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A description of the Wyld diagram technique is given in the language of canonical 
variables for classical wave fields, l~t is shownthat this technique describes 
thermodynamic equilibrium in particular.; it may also be used to validate the ap- 
plicability of the kinetic equation for wa~es. The problem of a turbulent seal- 
ing is discussed, together with i~ts relationship to the power-law spectra of we~k 
turbulence. 

INTRODUCTION 

Various physical situations (plasma turbulence, ~he passage of high-power laser pulses 
through matter, parametric excitation of spin waves in ferromagnetic materials, etc.)neces- 
sitate the statistical description of nonlinear wave fields under conditions that are in no 
way near thermodynamic equilibrium. For elementary cases (low-level nonlinearity and cer- 
tain restrictions on the wave-dispersion law), suc~h a description may be given in the lan- 
guage of kinetic equations. The corresponding theory is usually referred to as the ~heory 
of weak turbulence. Attempts to go beyond the framework of weak turbulence require the use 
of diagram techniques. 

There are several types of diagram tec~niques suitable for the description of nonequi- 
librium systems (see [i, 2], for example). It is most natural to use the Wyld technique 
[i] for classical problems; it was constructed in 1961 for the example of a hydrodynamic- 
type equation and served as the basis for numerous studies on the turbulence of an incom- 
pressible fluid (see [3, 4], for example). Although the wave-field equations encountered 
in physical problems, written in "natural" variables (velocity, pressure, the electromag- 
netic field, etc.), are usually not Hamiltonian equations, they ordinarily possess a latent 
Hamiltonian structure (see [5]). By bringlng out this structure (introducing canonical vari- 
ables), it is possible to make a substantial simplification in the solution of fundamental 
nonlinear problems. Our aim here is to describe the Wyld diagram technique in the language 
of canonical equations for classical wave fields (sec. i). 

By using canonical variables, it is possible to show that the Wyld technique describes 
thermodynamic equilibrium in particular (sec. 2). Although this fact is natural, no proof 
has so far been given in the "ordinary" Wyld technique. Our proof makes use of the sym- 
metry properties of "bare" vertices, which hold only for canonical variables, and it is 
formulated as a "fluctuation-dissociation theorem" (i.e., it asserts the compatibility of 
the diagram equations with the thermodynamic relationship between the spectral density and 
the Green's function). In this way, we obtain a purely classical proof of the fluctuation- 
dissociation theorem. 

Using the diagram technique, it is easy to derive the familiar kinetic equations for 
waves and to obtain corrections for them in the regular manner. In particular, this enables 
us (sec. 3) to validate the limits of applicability of the kinetic equation (i.e., the weak 
turbulence approximation): the wave damping Yk characterizing the level of system nonlinear- 
ity must be less than Ak(~k/~k) and less than (~Z~k/~k2)(Ak)2 , where Ak is the characteris- 
tic width of a wave packet. 
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The next topic that is conveniently treated in the canonical technique is the question 
of turbulent scaling. The success of scale-invariance methods in the theory of phase transi- 
tions and the formal similarity of the phase-transition and strong-turbulence problems lead 
naturally to the concept of transferring the scaling methods developed in recent years to 
the case of turbulence. 

We might hope that these methods will lead to future progress in the central problem of 
strong-turbulence theory, the problem of the Kolmogorov spectrum. In this study (sec. 4), 
we have made just the first step in this direction: we show that in elementary cases the 
additional scaling index which appears owing to departure from thermodynamic equilibrium may 
be found by means of a conformal frequency transformation analogous to the transformation of 
the kinetic equation for waves that permits us to find the power-law spectra of weak turbu- 
lence. 

We consider a wave field that 
described by the complex amplitude 

We introduce the notation ak, a~ = 
tonian to be cubic in a~, we write 

1 ~ s,~ ' .~" ' " 
l-I:,t:= -~. j ~] V,, , , , ,a~ a~, a~,,~(sk + s'k '  + s " k " ) d k d k ' d k " .  

s ~ s ' ,  s t' 

Since the Hamiltonian is real, we have 

I t '  le" - ~ -  V k k '  Ig' �9 

I. DIAGRAM TECHNIQUE 

in a linear approximation possesses a dispersion law mk 
a k and having the Hamiltonian 

H = ~ o~k a~ a~dk + H,~ (1) 

a~ (s = • Initially assuming the interaction Hamil- 
it in the form 

(2) 

(3) 

Moreover, the coefficients V possess evident "permutation symmetry": 

V~"~ " V`5<~'s " -~", '  ( 4 )  

