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A method is proposed for deriving and classifying relativistically invariant integrable systems that are 
sufficiently general to encompass all presently known two-dimensional solvable models, and for the 
construction of a few new ones. The concept of "gauge equivalence" introduced in this paper allows one to 
clarify the relation between several different models of classical field theory, such as the n-field, the sine- 
Gordon equation, and the Thirring model. We study the model of the principal chiral field for the group 
SU(N). It is shown that at N = 3 this model exhibits nontrivial interactions: decay, fusion and resonant 
scattering of solitons. New chiral models are proposed with fields taking values in homogeneous spaces of 
Lie groups and exhibiting a high degree of symmetry. We prove the integrability of these models when 
the homogeneous space is a Grassmann manifold. 
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INTRODUCTION matrix function of a complex parameter A. All present- 
ly known models belong to the case when this function 

Over the ten years of existence of the inverse scat- has a single simple pole. 
tering problem methodc1] the exact integrability of 
about thirty different nonlinear partial differential o r  dif - 
ference systems was established, systems which have 
applications in theoretical physics (cf. the revied2'). 
Among these systems there a re  several which a re  re l -  
ativistically invariant. Foremost among these a r e  the 
sine-Gordon (SG) equation,c31 the massive Thirring mo- 
del,C41 and the system of Pohlmeyer-Getmanov-Regge- 
~ u n d . ~  Several attempts have been made a t  consid- 
ering relativistically invariant systems from a more 
general point of view. We have in mind the papers of 
P ~ h l m e y e r , ~ ~ ~  Budagov and ~ a k h t a d z h ~ a n ~ ~ '  (cf. al-  
s o  C41). Pohlmeyer has discovered infinite ser ies  of 
conservation laws (and in fact L -A pairs) for an im- 
portant class of relativistically invariant models of 
classical field theory: the n-fields on spheres of arbi-  
trary dimension. At the present time the quantum the- 
ory of these n-fields as well a s  of the SG equationc8] a r e  
well advanced. In Ref. 7 Budagov and Takhtadzhyan 
have demonstrated the integrability of a special system 
of equations (the U -V system) which generalizes the 
sine-Gordon equation to the group SO(N). 

There is no need to prove how important a matter of 
principle it is to find completely integrable models of 
relativistically invariant field theories even in two-di- 
mensional space-time. Therefore it seems quite appro- 
priate to pose the question of constructing a regular 
procedure for finding relativistically invariant systems 
and for their classification. 

In the present paper we propose such a procedure. 
We show that relativistically invariant models repre- 
sent a quite natural class of integrable systems and 
that all  cases studied to date do not exhaust by far  
even the simplest variant of integrable relativistically 
invariant systems in i ts  general formulation. More 
precisely, we show that each relativistically invariant 
system is characterized by a definite rational N X N 

After formulating the general system ( 5  1) we inves- 
tigate only the simplest case of the classification (cor- 
responding to one pole), which, as we show, encom- 
passes a large number of integrable systems. These 
systems admit a natural geometric interpretation and 
exhibit a high degree of symmetry. In the general for- 
mulation these a re  the principal chiral fields (free 
fields on Lie groups). The models of principal chiral 
fields on SU(N) groups a r e  distinguished in principle 
from all previously discussed relativistically invariant 
models by the fact that they exhibit nontrivial interac- 
tions: decay, fusion, and resonance scattering of soli- 
tons ( ~ f . ~ ~ ] ) .  

An important special case of principal chiral fields 
a r e  the simpler objects represented by chiral  fields on 
homogeneous spaces of Lie groups. In the present pa- 
per  we study only one example of such fields: chiral 
fields on Grassmann manifolds. Among these fields 
a r e  included also the usual n-fields on spheres. We al- 
s o  show that chiral fields a r e  naturally related to  the 
U-V systems, and in a certain sense they represent the 
same object. In the whole paper we s t ress  three facts: 
a procedure for calculating integrable systems, a gen- 
e ra l  scheme for their integration, and the simplest 
method of calculating soliton solutions. 

5 1. RELATIVISTICALLY INVARIANT INTEGRABLE 
SYSTEMS IN TWO-DIMENSIONAL SPACE-TIME 

At the present time there exists no method allowing 
one to  determine algorithmically whether a given sys- 
tem of equations is integrable o r  not. However, there 
exist several  methods of constructing in a regular way 
manifestly integrable systems. In this section we des- 
cribe one of these methods, general enough to encom- 
pass all presently known two-dimensional - . relativistic - 
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ally invariant models of classical field theory, to con- 
struct a multitude of new models, and to clarify the re -  
lation between some models which a re  in fact related 
but at a first  glance a re  different. The method des- 
cribed here is based on a paper by Shabat and one of 
the present authors.c101 

Let 25 = t - x  , 2n = t + x  denote the "light -cone9' varia- 
bles in two-dimensional space -time, and let 9, U , V 
be some complex-valued N x N  matrix functions of 5 and 
q. We assume that the overdetermined system of par- 
tial differential equations for the matrix *: 

has a compatible fundamental matrix of solutions, de- 
noted also by *. Then (1.1) implies the relation 

As long as one does not impose additional restrictions 
on U and V the equation (1.2) is trivial: i ts  general so- 
lution has the form 

where 9 is an arbitrary matrix function of 5 and q .  
We now impose on Uand V the additional condition that 
Uand V should be rational functions of the complex pa- 
rameter A. Then the relation (1.2) becomes a nontrivial 
nonlinear system of equations. 

