the 
physical variables the maximum growth rate Y ~ wwplnT 
is reached for dimensions of the perturbation of the 
order of the width of the soliton. 

t = 0.00 

t =0.50 

t =7.00 

t=I.IO muxlEIZ = 55.70 

t = 7.20 

FIG. 2 
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In the case B~ » 1 Eq.(30) is applicable only for 
"long-wavelength" perturbations (k2 « 1, in terms of 
the physical variables A 1 ~ r D(M/m)1/2). When k 2 ~ 1 a 
maximum growth rate Ymax ~ wp(mw/MnT)1/2 is 
reached. However, as far as order of magnitude is con­
cerned, Eq. (30) is valid up to k ~ B~. In the range 
1 < k < B~ the growth rate is practically constant: 
Y ~Ymax' 

We consider now the non-linear stage of the develop­
ment of the soliton instability, We shall assume that 
k 2 « 1, k 2 «B~. Introducing n = B2, v = V1., we get a 
set of hydrodynamic equations with a negative pressure 
and with the adiabatic index Y = 3: 

an 
-.-+div.Lnv=O, 
ut 

av . n' 
-+V\.Lv=V.L-' 
ut 4 (31) 

In the case of a single transverse coordinate, v1 = a/fly, 
the set (31) can be transformed to the form 

~+z~=O z=v+~n. (32) 
at ay' 12 

The general analytic solution of Eq. (32) is of the form 
." 

z=F(y+z(to-t)) , 

F is an arbitrary analytical function. This solution 
clearly describes collapse, if we choose for F a function 
with a pole on the real axis. In the simplest case, choos­
ing F(O = -elL we find 

t =0.00 

t =7.20 max IEI2= 17.50 

t =2.00 

t =2.20 

1; =Z.qO 

FIG. 3 
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n= { "1'2 [4C(to-t)-y]''', y<4C(to-t) (33) 
to-t 

0, y'>4C(to-t) 

This solution describes the collapse of a finite soliton 
section with half-width y = (4Cto)112. After a time to the 
soliton is collected together in the point It = 0; its ampli­
tude in that pOint increases as 1/(to - t)l 2. 

We note that in the points y = ±{ 4C(to - tW/2 the valid­
ityof Eqs. (31) breaks down, and near them it is neces­
sary to use the more exact Eqs. (28). The role of the 
end points will increase as collapse is approached; this 
limits the time during which the solution (33) is appli­
cable. However, increasing the initial length of the soli­
ton we can attain collapse up to rather large amplitudes 
in the framework of the solution (33). 

We studied the development of the instability of a 
plane soliton against the development of plane excitations, 
using an electronic computer. We show in Figs. 2 and 3 
successive phases of the development of the collapse of 
a plane soliton. Figure 2 refers to the static subsonic 
case-we used Eq. (5) as starting point. Figure 3 refers 
to the general case and describes the collapse of a soli­
ton in the framework of the set of Eqs. (2) and (3). In 
both cases we used as the initial condition a slightly per­
turbed soliton 

Eo ( 1TX) 
E= ch(x/Y2) HO.1sin T . 

Both cases are close to the limit of applicability of Eqs. 
(31). 

In the physically more interesting case of two spatial 
coordinates it is no longer possible to find a general 
solution of the set (31) in so simple a way. However, in 
the axially symmetric case it is possible to find a self­
similar solution which is analogous to the solution (33). 
It is of the form 

n = v,L)'!" Il ( (Io~tr')' v = (to-~)'/" V ( (to':'t)/" ), 

I (no-~~2 f I~I< ~ no, 1 
n(s)= 9' v(s)=-s 

3 3 . 
0, lsi> ""2/l0, 

(34) 

Solution (34) describes the collapse of a disk-shaped 
soliton into a point. We note also that in the process of 
this collapse the relation Ll.B2 = const is satisfied so 
that the condition for the applicability of the quasi-planar 
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approximation I/L1 « B2 is made easier to satisfy as 
B2 _ 00. 

As in the case of the spherical collapse, the collapse 
of a quasi -planar soliton can proceed only up to a level 
of amplitudes w/nT ~ 1 after which strong Landau damp­
ing leads to an absorption of the Langmuir oscillation 
energy. The problem of the nature of the plasma heating 
when collapse is taken into account remains yet to be 
solved. 

We note also that the structures of the Langmuir 
collapse, studied by us, are not the only ones which are 
possible; for instance, in refs. [B, 9J we described a two­
dimensional unsymmetric dipole-type collapse with 
transverse and longitudinal dimensions of the same 
order of magnitude. We may assume that such a kind of 
collapse occurs in the final stage of soliton collapse. 

t)This method is based upon a paper by Vlasov, Petrishchev, and Tala­
nov. [4] 

2)ln this sense the results of our paper are in contrast to the conclusions 
given in [' ]. 
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