The e q u a t i o n s  o f  t h e  wave f i e l d  have  the  form 

Oa~ ~ H 
is . . . .  isTka~ + fk.  (5) 

dt ~ a [  s 

In  t h i s  e q u a t i o n  we have  f o r m a l l y  i n c l u d e d  the  wave damping Yk and t he  e x t e r n a l  f o r c e s  fk  
d e s c r i b i n g  t h e  weak i n t e r a c t i o n  o f  t h e  wave f i e l d  w i t h  t h e  " e n v i r o n m e n t "  ( t h e  t h e r m o s t a t ) .  
We assume the  e x t e r n a l  f o r c e  f k ( t )  t o  be random w i t h  a G a u s s i a n  d i s t r i b u t i o n .  Assuming 

a~(t) = ~ a ~ e  - ~ t  do~ (6) 

and i n t r o d u c i n g  t h e  f o u r - d i m e n s i o n a l  n o t a t i o n  q = {k, ~}, we o b t a i n  

aq 0~ dq'dq" ~ V~;~, ~" aear f~ . ( 7 )  
S ' S  ~ 

Here G~q i s  t he  b a r e  G r e e n ' s  f u n c t i o n ,  

1 ogq = . ( 8 )  
o~ -- ~k + isT~ 

We c o n s i d e r  the  f o r m a l  s o l u t i o n  o f  (7) i n  the  form o f  a s e r i e s  i n  powers o f  f q :  
s s 6' a,! ~- aoq -Jr- a~q ~- a2,~ -[- ..., 

s , ~`5 

afq = 0 ~  ~ dq'dq" ~ 1 Vk-;?/,'`5"Gs' a~i~,, ~(--sq  -t- s 'q '+ s [~q', [su;;, (9) 
S ' ,  `5" 'r Uq" 

a,~ t Ooq S dq'dq" ~ 1 -~, ~,.'~" , ,  = 5̀ - (  oo, `5, + + + 
,5",5" 2 
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Using the graphical definitions 

S -S  SS'S" S~ / ' &s ,~ ~ -~'---~ (9a) 
Oo r V~ ~,~ 

, ;  e~ s':~" 

we may place each term of the above series into juxtaposition with a diagram. 

Each diagram of the series for ~. constitutes a "tree" branching, ,, at vertices V whose 
top terminates in dashed random-forceHlines. The vertices V~,~;, must be matched to 6(sk + 
s'k' + s"k"), with summation being carried out over all s and integration over all q of the 
inner lines. The diagrams for aSq contain all topologically different trees with n vertices 
V; the numerical coefficient of each such tree is 1/2. The diagrams corresponding to (I0) 
are 

e.09=------ - -  _ _ / 

'~7 t/2"-- 

/ 
/ 

aCq, =----~ 
/ 

/ (io) 

It is not difficult to see that the analytical expressions corresponding to trees going 
over into one another when a portion of the tree is rotated about some vertex will coincide. 
The first example of this sort is two trees for a2q. We henceforth assume such trees to be 
topologically equivalent, assuming that there is a number of them such that we retain the 
discriminating factor 1/2 only at "symmetric" vertices (i.e., vertices from which a rota- 
tionally symmetric tree "grows"). As a result, the entire diagram acquires a discriminating 
factor i/p, where p is the number of elements in its symmetry group, including the identity 
element. For trees of order two and three, this is represented as 

J 
/ 

az~ = <.~<I I 

/f 

o=,_ ...<... + , .<< 
39 8 Z .- (ii) 

This possibility of reducing the number of topologically different diagrams is associ- 
ated in principle with the classical nature of the wave field, which is reflected in the 
commutativity of the quantities f~. We further note that one of the end points of the tree 
(its root) is isolated: of the three lines meeting at each vertex, one runs "to the root" 
and the others "away from the root." As we see from (9), on the line running "to the root" 
there is a change in thesign of the index s for the vertex. 

Let us now calculate the following paired averages: the spectral density nq and Green's 
function Gq, the linear response of the system to an external force: 

< a~t a~): ) : :  Jz~) ~ (q--q') A (s - -  s'), mq = rt~ ~, 

< a~ [~,,s" > =/ ~ a~ ~ (12) 

o,;~(q-q') = <l'~ [J> \ ~t~, / 

To compute the averages, we make use of the Gaussian nature of the external force fq and 
assume that there are no correlators from the product of an odd number of fq while assuming 
that the correlators from even products are divided into the sums of products of paired cor- 
relators: 

< fsq [~Ts > = FSq ~ (q _ q,), FSq = F J .  (13) 

This partitioning is graphically illustrated by paired "scaling" of the outer branches 
of the trees. In calculating the average we perform scaling for two trees, which we repre- 
sent as image reflections from a vertical line. Here for vertices and lines to the right of 
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S 
the tree line all indices s must change sign. To calculate the average for Gq, we carry out 
scaling within one tree with each of its outer branches fixed successively. Carrying out 
summation of the reduced graphs we arrive at a system of Dyson equations for n~ and G~: Gq = 

[i + Eqgq], nq = IGql2~q; graphically, Goq 

zvvv = --{. ~ ~f -..--- (14) 

Here a heavy wavy line indicates nq, and a heavy straight line indicates Gq: 

(15) 

(16) 

The graphs in the series (15) and (16) contain no weakly connected parts separated by two 
lines. The graphs for Cq have two equivalent end points ("roots" of the joined trees); the 
graph s for Eq have differing end points (input and output) corresponding to the "root" of 
the tree and a fixed branch. 

Let us enumerate the topological properties of the graphs for Eq and ~q that are import- 
ant for the ensuing discussion: 

i. In the diagrams for cq (for Eq) from each vertex we may proceed only along Gq' lines 
toward the input or (and) output in unzque fashion. Thus, there are no vertices with three 
nq, lines and no closed loops along Gq, lines. 