Assume that the matrix U has N, poles a t  the points 
XI, A,, ..., AN,, that the matrix V has N, poles at the 
points pl, p,, ... , pNZ, and that all these poles a r e  sim- 
ple and do not depend on t and q .  By means of an ap- 
propriate linear-fractional transformation of X one can 
realize that neither of the poles is at the point X = -. 
Expanding U and V into simple fractions; we have: 

These functions a re  characterized by the set  of N,+ N, 
+ 2 matrix function parameters U, and V,. We substi- 
tute (1.3) in (1.2). The left-hand side of (1.2) is a ra-  
tional function with a total number of poles (counting 
their multiplicities if some of the numbers Xi and pi 
coincide) N,+ N,. To satisfy (1.2) i t  suffices to equate 
to zero all the residues as well as the value of the left- 
hand side at the point A=-.  The result is a system of 
N,+N,+ 1 equations for the functions U, and V,. 

The system is underdetermined (the number of equa- 
tions is one less than the number of unknowns). This 
indeterminacy is due to the "gauge invariance" of the 
system (1.2). Let U, V be a solution of the system 
(1.2) and rk the appropriate solution of the system (1.1). 
We choose f ,  an arbitrary singular matrix function of 
5 and 7] and consider the matrices 

It is easy to check that the system (1.1) 2 satisfied for 
the simultaneous _substitution U - 5, V - V , 9 - f *, and 
consequently U, V is a new solution of the system (1.2). 

The system (1.2) becomes determined if one imposes 
an additional condition that fixes the choice of the mar 
tr ix f. To different choices off correspond different 
systems of equations; we shall call such systems 
gauge-equivalent. It is obvious that the solutions of 
two gauge-equivalent systems differ only by a transfor- 
mation (1.4) with some matrix f. 

Assume, for instance, that the matrix U has a single 
pole at the point X =  -1, and that the matrix V has a 
single pole at the point X =  1. Then 

v, v-vo +- 
b-I ' 

The system of equations (1.2) has the form 

We perform the transformaLion (1.4) assuming that af- 
t e r  the transformation go= V,= 0. This can be done by 
determining f from the conditions 

(On account of (1.5), the conditions (1.8) a re  compati- 
ble.) We a r e  led to the system of equations 

A,='/,i[A, B ] ,  BE=-'!zi[.4, B]. (1.9) 

- - 
Here A= U,, B = -Vl. The equations (1.9) a re  the com- 
patibility conditions for the system of equations 

B 
iY,= -- Y. 

h-l 

A study of the system (1 -9) is the main content of the 
present paper. From (1.4) it follow_s that 6, =fU, j-l. 
We choose f in such a manner that U, =A, becomes di- 
agonal. Then it follows directly from (1.6) that A,,, 
=0 ,  A, =A, (5), and the equation (1.6) can be solved. 
We set 

where S is some diagonal matrix. Now the system (1.1) 
takes the form 

and the equation (1.5) becomes 

iCq-iS,=l/,[Ao, r]-[S, C]. 

Setting C =  C,+ C,,, where C,, is a diagonal matrix, we 
note that 
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Finally, the system (1.5) - (1.7) takes the form 

The system of equations (1.12) (the U-V system) was 
considered in Refs. 3 and 7. In a particular case the 
system (1.11) reduces to the SG equation. It is obvious 
that the systems (1.9) and (1.12) a r e  gauge-equivalent. 

We now discuss the problem of relativistic invari- 
ance of the systems under consideration. The system 
(1.2) becomes manifestly invariant with respect to the 
special Lorentz group if one assumes that U, V trans- 
form under Lorentz transformations like the compo- 
nents of a vector ( ~ f . [ ~ ] ) .  Indeed, for a transformation 
with parameter y we have 5 - y 5, 17 - y"rj and for invar- 
iance it suffices to set  U - y-'U, V - yV. Under reflec- 
tions of the coordinate x we have the interchange 5 -- q, 
and therefore for invariance under the full Lorentz 
group it suffices to require the existence of a discrete 
involution (including a linear-fractional transformation 
of the A   lane) which realizes the interchange U- V, V - U. 

The system (1.5) - (1.7) considered by us is invari- 
ant with respect to the full Lorentz group, since the 
involution U, - V,, U, - V,, A - - X realizes the trans- 
formation U- V. A more general example of a sys- 
tem invariant under the full Lorentz group is given by 
the choice p, = -A, in (1.3): 

. - 

v* ".- ?&- 0.. Q.= C h+h + Yo. 
k 

with X,+A,#O for arbitrary i, j .  

It presents no difficulty to write the system (1.2) also 
in the case when the poles a r e  multiple and zeroes of 
the denominators of a, and a, a r e  admitted. 

We also remark that the matrix 4 in (1 . l )  can be con- 
sidered a s  an element of a certain group of matrices G .  
Then U, V turn out to be elements of the corresponding 
Lie algebra. It is obvious that the equation (1.2) does 
not take us out of this algebra. 

$ 2. PRINCIPAL CHIRAL FIELDS 

The equations (1.9) a r e  related to one of the classi- 
cal field-theory models having a geometric interpre- 
tation: the principal chiral field. Assume that at each 
point of the ( 5 ,  q) plane an element g(5, q) of a Lie group 
G is specified, and that the group G is realized as a 
subgroup of the group of nonsingular complex matrices. 
We consider the Lagrangian density 

and the corresponding action S = dSdqL. The expres- 
sion (2.1) is remarkable because it is a bi-invariant 
form on G .  Indeed, carrying out a left translation in 
G by means of the constant matrix h:  g- hg, h E G ,  and 
a cyclic permutation in (2.1), we verify the invariance 
of L .  L is also obviously invariant with respect to right 

translations g-gh. The Euler equation of the Lagran- 
gian (2 -1) is 

The equations (2.2) a r e  called the equations of the 
principal chiral field on the group G .  They can be 
brought to  another form. We introduce the fields A and 
B with values in the Lie algebra of the group G :  

They obviously satisfy the relation 

A,-BE--i[A, B ]  =O. (2.4) 

From (2.2) follows also the easily verified relation 

A,+B,-O. (2.5) 

The system of equations (2.4), (2.5) is obviously equiv- 
alent to the system (1.9). The quantities A and B can 
be interpreted a s  the currents engendered by the sym- 
metry of the Lagrangian with respect to translations on 
the group, and the equation (2.5) can be viewed a s  the 
conservation law for  these currents. 

In terms of the variables (2 -3) the Lagrangian (2 -1) 
has the form 

L = ' / z s ~  AB, (2.6) 

and Eq, (2.5) is the corresponding Euler equation taking 
into account the constraint (2.4). 

Explicitly solving the equation (2.5) we obtain 

and then (2.4) takes the form 

It can be obtained from the Lagrangian 

As was shown by Regge and ~ u n d ~ ' '  in terms of rank- 
two Hermitian matrices, with the additional conditions 

the equation (2.7) describes in four-dimensional space- 
time the motion of a relativistic string placed in a 
massless scalar field. In general (1.9) implies 

for  arbitrary power n .  It also follows from (1.9) that 
the Jordan normal form A, of the matrix A does not de- 
pend on q and the normal form B, of B does not depend 
on 5 .  

Thus, A, =A,(() and B, = B,(q). Representing A and B 
in the form 

we see that the matrices f,, f, a r e  determined accurate 
to multiplication from the right by arbitrary matrices 
f y,f: which commute with A,, Boy respectively. 
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Let G =S U(N). Then the matrices A and B a re  Her- 
mitian with TrA =TrB = O .  The matrices A, and B, a re  
diagonal and the matrices f, and f, can be chosen a s  
elements of the group SU(N). If the eigenvalues of the 
matrices A and B a re  different, the matrices f,,f, a re  
determined accurate to multiplication by an arbitrary 
diagonal unitary matrix. Thus, one may consider the 
matrices f, and f, as  defined on the manifold M which 
arises when the group SU(N) is factored with respect 
to the subgroup H of diagonal matrices, i.e., on the 
"flag manifold" SU(N)/H. For  fixed A,, B, the matrices 
A,B a re  also defined on this manifold. If among the 
eigenvalues of A, and B, there a re  coinciding ones, the 
corresponding manifold M is a "degenerate flag mani- 
fold" of lower dimension. 

Going over in the system (2.7) from the light-cone 
variables 5 ,  q to the physical variables x, =t = q +  5, 
x, =x =q - 5 we calculate the energy-momentum tensor: 

with components 

This yields the following expression for the Hamiltonian 
of the system (2.8) 

H= I PO dz-'/a 1% (@:+@.') &='/. I sp (A: (f) +B: (1) ) di. 

(2.11) 
It can be seen from (2.11) that the Hamiltonian of the 

system (2.7) is a quantity independent of the form of A 
and B. When the constant part is subtracted the Hamil- 
tonian vanishes. This is a characteristic of dynamical 
systems with constraints (cf., e.g., C1ll) and can be ex- 
plained by the fact that the relation (2.9) can be treated 
as  a constraint imposed upon the system (2.7). A sim- 
ilar result, vanishing of the Hamiltonian, can be de- 
rived directly for the system (2.2) and for the system 
(2.4), (2.5). 

In order to avoid the difficulties due to a vanishing 
Hamiltonian (e.g., the difficulty of correctly defining 
the energy), one must solve the constraints (2.9) at  
fixed matrices A, and B, by introducing coordinates on 
the manifold M. This leads to a new difficulty: we 
must show that the equations obtained in this way a re  
Lagrangian (i.e ., follow from some principle of least 
action). Following Pohlmeyer we show how this diffi- 
culty can be avoided for G =SU(2). For simplicity we 
set 

and expand the matrices A, B in terms of the Pauli ma- 
trices 

The vectors A, B have unit length. 

We introduce cosa = A-B and calculate the deriva- 
tives A, and B,: 

where a,, a,, b, , b, a r e  numerical functions. Calculating 
8,A-B, 8,A.B we obtain 

at  a, 
a,=-, baa-.  

sin a sin a 

We also introduce 

a,=u/sin a ,  b,=o/sin a ,  

u = [ A t x B z ] l s i n a ,  o=[A,XB, l / s ina .  (2.15) 

Differentiating a, u , v ,  and using (2.13)-(2.15) we a re  
led to the following system of equations 

at,+sin a+uv/sin a=O, (2.16) 
u,=arv/sin a, (2.17) 

vt=a,u/sin a .  (2.18) 

I t  follows from (2.17), (2.18) that 

so  that 

Finally, the quantities a and P satisfy the equations 

The equations (2.19), (2.20) a r e  the Euler equations 
for the Lagrangian 

The components of the appropriate energy-momentum 
tesnor have the form 

ToU='/2aYaaY.a+'/2 tgZ(a/2)8'i3 ?p+cos a-I, (2.22) 
Tal=a"a a1a+tg2(a/2)a0p a l p .  (2.23) 

The energy-momentum vector for the fields a and /3 can 
be expressed in terms of the original fields A and B: 

In the case under consideration here 

More generally 

However, setting 

~ ( 3 1 ,  ~ ) = a ( g ) A ( ; ,  <), ~ ( v ,  ~ ) = b ( l l ) ~ i v ,  G ,  

- - - w  

we return in the variables A,B, 5 ,  q to the case consi- 
dered above. We note that the substitution (2.26) is bi- 
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jective only if the functions a(5) and b(5) have no zer- 
oes. 