2. In each graph for Eq, there exist a unique path connecting the input and output 
along Gq' lines -- the "spine" of the graph. The remaining Gq, lines of the graphs may be 
referred to as edges. 

3. The ~ graphs contain a "principal cut" for which they may be uniquely dissected 
H 

into two parts along nq' lines only. We shall refer to these nq, lines as "principal". 

4. Clearly, by successively replacing principal nq, lines by Gq, lines in the graphs for 
Cq, we shall enumerate all topological structures of the graphs for Eq. 

Let us now indicate the rules for calculating the coefficients of the graphs for s and 
~q for a given topological structure: 

5. All topologically different graphs for Eq have an identical numerical coefficient 
equalling unity. 

6. Topologically different graphs for ~q have the coefficient 1/2 if they are symmet- 
ric with respect to the line connecting the input and output [for example, the first, third, 
and fourth graphs in (15)] and the coefficient i otherwise. 

These rules follow from the fact that in "splicing" of lines running from a symmetric 
vertex it is possible to double the number of splices by carrying out a rotation at this 
vertex. This doubling compensates for the factor 1/2 introduced by the symmetric vertex. 
An exception is represented by the case in which splicing of two symmetric trees preserves 
a single graph symmetry (with respect to rotation along the end points of the graph). 

Let us now define the procedure for graph multiplication. In graphs for ~q, we succes- 
sively isolate each of the fundamental nq, lines (for example, marking the isolated line by 
a cross), while in the graphs for Eq we successively isolate (also by a cross) each line of 
the spine. The fundamental structural property of the graphs follows from 1-6: 

7. There is a one-to-one relationship between the "multiplied" graphs for ~q and Eq 
(including the numerical coefficients). This correspondence is realized by replacing wavy 
marked lines by straight lines and vice versa. 

Let us discuss the rules for reading the graphs. To each graph for Eq or ~q having n 
lines there correspond 2 m terms corresponding to different ways of choosing the signs for 
the indices sl, s2, .... It is convenient to represent this choice graphically, assigning 
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S ! S ! 
a direction to the Gq, and nq, lines. On the graphs for Eq and the left side of g~aphs for 
@,I the functions Gn, n~ should be assigned an arrow "away ~rom the input," while the complex- 
conjugate functions G~and nq should be assigned an arrow running "to the input." On the 
part of the graph of @~ situated to the right of the principal section the functions G~, and 

, �9 L 1  ,v , v  �9 ~ ,  ~ �9 ,v ''1 
nq are asszgned an arrow from the output, wh11.e Gq and nq, are assigned an arrow to the 
output." With the directions of the arrows chosen in this manner: 

8. The delta functions are so arranged at the vertices that the sum of the four-momenta 
arriving at th e vertex equals the sum of those leaving. In any cut of the Eq and @q graphs 
that separates the input from the output, the algebraic sum of all momenta o~ the lines is q. 

Let us show that: 

9. In writing the analytical expressions for ~q in the product of all vertices and func- 
tions Gq,, only the real part should be left in the edges. As an example' the graph a) 

5 ~ 

~ 2 

corresponds to the expression 

dq, ... dq~ G,,, Oq, Re { V;,.-+o + V-i2~ + V,-3 ; § V ~ :  - O*~, nq, #q, ] X 

X 8 (q  - -  q ,  - -  q: ,)  ~ ( q ,  - -  q._, - -  q,)  8 (q~ + q,  - -  q3) ~ (q= + q.~ - -  c/). 

For the proof we must consider, in addition to the given graph [for example, a)], a 
graph [b) for this case] 

~ b, 

obtained from its image reflection and comp!ex-conjugate (it corresponds to a change in the 
directions of all arrows). As a result, the two graphs exhibit coincidence of all delta 
functions and directions of arrows in the spines; the arrows in the edges change direction 
[compare a) and b)]. Next, in accordance with property 5, we must allow for the fact that 
both graphs occur in the expression for ~q with the same coefficients (equal to unity). 

Similarly, considering image-symmetric graphs it is easy to see that: 

I0. For any graph, only its real part occurs in the analytic expression for @q, 

Let us now see how the diagrams for Im Eq look. To do this, we make use of an identity 
holding for an arbitrary set of N complex numbers an: 

Im (~, ,,. ~,v) = l m  (~1~ ~N) + ~ Im (~2~ ,.. ~ ) +  ... + ~ %  ,,, ~ - 1  Im ~ .  

Multiplying this identity by an arbitrary complex number fl and calculating the real part, 
we have 

Re : Im (=i ... =N) Im ~I Re (, %,-  =~v) -I-,..-l- Im =,v Re (~3:(, ... =N--0. (17) 

Let us now consider a graph for Sq having N lines in the spine. We let ~ represent the 
contribution made by the graph edges and let a n represent ~he G-functions of the spine. By 
virtue of rule I0, only the real part of B makes a contribution to the graph. Evaluating 
Im Eq and using (17), we arrive at the following result: 

ii. To calculate Im Eq it is necessary to multiply each graph for lq (using a class to 
successively mark each of the lines of the spine), replace each labeled G-function by its 
imaginary part, replace all G-functions of the spine that are located to the right of a 
labeled line by the complex-conjugates, and remove the real part from each graph. Rule ii 
permits direct calculation of Im Eq. Cutkosky [6] has described a similar method for cal- 
culating imaginary parts in Feynman diagrams for quantum~electrodynamics. 