We note that the proposed procedure of solving the 
constraints extends to the case of the group SU(N) and ': 
is essentially a transition from the original system 
(1.9) to  the system (1.12). Indeed, in the derivation of 
the system (1.12) a partial integration has already been 
performed: the introduction of the arbitrary diagonal 
matrix R. We reduce the system (1.12) to a single 
equation of second order. For this we note that the ma- 
tr ix l? can be represented in the form 

The matrix cp is unitary and belongs to the "flag mani- 
fold" SU(N)/H. The equations (1.12) imply 

where W is a diagonal matrix commuting with Bo and 
has elements 

The quantities W, can be determined from the vanishing 
of the diagonal elements of the matrix C,, i.e., from the 
system of equations 

Now the function p is subject to the equations 
-~~,,((c~~+)+~,((PJV(C+)+~/~[~B~'~+, A,I+[R, ,  z(~:q++qW(~'] '0. 

(2.28) 

Setting [for the group SU(2)] 

cos (a /2)  sin(a/Z)e-" .- [ 
-sin (a/2)eW cos(a/2) 1 

we obtain for  a and 8 the system (2.19), (2.20). 

We note that if p is a real  matrix, then (cp,cp*),, = 0 
and by choosing R = 0 one may set  W= 0. The corres- 
ponding system 

for B,=Ao was considered before,c71 where for the 
group SU(3) i t  was possible to bring it to a Lagrangian 
form. 

We remark that although the system (2.30) is defined 
on the group of orthogonal matrices i t  by no means co- 
incides with the principal chiral field of the orthogonal 
group. Indeed, the real  flag manifold of the group SU- 
(N) consists of the whole group of orthogonal matrices, 
whereas the flag manifold of the orthogonal group is of 
lower dimension. In particular, equation (2.30) on the 
group SO(2) is the sine-Gordon equation, whereas the 

principal chiral field on S0(2), in view of i ts  commuta- 
tivity, is described by a linear equation. 

8 3. CHIRAL FIELDS AND THE REDUCTIONS 
PROBLEM 

In spite of the fact that we have proposed a quite gen- 
e ra l  method of constructing two-dimensional relativis- 
tically invariant systems which a r e  integrable, this is 
insufficient for physical applications. The reason is 
that the systems constructed by us  represent equations 
for a very large number of interacting fields. The gen- 
era l  system (1.13) in the case of n poles on SU(N) con- 
tains nN(N - 1)/2 complex fields and only .for the first  
few values of this number may one hope to  find any use- 
fulness for physics. Therefore it is of great impor- 
tance to solve the problem of reducing the number of 
interacting fields, what we call the reduction problem. 
The reduction can be achieved by imposing on the gen- 
e ra l  system additional constraints. Assume we have 
found such (algebraic o r  differential) constraints on the 
fields making up our system, constraints which a re  
compatible with the field equations. Then we can effec- 
tively reduce the number of equations and go over to a 
new system containing a smaller number of fields. 

Let us illustrate this with an example. We consider 
the principal chiral field g on the group G [in the se-  
qua1 we shall assume G =SU(N) o r  G+SO(N)] and as-  
sume that i t  satisfies the additional condition 

We show that this condition is compatible with the 
equations of motion of the principal chiral field. Under 
the condition (3.1) these equations have the form 

We differentiate (3.1) with respect to 5 and 0 ,  obtaining 

We substitute (3.2) in (3.3) and make use of the relations 
g,g= -gg,, g,g= -gg, which follow from (3.1). We then 
verify that (3.3) is satisfied identically, which proves 
the compatibility of Eq. (3.2) with the condition (3.1). 

It is remarkable that the condition (3.1) has a geo- 
metrical meaning. Represent g in the form 

then (3.1) implies that Pa =P, i.e., P is a projection op- 
erator acting on the space of the fundamental represen- 
tation of the group G. The condition (3.1) determines in 
the group G, _considered a s  a Riemannian manifold, a 
submanifold G. The manifold G is not connected. Each 
projection operator P, is characterized by the dimen- 
sion k of i ts  image (the space onto which i t  projects). 
It is obvious that throughout the evolution the number 
k cannot change, therefore one may assume in (3.4) 

Let the dimension of the space of the fundamental rep- 
resentation of the group G be N. The element g of the 
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group G is represented in the form g =  -1 + 2 P ,  where 
B= 1 -P is  the projector complementary to P. There- 
fore, without loss of generality, we may assume that 
k g  [ ~ / 2 ]  (the largest integer contained in N/2-Transl. 
note). 

Thus the equation (3.2) constitutes a set of equations 

The corresponding espression for the action has the 
form 

sk='/, J SP ( P , P ~ ~ )  dq d ~ .  (3.6) 

Each of the equations (3.5) represents a chiral field de- 
fined on the space of projection operators of given di- 
mension k .  In the real case this space is called the 
real Grassmann manifold r:,, , in the complex case i t  
is called the complex Grassmann manifold r;,, . 
Grassmann manifolds a re  homogeneous spaces of the 
groups SO(N) or  SU(N), in the real and complex cases, 
respectively, and a re  the result of factorization of 
these groups with respect to lower-dimensional sub- 
groups : 

Grassmann manifolds a re  collections of hyperplanes of 
dimension k  in real o r  complex N-dimensional space; 
the groups SO(N) or  SU(N) act on these planes by rota- 
tion. 

In the special case k =  1 Grassmann manifolds a re  
just the projective spaces (real or complex) of dimen- 
sion N-' and a re  denoted by RPN-' o r  CPN-$ respective- 
ly. In this case the projector P, can be represented in 
the form 

( P l ) = n  2 i ,n,= (n, n) -1. 
1-1 

where (n,n) denotes the inner product in N-space. Sub- 
stituting (3.8) into the action (3.6) we obtain 

In the real case the corresponding equation of motion is 

and in the complex case 

nr,+'lz( (n,n,)+ (n,n:)+ (n,.p) -(nn:,) )n 
- (nnt)n,- (nn,) n1+2 (nn,) (nn,) n=O. 

(The commas have been omitted from the inner pro- 
ducts -T ransl. note. ) 

In (3.8), for the real case, the vector n is deter- 
mined only up to sign, i.e., a chiral field in real pro- 
jective space corresponds only to those solutions of 
Eq. (3.10) for which the vector n moves on one hemis- 
phere SN-'. The equation (3.10) remains valid also i f  
this restriction is removed. In this case it is the equa- 
tion of the n-field on the sphere SN'l. The local agree- 
ment between the chiral fields on RPN-' and SN" is ex- 
plained by the fact that projective space RPN-' is the 

result of factoring the sphere SN" with respect to the 
discrete group 2, (i.e., identification of antipodal points 
on SN'l determines the same manifold RPN-I a s  the lines 
through the origin of RN; Transl. note). 

The real and complex spheres a re  also homogeneous 
spaces of the groups SO(N) and SU(N), respectively and 
a re  the results of factorizations of these groups with 
respect to the subgroups SO(N -1) and SU(N -1) respec- 
tively. These spheres a re  special cases of more gen- 
eral  homogeneous subspaces: the Stiefel manifolds 
e:,, and @:,, of orthonormal frames of dimension k  in 
real o r  complex N-space: 

Chiral fields occur naturally on Stiefel manifolds and 
can be interpreted as  systems of k  orthogonal n-fields. 
The action and equations of motion of these fields have 
the form 

We note that in the complex case even in the case k =  1 
(the complex n-field) we obtain an equation differing 
from (3.11). This is explained by the fact that CPN dif- 
fers from the complex N-sphere by a factorization 
with respect to the continuous group U(1).  

Chiral fields both on Grassmann and on Stiefel mani- 
folds a re  natural models for field theories which have a 
geometric meaning. We have shown above that the 
equations for chiral fields on Grassmann manifolds a r e  
a reduction of principal chiral fields. Below we will 
use the same fact to show the integrability of fields on 
Grassmann manifolds. For chiral fields on Stiefel 
manifolds (except for the case of the real sphere which 
reduces to the Grassmann case) the fact of reduction 
and integrability has not yet been proved. Nevertheless 
one may conjecture that reduction and integrability ex- 
ist  in this case. This hypothesis can be stated in a 
more general form: it seems likely that chiral fields 
on all homogeneous spaces of the groups SO(N) or 
SU(N) a re  integrable and that all  the corresponding 
equations can be obtained a s  a result of the reduction 
of equations of principal chiral fields. It also seems 
likely that this exhausts all the reductions of equations 
of principal chiral fields. 

8 4. THE METHOD OF THE INVERSE SCATTERING 
PROBLEM 

We now describe a procedure for integrating the sys- 
tem (1.2). It is based on a representation of this sys- 
tem as compatibility conditions for the linear equations 
(1.1) and is essentially a procedure of proliferation of 
solutions. Let us assume that we know a particular so- 
lution U,, V, of the system (1.2) and the corresponding 
solution \k, of the system (1.1). We show that with the 
help of U,, V ,  one can construct new solutions of the 
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system (1.2). We note that the solution U,, Vo can al- 
ways be found explicitly, setting in (I.?), for instance, 

where 'b0 is a diagonal matrix. We also show that our 
procedure of proliferation in simple cases is equivalent 
to the usual method of the inverse scattering problem 
and allows one to find all the solutions of the system 
(1.2) with given asymptotic behavior at infinity. For the 
construction of the integration procedure we will need 
some facts about the Riemann problem for matrices. 

Assume that in the complex plane of the variable X 
there is given a contour I' and on i t  an N X  N matrix- 
function G(X) without singularities, but which in general 
does not admit an analytic continuation off the contour. 
We a re  required to  find two matrix functions *,(X), 
analytic outside the contour I?, and *,(A), analytic in- 
side the contour, such that on the contour 

If the problem is posed this way the solution of the 
Riemann problem is manifestly nonunique, since it al- 
lows the transformation Q, - *g, *,-gY*, with arbi-  
trary nonsingular matrix g. In order to remove the 
nonuniqueness we normalize the Riemann problem by 
fixing the value of one of the functions *, or  Q, at an 
arbitrary point. We call the normalization canonical i f  
*,(-) = 1. We call the Riemann problem regular if det 
(*,,,)+ 0 in the domains of analyticity of the functions 
Q, and Q,. If a regular Riemann problem has a solution 
then this solution is unique. If the determinants of the 
functions !PI and Sf, have finite numbers of zeroes in 
their domains of analyticity we say that we have a Rie- 
mann problem with zeroes. 