For a whole series of interesting physical situations (fluid dynamics of an incompres- 
sible fluid, of a cold plasma, etc.), the basic contribution to nonlinearity is made by the 
interaction of four waves. Writing the Hamiltonian Hin t as 
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1 E vSISaS:"St St So S.. S 4 Hint : ~ k,u#:,t~, an, as  aki', at,, X ~ (slkl + sek2 + s3k 3 27 slkl) dk I dk.,.dk.~dk~ , (18) 

,tS~S~S4 

we may proceed in like manner to formulate a diagram technique and go over to the Dyson equa- 
tions (14); here for the compact parts of ~ and E, we obtain the series 

i n  p l a c e  o f  ( 1 5 ) .  

A l l  g r a p h s  ) p r o p e r t i e s ,  r e a d i n g  r u l e s ,  e t c . ,  r e m a i n  a s  b e f o r e ,  e x c e p t  t h a t  i t  i s  n e c e s -  
s a r y  to generalize rules 5 and 6 pertaining to the numerical coefficient on the graphs in 
the following manner: to each graph there corresponds a discriminating factor i/p, where p 
is the number of elements in the symmetry group of the graph, including the identical ele- 
men t. 

2. FLUCTUATION-DISSIPATION THEOREM 
S 

Let show that the equations that we have constructed for n~ and Gq will in US now par- 
ticular describe the thermodynamic equilibrium of a wave field. Calculating the imaginary 
part of the Dyson equation (14), we obtain 

lmOq= IGI' + ImXq) . (20) 
l OOq [ 2 

We shall seek a solution of (14) in the form of 

, T Im G~ (21) n q  - - - -  

(p'q) 

Here T is the temperature of the thermostat, and p = {V, i} is a constant four-vector. 

Let us assume that the condition 

Fq = T l m  G~q _ T T k 

s 10o~ l' (p. q) (p. q) 

is satisfied, indicating that the "environment" (the thermostat) 
system will be in thermodynamic equilibrium at the temperature T. 
that 

s (p. q) Oq ---- T Im E'~. 

( 2 2 )  

interacting with the wave 
It then follows from (14) 

(23) 

Let us show that if (21) holds, then (23) is satisfied within each group of graphs having 
the given topological structure. To do this, we make use of the properties found in sec. 1 
for the graphs for ~ and E~. We consider a certain ~ graph containing N lines in the 
principal part; we arrange the arrows arbitrarily in it. According to rules 7, ii, it fol- 
lows that among the graphs for E~ there are exactly N graphs having the same topological 
structure as the graph for ~q and differing from it in that each of the fundamental nq' 
lines in the graphs for Im Eq will be successively replaced by a Im Gq, line. According to 
rule ii, the methods of reading the graphs for ~q and Im Eq are the same, so that within 
each group of graphs (23) may be written in the form 

s s N us,,, r ( . 
S qqt"'q~ (p .q)  s 

st s2 - ' ~  _.L ] = (24) + nq, nq~ ... hn  GqN ) ~ ( - -  sq q~ s~q~ + ... SN qu ) dq, ... dq~ O. 

Substituting (21) into (24), we see that (24) may be rewritten as 

USq ql'"qNSl "'" sN ~qlSl SN S "'" IzqN [ - - s ( p ' q )  27 s t (p 'qO + ... + SN(P'qN)] X 
(25) 

X 8( - -  sq + sNt 27 ... + s~qN) dqx ... dqN = 0 

and it is evidently satisfied. 
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In exactly the same way, it is possible to see that (21) satisfies a system of Dyson 
equations for nq, Gq for the case of a four-wave interaction Hamiltonian, as well as for an 
interaction Hamiltonian represented by a power series in ~. Equation (21) coincides with 
the "fluctuation-dissipation theorem," which for thermodynamic equilibrium relates the spec- 
tral density of the fluctuations to the imaginary part of the Green's function; for a situ- 
ation of thermodynamic equilibrium, it permits a transition from two equations for nq and Gq 
to a single equation for Gq. 

It should be noted that there is a fundamental difference between the case of thermo- 
dynamic equilibrium and the general case. In the situation of thermodynamic equilibrium, 
averaging is carried out over a Gibbs ensemble, and the diagram technique is just an auxil- 
iary tool making it easier to calculate the averages. In a nonequilibrium situation, how- 
ever, the diagram technique is a way of obtaining the equations for the average nq and Gq. 
It is essential that in (14) the correlator for the external force Fq occur in the form of 
a free term and that it be possible to set it equal to 0, It is natural to assume that the 
solution of these equations (nq, Gq) depends continuously on Fq and remains finite for Fq. = 
0. In physical terms, this means that the correlators for nq and Gq are insensitive to tNe 
action of a small random Gaussian force on the wave field. This property of the correlators 
corresponds to the notion of turbulence as a result of the development of all imaginable in- 
stabilities and as the most stochastic state of the wave field. 

Although the procedure for obtaining the equations for nq and Gq is formally unambig- 
uous, these equations are actually not uniquely defined, since the series for nq and Gq are 
not absolutely convergent. This follows just from the fact that the number of topologically 
different trees rises factorially as the number of vertices increases. These series become 
unique only after definition of a summation ru!e for them, a problem that has as yet not been 
solved. It may be assumed, however, that for any summation rule the first terms of the 
series will remain in their locations, and in this context it makes sense to restrict the 
discussion to the first terms of the series for nq and Gq even for a strong nonlinearity. 
For a low-level nonlinearity, the series for nq and Gq must have an asymptotic meaning, re- 
gardless of the summation rules. 

3. KINETIC EQUATION FOR WAVES 

On the assumption of a low-level nonlinearity, we may neglect renormalization of the 
vertices and keep just the first diagrams in the expression for @q and Eq. We write the 
Dyson equation for nk~ as 

(~klu 
n.k,o = (26) 

If the width of a packet nkm with respect to the frequencies A~ k is substantially 
greater than Yk~ -= Im Y km, then we may neglect the dependence of @k~ and Ekm on co, in this 
expression, taking co = mk = ~k + Re E k. Then following integration with respect to co in 
(26), we have 

"l~ I~, = r~@,. ( 2 7 )  

Continuing to assume systematically that A~k >> Yk, we may integrate with respect to the 
frequencies in the expressions for @k -- @k, mk and Yk = Yk, mk, taking nkm ~ 6 (co -- ~k)" Then 

~'~ = ~ j" [ v~; ~,.,, [ 2 (nk,  + n~,.) a (.,~ - -  o~/~, - -  o~k") X 
2 

• ~ (k  - -  k '  - -  k")  d3k'd~k" + ~ .f I Vk,.k ,,, I s (~,', - -  n~, ) X 

X ~ (~o,, - -  ~ - -  to,,, ) ~ ( k '  - -  k - -  l~") d 3 k  ' ds/~"; 

I l' k' , " )  
- x 

X ~ ('ok - -  co~, - -  t%,,) dk'dk" + S IVY,, ~" ]~ n . ,  n~,, X 

• ~ (/~' - -  k - k") ~ (o~, - -  ~ k '  - -  ~k',) d/~' d/~". 

(28 )  

(29) 
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Substituting (28) and (29) into (27), we obtain a three-wave kinetic equation. Taking 
a rough estimate of Yk from (28) to be IVl=nkk3/Amk and taking into account the fact that 
our conclusion is valid if Au k >> Yk, we obtain one of the criteria for applicability of 
the kinetic equation: 

A., > vVg k 3j= ~ vV~, (30) 

Snkdk'~ k3 where N~--- nh is the level of nonlinearity in the system. 

If this condition is satisfied, the equation for nkm may be reduced to an equation for 
the integral quantity n k. 

Calculating the first correction for a vertex as well as the correction for the real 
part of the Green's function, we see that they are less than the bare values by a factor of 

Tk In �9 (31) 
~.;(~k)' ~ / 

A theory of weak turbulence is also constructed on the basis of the parameter (31). The 
logarithmic factor appears when we carry out integration of diverging denominators of the 
type [~k-- ~k' -- ~(k-k')] -I, truncated by wave damping, in k-space. It is clear from (31) 
that for linear dispersion there is no region of weak-turbulence applicability, and the 
kinetic equation cannot be used whatever the nonlinearity levels. This is easily ascer- 
tained, for example, by direct analysis of the diagram 

<I>, 
which has no small parameter with respect to the diagram 

owing to the coincidence of singularities. 

4. KOLMOGOROV TURBULENT SPECTRA 

In many physical problems, the quantities ~k and Vkk,k,, are homogeneous functions of 
their arguments : 

o ~  = X ~ t%,  Vxk, xk', xk" ---- kt Vk~'k". (32) 

It may be assumed that here the spectral characteristics of the wave field in a certain wave- 
number interval will also turn out to be homogeneous functions: 

< ) ) 
The numbers x, y, B characterizing the degrees of homogeneity have come to be called scaling 
indices. The problem arises of the conditions for realization of the scale-invariant spec- 
trum (33) and the determination of the scaling indices. 

The problem of "scaling" turbulent spectra is associated with the name of A. N. Kolmo- 
gorov, who in 1944 suggested that the turbulence spectrum of an ideal incompressible fluid 
is determined by a unique quantity -- the energy flux in the region of high wave numbers [7]. 
No rigorous proof has as yet been given for the Kolmogorov hypothesis, although many experi- 
ments aimed at measuring turbulent spectra have confirmed it with good accuracy [8]. In 
1965-1966, one of the present authors developed a theory of Kolmogorov-type spectra for weak 
turbulence described by the kinetic equation for waves [9-12]. In this case, it was possible 
to find the condition for existence of Kolmogorov spectra and to demonstrate that they are 
exact solutions of the kinetic equations in the isotropic situation. In this case, it was 
found [12] that spectra with a constant flux of quasiparticles play no less important a role 
than do spectra with a constant energy flux; in principle, there can also be anisotropic 
spectra characterized by a constant momentum flux. These results were obtained with the aid 
of a special conformal (quasiconformal, in the more general phase) transformation in k-space. 
In this section, we shall apply this conformal-transformation method to the strong-turbulence 
case. The last decade has seen vigorous development of the theory of scale-invariant spectra 
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in phase-transition theory; in particular, a result of the development of this theory was 
the establishment of the fact that indices computed with the aid of purely dimensional 
estimates are unreliable in most cases. This is connected with the fact that the diagrams 
are usually divergent for scale-invariant spectra. Thus, we shall confine the discussion 
to the case in which there are no such divergences or they are unimportant. 