We show how to  multiply the solutions of the system 
(1.2) by means of the solution of the Riemann problem. 
We first consider the case of a regular Riemann pro- 
blem. Consider an arbitrarily given contour r and on 
it a function G,(X). We form the new function 

where \Ira is a known particular solution of the system 
(1.1), e.g., the solution (4.1). 

We differentiate the relation (4.3) with respect to 5 .  
From (1.1), (4.2), and (4.3) i t  follows that 

We now define the function U as 

Eq. (4.5) shows that the function U can be analytically 
continued from the contour I' onto the whole complex 
plane of X. Since in their domains of analyticity the 
functions *, and B, are  nonsingular (the Riemann pro- 
blem is regular), the singularities of the function U co- 
incide with the singularities of UO. Thus, U is a rat-  
ional function with poles at the points X = X,. 

Similarly one can define the function V: 

The poles of the function V coincide with these of VO. 
The function *, is subject to the equations 

Setting *,= we obtain 

Thus we have obtained a new solution of the system 
(1.1); consequently U and V satisfy the system (1.2). 

Assuming that U0 and V0 a re  given by the expansions 
(1.3), we obtain the following expressions for the com- 
ponents of the expansions of the matrices U, V(n = 1,2,  
3, ... 1: 

The equations (4.9) show that a change in normaliza- 
tion of the Rieinann problem (a  transition from *, to 
*,g, where g is an arbitrary matrix function of f and 
q) leads to a gauge transformation of the system (1.2) 
with the matrix g. To  different gauges of the system 
(1.2) correspond different normalizations of the Rie- 
mann problem. Thus, the gauge leading to  the problem 
of the principal chiral field (1.9) (Uo= Vo= 0) corres-  
ponds to the canonical normalization go = *,(-) = 1. The 
gauge leading to the U-V system (1.12) corresponds to 
the normalization 

We now go over to the consideration of our concrete 
system (1.9). As the contour r we pick the real  axis 
--< X< and set  G( l )=  1. We show that the above- 
mentioned procedure of proliferation of solutions is 
equivalent to the traditional inverse scattering problem 
method. 

The solution of the Riemann problem reduces to sol- 
ving a singular integral equation. We set  

Substituting into (4.4) we see  that the quantity p satis-  
fies the equation 

(here 8 denotes the principal value of the integral), 
where the matrix T is a Rayleigh transform of the ma- 
tr ix G: 
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As can be seen from the equations (4.9), the quanti- 
ties A and B do not change i f ,  when the matrix *, is 
multiplied from the left and the matrix \k2 is multiplied 
from the right by arbitrary matrices, the matrix Go 
which commutes with A0 and B0 is multiplied from the 
left and the right by the same matrices, respectively. 
Thus, there is an indeterminacy in the definition of the 
matrix T. In order to lift it we require that the diagonal 
elements of the matrix T vanish. The remainder of the 
discussion will be given for the special case when A, 
and B, a re  Hermitian numerical (diagonal) matrices. 

In this case 

Ao=diag(al,  a,, . . ., a , ) ,  Bo=diag(br, b, ,..., 21,). 

We order the real  numbers a,, putting 

AS 5 - * m  the matrix T oscillates rapidly: 

therefore the asymptotic values of the matrix p as  
5 - m a re  also rapidly oscillating: 

The matrices pf, can be found by explicitly solving 
the equation (4.12). For this one must make use of the 
formula 

e'q 
lim P -  in sign 1 6 (A), (4.14) 

I 

which transforms (4.11) into an easily integrable sys - 
tem of singular integral equations. 

We denote by S@ the limiting values of the function 
*, a s  5 - k m .  The matrices ** a r e  defined by the equa- 
tions (4.11) where p* from (4.13) a re  substituted for p. 
It follows from (4.11) that S@ are  triangular matrices: 
for the matrix *' all elements below the diagonal van- 
ish, and f i r  the matrix *- all elements above the diag- 
onal vanish. It is obvious that 

where pf(X) a re  triangular matrices. The matrix S 
=**-l9- is the usual scattering matrix. Representing 
it in the form of a product of triangular matrices one 
can determine **, and reconstruction of T and G in 
terms of these shows the equivalence of our approach 
to the usual inverse scattering problem method (cf., 
e.g. ,[lZ1). 

From the condition G(*l)= 1 it follows that T( l )  
= T(-I)= 0, therefore * , (A=& 1)- 1 a s  5- * m  and con- 
sequently A -Ao, B - B,. Thus, the matrices A,, and 
B, a r e  indeed the asymptotic values of the matrices 
A and B. 

We also note that the procedure described above a l -  
lows one to obtain solutions not only for the system 
(1.9), but also directly for the chiral field g. Indeed, 

Therefore the determination of the function * automat- 
ically solves the problem of calculating g. 

$ 5. SOLITON SOLUTIONS 

The procedure of proliferation of solutions by means 
of the regular Riemann problem does not make i t  pos- 
sible to determine all the solutions of the system (1.2). 
For a complete description even of this class of solu- 
tions, which asymptotically, a s  x - * Oo go over into A,, 
So, it is necessary to resort  to a Riemann problem 
with zeroes. Of particular interest is a special Rie- 
mann problem with zeroes, for which G 5 l. The solu- 
tions of the system (1.2) obtained by means of this 
Riemann problem will be called soliton solutions. In 
the case G = 1 the function *,= *;', where the functions *,,*, are  rational. We shall say that I, has a simple 
zero a t  the point X = X, if *, has a simple pole at that 
point. Let this zero be the only one, and assume that 
the function *, also has a single zero a t  the point 
A =  Po. 

We assume the normalization of the Riemann pro- 
blem to be canonical; then 

From the condition *,*,= 1 it  follows that 

where P2= P , i.e., P is a projection operator. Finally 

It follows from (4.5) that the function U has additional 
poles at the points X = A,, X = p,. In order to obtain the 
solution of the system (1.2) we must require that these 
poles be absent. Setting the residues at the poles 
X = A, and h = po equal to zero we obtain an equation for 
the projector P: 

UolL,r. ( I -P)-0,  ) 

The projection operator P is completely character- 
ized by :he two subspaces, i ts  image M = Im P and its  
kernel N = Ker P , defined by the conditions 

It is easy to see  that the conditions (5.3) and (5.4) a re  
satisfied i f  one se ts  

A A 

Here M, and No are  fixed constant subspaces having 
zero intersection and the direct sum of which spans the 
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whole N-dimensional complex space. 

For the case of the principal chiral field on SU(N) 
it follows from (1.10) that the function * satisfies the 
linear involution 

From the involution (5.5) i t  follows that the zeroes of 
the functions 9, and *, are  situated symmetrically - 
with respect to the real axis, &=A,  and in addition that 
the projector P isAHermitian P =P. Therefore, the 
subspaces 8 and M a r e  orthogonal to one another and 
it suffices to consider only one of them. 

For an explicit construction of the projection opera- 
tor i t  suffices to prescribe, e.g., the subspace && by 
constructing a-base e,;(i= 1 ,2 , .  . . , k, where k is the 
dimension of M; j = 1,2,  . . . , N is the vector index). The 
components of the vectors et do not depend on 5 and q. 

The base in the space M is constructed according to: 

This base is generally not orthonormal. Applying to the 
vectors ei the Gram-Schmidt orthogonalization process 
we a r e  led to the orthonormalized basis ni. In terms 
of this basis the projector P has the expression 

Further, in terms of the formulas (5.2) one recon- 
structs the functions *,,*,, then by means of equations 
(4.9), (4.10) one reconstructs U and V ,  and g is ob- 
tained by Feans  of (4.13). If the dimension k of the 
subspace M exceeds N/2 i t  is convenient to replace the 
projector P by thz pro'ector P= 1 - P. For this i t  suf - 
fices to replace M by and the matrix *,(A= p,) by 
*,(A = A,). 

B 
In the general case of a Riemann problem with ze r -  

oes, in addition to the function G ,  one must prescribe 
the positions of the zeroes of the function *,(A,,X,, 
. . . ,A,) ,  the positions of the zeroes of the function 
*,(p,, p,, . . . , p,), and also the two collections of sub- 
spaces 

This problem can be reduced to the regular Riemann 
problem by means of successive annihilation of the ze r -  
oes. We represent the solution in the form 

where *jl',*jl' is a solution of the type (5.1) with the 
trojzctor P, constructed according to the subspaces 
MI, N,, at the points X = A,, X = p,. It is obvious that the 
functions *,, *, no longer have zeroes a t  the points 
X = XI, X = p, , respectively. At the points X: ( i  = 2, . . . , n) 

For G = 1 we obtain c= 1, therefore the soliton pro- 

blem with an arbitrary number of zeroes can be solved 
purely algebraically. 

Going over to the case under consideration of a prin- 
cipal chiral field, we choose the matrix *, in the form 

In terms of g the one-soliton solution has the form 

We limit ourselves to a consideration of the groups 
SU(2) and SU(3). In these cases we can confine our- 
selves to projectors with one-dimensional range. Such 
a projector is characterized by a single vector cj: 

(c;" is an arbitrary constant complex vector), and has 
the form 

It is obvious that the vector c is defined only accurate 
to  multiplication by a complex number. 

In the case of the group SU(2) the soliton solution de- 
pends on two complex parameters (XI  = A:+ iA:, c,"'/ 
c\") and represents a soliton proper, i.e., a solitary 
wave which has constant velocity at constant A,(() and 
B,(??) 

One can calculate the energy and momentum of the 
soliton from (2.24) and (2.25) and obtain an expression 
for i ts  mass 

For the soliton the matrix Pij has the form 

where 

For (a, -a,) (b, - b,)> 0 the soliton is an ordinary par- 
ticle, and for (a, - a,) (b, - b,)< 0 it  is a tachyon. 

In the case of the group SU(3) the soliton solution is 
characterized in addition to the number A, by the inte- 
ger vector (c:", cp' ,  c:"). If one of the components of 
this vector vanishes we obtain the simple soliton solu- 
tion; in this case there a r e  evidently three types of sol- 
iton. Two of these solitons (for c:" = 0 and cil '  = 0) will 
be called simple solitons and the third (c',"= 0) will be 
called composite. It follows from the mass formula 
(5.12) that for the case of normal solitons the mass of 
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the composite soliton is larger than the sum of the 
masses of the simple ones: 

for  a,> a,> a, and b,> b2> b,. 

Thus, decay of the composite soliton into simple sol- 
itons is possible. In the case of the general formula- 
tion (all three cil'f 0) the soliton solution describes in- 
deed such a decay. From an analysis of the general 
solution (5.10), (5.1 1) one can easily deduce that as 
t -  -* 

Thus, the numbers c2/cl,c,/cl characterize the final 
coordinates of the decay products. The equations (2.2) 
a r e  time-reversible, therefore there exists the inverse 
process of fusion of simple solitons into a composite 
one. The processes a r e  contained in the soliton solu- 
tion in which the image (range) of the complementary 
projector is a one-dimensional subspace. 