Let the system Hamiltonian have the form (2), so that ~k E 0 and Vkk,k,, is a homoge~- 
neous function of degree t. Then from the equation of motion (5) we obtain an estimate inter- 
relating the characteristic values a, k and T (the interaction time): 

1_ = Vak~" (34) 

Assuming that the sole external dimensioned quantity is the flux p, we find 

H k 3 Va 3 k 9 
- - ~ - -  ~p (35) 

from the condition for conservation of flux. It follows from (34), (35) that 

I__ ~ p,14 V, i2 ~ p,14 k,/~, ~ = t.t . (36) 
2 

We then have 

i . e . .  , 

l pt/2 ptl~ 
* 3  Vk 3 

x : : t +  ~ + 3 = ~ t  + 3. (37)  
2 

Similarly, for a four-wave Hamiltonian (18) we find 

= t/3, 

(38) 01 

x =  ~ + 3 +  ~~ = t + 3 .  
3 

I t  i s  t h e n  c l e a r  t h a t  f o r  o u r  c a s e  y = 1 f o r  b o t h  t h r e e - w a v e  and f o u r - w a v e  i n t e r a c t i o n .  
Despite the obvious physical interpretation of the Kolmogorov-type scale-invariant spectra 
found, it is not a trivial matter even for the most simple case in which all diagrams con- 
verge to verify that these solutions satisfy the diagram equations (for nk~, Gk~). 

Let us show that (36)-(38) may be obtained as a necessary condition for the solvability 
of the equation for nk~ with a specified Gk~, and that in this sense the formulas (37), (38) 
for determination of x represent a "weak" analog of the fluctuation-dissipation theorem. 

We carry out partial summation in the equations for nk~0 and Gk~ and represent the 
graphs for the compact parts in the form 

= y  + , 

These diagrams include triple correlation functions -- the vertices 

A #r 

- a q  s < aq s[a-, s:[Tf"> = /  ~' - 

Fq, Fq. ~ ~ 's" s" Ofq, ~fr 
(Gq Gq, Gq,,), = Aq~'/,'q. ~ (sq + s' q' + s"q") s s' ~,, 

- s  - s ,  s " q " )  s s'  s" < a~ s aT, ~" f~,7" > / oaq aq, \ ,~s, s,, 
Fq, \ ~t~';, / = Bqq,]q,, ~ ( s q +  s ' q '+  (OaGcGr 

)• s / a~,,s s~,s,, s"q") s s, = < a q  aq > = (6qGq, . . . . .  Cqq,q,, ~ (sq+ s ' q ' +  6g:). 
t#.,  q 

(39) 

(39a) 
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The diagrams for the A-quadratic response is a tree having two isolated branches: 
t 

A~ r 

Vertex B is obtained by splicing two trees; here one branch, the output, is fixed: 

~K~ ~ ,  . ~ j  . . . .  

The triple correlator C appears when three trees are spliced: 

0 ss~s" A +  ~ r  . . . .  (42) 

Relationships (39) have a purely topological meaning and may also be established in the non- 
canonical technique (see [i0], for example). 

Under the convergence condition for the integrals in the diagrams (40)-(42), there is 
coincidence of the degree of homogeneity of the renormalized vertex with the degree of the 
bare vertex (t A = t). For this case, we have 

t B = t + ~ - x ,  
tc = t -~- ~(~ - -  X) (43)  

from (42) and (41) for the degrees tB and t C of the correlators Bqq,q,, and Cqq,~,,. The 
relationships t A = t and (43) may also occur when there are divergences in the ~iagrams 
(40)-(42). We shall assume that these relationships are valid. 

If the diagrams converge, we have the relationships 

y = I, (44) 

x = 2 t + 3 - - ~  

in the Dyson equation. The condition (44) may be termed the scaling condition. When there 
are divergences in the Dyson equation, condition (44) must be replaced by a different rela- 
tionship that depends upon the cut scale. When the scaling relationships (43), (44) are 
satisfied, the solutions (33) formally satisfy the diagram equations. 

We emphasize that in contrast to the bare vertex V, the renormalized vertices A, B do 
not possess symmetry with respect to permutations of the pairs (~), since the input end 
points are explicit in them: these are the roots of trees colored black in the figures. 
Nonetheless, by virtue of the symmetry of the bare vertex (4) deriving from the fact that 
the initial equations are Hamiltonian, the graphs for ~q and Eq possess a certain additional 
symmetry that makes it possible to establish an additional relationship between the indices 
of the scale-invariant turbulence spectrum. 

We define the combination 

Lq = Y, s s + n ;  s ] = 2i Im + 
S 

and note that the condition Lk~ = 0 is equivalent to the Dyson equation for nk~. 

We further require that the quantity Lq be finite on the scale-invariant spectrum (33). 
A sufficient condition for this is the convergence of all integrals in the diagrams for Gq 
and Eq; it is also possible for the diagrams for Gq and Zq to diverge; the diverging terms 

are truncated in the expression for Lq, however. We introduce the quantity L~= ~ L1~.~,dk. 
Then 

1 L ~ = ~ -  ~ . s ~  dkdk 'dk"d~d~'~(sq+s 'q '  + s"q'9 X 

ss's', -s -s" nq, nq,, 6q + Vk,.k', A~ l~'a tZq ttq,, 6~; + ~k'~" Aq. [q,q Oq,, nq, l [ 
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For brevity, we shall not write the terms with vertices B and C. We perform a substitution 
of variables in the second terms (a conformal transformation), 

to = ),o~ 1 ) (o t ~-~ ~,~o, (,)u == ),o~ 2 , ).._~ (,j/% , 

k = t)  k , ,  k '  = },~ k ,  k: '  = ~,~ k..,, ( 4 6 )  

s : 31, s r = s, s': : s2.i 

making use of the homogeneity of V and A and taking into account the symmetry property of 
vertex (4), we see that the second term in (45) on the scale-invariant spectrum goes over 
into the first with the factor (~/ml)Y(SI/S). Carrying out a transformation in the third 
term, which differs from (46) by the substitution ml +-+ ~a, we find that the third term in 
(45) goes over to the first with the factor (~/~a)Y(S=/S). The integral of the sum of these 
terms evidently vanishes if y = --i. This yields 

x----  ~ + 3  + t .  (47) 

Carrying out the same operation with the remaining terms in E~ that contain functions B and 
C, we also arrive at (47). 

Similar relationships may also be established between the indices B, x, and t for the 
case of a four-wave interaction Hamiltonian. In this case, we write the expressions for ~q 
and Zq in terms of the quadruple generalized vertices 

+ - g - ~  (48) 

The physical meaning of these vertices becomes clear from their definition, 

Fq, Fq+ Fq:, == Aq Iq,q+q.. + (Saq + s lqLq"  3~'q2 if- s'~q3) Oq Gq, Gq.~ q+, 

- - s  I .+vs~l - - s  a 

) t~ ,'~ S l q  I s+q,,.  , ,.+ ..++ ; ~=B+S/ '"" '~s~ ' ( sq  + + s~q~) <a$++aq, fq" fq+ > G q G ~ ' G q , l o ,  ( 4 9 )  
L {~ ++'~++q+' p+,Fq+ 

~ t "  rtt 

~ - ~ )  + qq,q, q~ s , q l +  q s s q a )  G~Gq, G ' nG r  .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , ( 5 0 )  C +̀ s̀+++' ++" 8 (sq + s~q,, +' +++ ++~' < a~+++ a+~'+' aT+~++' I+~++~ >' 

Dqq,q,q+8 (sq + s ,q ,  + &q,  ++-saqa)G+ G$" G++, G+:' = < a S  + a,,, a,,,. a+'+:'>. 

,g 

Arguing as before and assuming the compatibility of the degrees t A = t, tB, tc, and t D of A, 
B, C, and D, 

t B = t i ~ - - x ,  t c= t+2@--x ) ,  t ~ = t + 3 ( ~ - - x ) ,  (51) 

we obtain 

x ~- ~ - ] - 3 + - - 2 t  ( 5 2 )  
3. 

after application of the conformal transformation. From this and from the scaling relation- 
ship 

x = l + 3  (53) 

we see how to verify Eqs. (38) which were previously obtained from dimensionality considerations. 

Now let the Hamiltonian contain the quadratic term .I ~kak a~dk . There may be three 

cases. If the degree of homogeneity ~ of the frequency ~k is great, ~ > $, then in the 
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region of small wave numbers the "effective dispersion" m ~ k B due to strong turbulence ex- 
ceeds the "bare dispersion" m - k ~, and the latter may be neglected. Here there will be weak 
turbulence in the region of large wave numbers. In this case, it is necessary to write B = 
in (47), (52) in order to determine x, since scaling in the kinetic equation (weak scaling) 
imposes no conditions on the indices. The "loss" of conditions (44), (53), which are re- 
quired if all terms of the series in the Dyson equations are to have the same degree of homo- 
geneity, are essentially arbitrary, since the kinetic-equation approximation corresponds to 
allowance for just the first term of the series. If the random Kolmogorov relationships 
(47), (52) prove to be compatible with the scaling relationships (44), (53) for B = ~, then 
the nonlinear corrections to the frequency and vertex will have the degree of inhomogeneity 
of the corresponding bare quantities. Then as the level of nonlinearity increases, weak 
turbulence will continuously go over to strong turbulence. When ~ < B, weak turbulence will 
occur in the region of small wave numbers, and strong turbulence will occur in the region of 
large numbers. We have so far spoken of Kolmogorov energy spectra. 

f~ �9 
For a four-wave Hamiltonian conserving the number of quasiparticles, N= dk; i.e 

for 

1 
Hi.t = -~- f Vx~; a4 a] a~ aa a4 a (k~ +k,--ka--k4) dk i d#~ dk 8 dk~, (54) 

there can be one more Kolmogorov particle-number spectrum. In this case, Eq. (52) has the 
form 

x ~ 3 + 2t/3. (55 )  

For an anisotropic situation there may in principle be spectra that are of Kolmogorov 

S type with respect to the momentum: p -= Ir ak a~:kd# �9 

x = 4 + / ,  

and  f o r  a f o u r t h - o r d e r  H a m i l t o n i a n  we h a v e  

x = 4 + 2I/3. 