The solutions of the Riemann problem with G = 1 with 
two zeroes of the functions *,, *, describe collisions of 
soliton solutions, in particular, collisions of simple 
solitons a s  well a s  processes of "induced" decay of 
composite solitons in collisions with simple ones. The 
corresponding formulas can be easily derived but we do 
not list them here since they a r e  rather clumsy. 

An analysis of soliton solutions for the groups SU(N) 
is not trivial. Already for N = 4  three exist composite 
solitons consisting of several (two, three) simple ones, 
and the processes of nontrivial interaction of solitons 
a r e  quite varied. The corresponding analysis will be 
published elsewhere. 

5 6. INTEGRATION OF CHIRAL FIELDS ON 
GRASSMANN MANIFOLDS 

We now consider the procedure of integration of fields 
which appear as a result of reduction. We restrict  our- 
selves to the reduction g2= 1, considered in Sec. 3 for 
the principal chiral field on the group SU(N), and lead- 
ing to chiral fields on complex Grassmann manifolds. 
In order to carry  out the integration it is necessary to 
clarify how the reduction reflects the data of the Rie- 
mann problem, i.e., what restrictions does it impose 
on the matrices A,,B,, G(X), on the position of the ze r -  
oes of the funcQons *,-and *,, and on the structure of 
the subspaces N, and M,. 

We first note that Eqs. (2.3) and the condition g2= 1 
imply the relations 

~ g + g ~  -0, B ~ + ~ B = o ,  (6.1) 

and also, taking into account g = 1 - 2 P ,  the relations 

A=-2i[PP,] ,  B=-2i[PP,] .  (6.2) 

From the relations (1.1) and the fundamental formulas 
(1.10) it follows that one can select a fundamental ma- 
trix of solutions *, satisfying the conditions 

Y @-I) = g ~  (I), g = ~  ( 0 ) .  (6.3) 

In other words, the zeroes of the function 9, a r e  dis- 
posed symmetrically with respect to inversion in the 
unit circle and can be divided into simple zeroes for 
1 X I  = 1 and double zeroes. In the theory of the SG equa- 
tion this fact has been known for a long time.',' Accor- 
dingly there appear simple and double soliton solutions. 

Since the equation 

is also valid for  the original prescribed solution of the 
system (1.1), the functions 9, and *, satisfy the invo- 
lution 

which implies 

G (A-') =goG ( l )  go, Go (A-') =GO (A). (6.6) 

it follows that Eq. (6.6) represents a condition on the 
"dressing" matrix G,(X). 

From Eqs. (6.2) follow the relations 

Here Po is the "bare" projector, go= 1 - 2P0,  and from 
(6.5) follow the formulas for "dressing" the bare pro- 
jector: 

Therefore for the complete solution i t  is necessary to 
establish the form of Po and A,. 

Remembering that A, and B,  a r e  diagonal, it follows 
from (6.7) that 

We order the squares of the numbers ai in decreasing 
order. The diagonal of the matrix A2 splits into seg- 
ments with equal squares of the eigenvalues. In each 
of these segments we let the negative eigenvalues fol- 
low the positive ones. It follows from (6.9) that the 
matrix Po has block-diagonal form, and in each block 
the matrix Po reduces to a matrix P: of the form 

where R, is a unitary matrix. 

From the equations (6.7) it is easy to establish that 
the matrix B,, which commutes with A, must also de- 
compose, for the above ordering of the numbers a,, 
into diagonal matrices in accordance with the structure 
of the matrix A,. Finally, the k-th block of the ma- 
tr ices A, and B,  is characterized by the functions 
a,([) and b,(q). Substituting (6.10) into (6.2) we obtain 
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the expressions for the matrices R,: 

( . j  . . j  ,) Rh=R,O esp L a,dE 4-1 bkdq . 

Here Ri is an arbitrary constant unitary matrix. The 
general dimension of the image of the projector Po is 
determined by the total rank of the matrices P t .  The 
equations (6.10), (6.11) solve the problem of the struc- 
ture of the asymptotic states of chiral fields on Grass- 
mann manifolds. 

The remainder of the construction of the solutions 
for these fields does not differ from that described in 
Sec. 4 and 5. We also remark that in the simplest case 
of a chiral field on a complex projective space, the 
matrices A, and B, can contain a t  most one nontrivial 
block, s o  that the asymptotic states a re  here charac- 
terized by one pair of functions, a and b. From the re -  
sults of Sec. 5 it follows that in this case there is no 
nontrivial interaction of solitons. The whole theory 
exposed here can be transposed also to chiral fields 
on real Grassmann manifolds, and to n-fields on real 
spheres. The corresponding theory will be published 
elsewhere. We only note that from the preceding it 
obviously follows that there is no nontrivial interaction 
of solitons in n-fields on spheres for any dimension. 

CONCLUSION 

In quantizing n-fields on spheres an important role is 
played by the problem of integrals of the motion. In 
this paper we have not touched this problem at all, but 
we would like to underline the fact that infinite ser ies  
of integrals of the motion of our system can be calcu- 
lated in a regular way. The pair of linear equations 
(1.11) for the U-V system differs only in the second 
equation from the pair of equations which generate the 
integrable model of N-wave interaction, studied earl-  
ier.c121 In this model there a re  also nontrivial inter- 
actions of the solitons analogous to those considered in 
Sec. 5. 

In the present paper we have limited our attention to 

the case when the functions U, V have one simple pole. 
Important and simple integrable systems a re  contained 
in the more complicated systems of type (1.13) which 
have a larger number of poles. Thus, the massive 
Thirring model corresponds to the case when the ma- 
tr ices U and V each contain a pole of second order.c41 
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