In this case, Eq. (52) has the form 

(56 )  

(57) 

The question of which specific type of Kolmogorov spectrum we have in a particular situation 
is solved with an eye to the excitation conditions and other peculiarities of the problem. 

At the present time, we know of no examples of actual physical media for which the 
integrals in all the diagrams converge to strongly turbulent Kolmogorov spectra. It must 
be said, however, that there is no reason in principle for this to be forbidden. Let us 
consider the situation for the problem of developed isotropic turbulence in an incompres- 
sible fluid. 

The Euler equations for an ideal incompressible fluid do not generally permit the in- 
troduction of canonical variables. Such variables may be introduced, however, for a physi- 
cally important particular class of flows for which the vortex lines take the form of lines 
of intersection of two families of surfaces stratifying a space. In this case, the canoni- 
cal variables are introduced in accordance with the following formulas [13]: 

rot V =  [V), V~] ,  V =  XV~ + V �9 (58 )  

and are called the Clebsch variables. 
are the level surfaces of the functions X(r, t) and p(r, t). 

The variables X, ~ satisfy the equations 

3 ), 3). ~ H ~ ~ 0F ~ H = 
--0t + ( V v )  ) ' - 0 t  at,, -- 0, ~ + ( V v )  t~= 0 t +  ......... ~), 0 

having the Hamiltonian 

The families of surfaces spun from the vortex lines 

(59) 

H =  l (60) 
7 

Thus, they move together with the fluid. Single-valued Clebsch variables may be introduced 
if, for example, turbulence has developed owing to an instability of plane-parallel or 
axially symmetric laminar flow. In the general case, the variables %, ~ may be introduced 
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locally in the neighborhood of any point, but they may prove to be multivalued functions of 
the coordinates. 

Going over to the variables ak, a* k by means of the formulas 

a, + alk a~--al~ 

V~ ~V~ 
we obtain the Hamiltonian of the fluid, 

1 - -  * a* a~  ~ ( k + k , - - k a - - k a )  d k x d k d k ~ d k  a (6On) H =  4 

where 

~a = 2 (2=)ar*[ . . . .  l k  - - /%1 = 

Thus, the degree of homogeneity of the bare vertex is t = 2. 

Equations (52) and (53) yield the familiar Kolmogorov relationship ~ = 2/3 determining 
the dependence of the characteristic time of motion of the scale. For the spectral functions 
nk~, Gk~, we have 

n a ~ = - - f k 5 1  a ~ , G,~ = . - ~ g  ~312- " (61) 

Since 

, 

V, = - -  i a~, a,,, r ~ (/~' - -  k" k), 

it is easy to express the correlation function of the velocity Ik~, determined by the formula 

I..~ ~ (k - k')  ~ (~, - , .') = < V~,o v~,,., >, 

in terms of a fourth-order correlation function -- the vertex D~a,3, -- in accordance with (50): 

l q = -0 S Wl2, o'~ D+12, +'~4- - ~ (q~--q4--q) ~ (q2--q3--q)  dqxdq2dq~dq4 . (62)  

Making use of (51) for the vertex index tD, we find 

I k ~ -  k,3/-----~.! , ( 6 3 )  

w h i c h  f o r  lh = [ I k , , d ~  c o r r e s p o n d s  t o  t h e  K o l m o g o r o v  s p e c t r u m  I k ~ 1 / k  ~ / 3 .  T h i s  c a n n o t  be  
a s sumed  t o  be  g v a l i d a t e d  r e s u l t ,  u n f o r t u n a t e l y .  E v a l u a t i o n  o f  e l e m e n t a r y  d i a g r a m s  u s i n g  the"  
K o l m o g o r o v i a n s  nkm and  Gkm i n  t h e  f o r m  (62)  l e a d s  t o  d i v e r g e n c e s .  Fo r  s h a r p l y  n o n c o i n c i d i n g  
k ,  t h e  b a r e  v e r t e x  f u n c t i o n  Wk~kak3k~ ' b e h a v e s  a s  

W't,.k,k~k, - -  [kx I] k2 [ (64) 

for Ikx}, Ik, l << Ik=], Ik~]. Thus, the elementary diagram 

diverges as ko -=/s for q, q', where ko is the lower boundary of the cut for integration with 
respect to q. Moreover, this same diagram diverges as In kma x, where kma x is the upper 
boundary of the cut. The diagrams for nk~ exhibit the same divergence for small q. There 
are also logarithmic divergences at large q in the diagrams for renormalization of the ver- 
tex parts. The scale-invariant theory of turbulence must be constructed with allowance for 
all these divergences. 
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