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It is shown that in the model of the principal chiral field on the SU(N) group
with N> 3 there are soliton solutions with nontrivial interaction (mutual
transformation) of solitons.

PACS numbers: 03.50.—z

The first example of a fully integrable nonlinear field theory in two-dimensional
space-time was the sine-Gordon model.['l Subsequently, the method of the reciprocal
scattering problem has made it possible to integrate the massive Thirring modell? and
the complex generalization of the sine-Gordon equation!®! introduced by Pohl-
meyer.[*! Qualitatively, the solutions of these problems have much in common.
Namely, a natural subdivision of the initial condition, into a soliton part and a nonsoli-
ton part, takes place in the course of the evolution. The interaction between the soli-
tons is trivial, i.e., it leads only to a shift of the gravity centers of their phases, while
multiple production processes are forbidden by the conservation laws. A nontrivial
interaction of solitons (decay of the soliton of one wave into two solitons of other
waves) was observed for the first time in the three-wave problem.[® The question of
the existence of a nontrivial interaction in relativistically invariant models remains
open to this day. In this article we show that in the model of the principal chiral field”
on the group SU(XN) with N>3, there are soliton solutions with nontrivial soliton
interaction.

Let an element of the group g(x,/)eSU(V) be specified at each point of space,
meaning a unitary unimodular matrix in N-dimensional “isotopic” space. The
Lagrangian

|
L= — [Sp (3, g0k g" jdx (1)

and the constraint gg*=1/ correspond to an equation of motion
+
auaﬂ g - a#gg otg =0. (2)

In the case geSU(r), Eq. (2) coincides with the equation for the n field on a three-
dimensional sphere, and consequently reduces to the complex sine-Gordon equation.!
We introduce the Hermitian fields 4, belonging to the Lie algebra
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o + (3)
A’L L&Fgg.

From (2) and from the constraint it follows that A4 . satisfies the system

L
8#A 0

iGFA,, - ig, A# + [A#A‘,] =0, (4)

In the conical variables p=(t+x)/2,6=(t—x)/2 and A=A,—A,, B=A,+A, the sys-
tem (4) takes the form
i

d A4 =

7] —?[A, Bl,

(5)
i
5{;3 = —2-[ B,A],

We note that the fields 4, can be interpreted as currents generated by the symmetry
of the Lagrangian (1) relative to the group shifts g—hg, where heSU(N) is any
constant matrix.

The application of the inverse-problem method to the system (3) is based on the
fact that Eqgs. (5) can be represented as the condition for the existence of a simulta-
neous solution of the system

A
¥ =0, (6)

g ¥ - A+l

¥ =0 (7)

id. ¥ +
7 A1

at all values of A. This can easily be verified by commuting the operators that act on ¥
in Egs. (6) and (7). We note that any solution of the problem (6) and (7) is a
solution of the system (5), and in addition, assuming

= YA, n, &) . (8)
g (A, 7 &) = o

we obtain an exact solution of the problem. Let 4°(§) and B°(n) be diagonal matrices.
Then the system (6) and (7) is automatically compatible and has a general solution
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& g0 (£%)de’ LB’

V(A ) =exp |=if——— 9
A+l A-1 .

We shall call the fields 4°,B8°g°= ¥, _, the vacuum solutions of Eqgs. (5) and (2). To
obtain a soliton solution, following!¢l, we represent ¥ in the form

Y= ‘Pl(/\' T é-)q’o (/\, UE g): (10)
where
A=A
‘Pl()\,ﬂ,f)=1-—-9——:—9p("7:§) (11)
A=A

0

and the P is a Hermitian projection opeator in isotropic space, while A,* =1, +i4" is
a complex number. It follows from (6) and (7) that the functions

A(’?:'f) Ca -1 A°(£) -1
)‘+1 =L(;§P1‘I’1 +‘I1—AT]_ lyl
(12)
B(m, B°
(1:6) 5 gyt g B g
- n 1 1 1
A=1 A=-1
have no singularities other than poles at the points A= —1 and A=1, respectively.

Substituting the representation (11) in expresion (12) and equating to zero the resi-
dues at the points A =4, and A4 =4, we obtain the equations for the projector

4
(1 p)(aff - “(i) -0
"Np-o. (13)

('1-P)(ian+ B_( )

We confine ourselves here to the simplest situation, when there is only nonzero vector
{CY=(C",...C° satisfying the condition

P(0, 0)[C°>=C°> . (14)

In this case
‘Po()\osn,f)C><C°¢‘lP o0 1 &)
P(n, &) = (15)
<COW (A, o, EN, (L0, 6) 1€
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is a solution of the system (13) with initial condition (14). Using the calculated
projector (15), we get from (8), (10), (11), and (12) the soliton solution

A=A,
g=(l + = P, 69 g°(n, &),

A =ad +4 }\0" L')\:’+1(a'—a)__a_p_iiq_+ gan\P
S FO N T 2 o T
b5+ 4 & ro! LA g b P |P
Bpg= % pg ¥ ‘ll-)\ol2 t one (bp= b))~ —5— MRS W

where
A= 90pg  Bhg =bdpg

Let us analyze this solution for a field with values in SU(3), assuming the matri-
ces A° and B° to be constant. We shall show that it describes the decay of a soliton of
one component of the field into two solitons of other components. The evolution of the
solution is determined by the components |[P_ | (this can be easily verified by calculat-

ing 4, p7#q or g, ]). We represent [P, in the form

1
| Ppgl = at p# q
(o]
Zch(ar)q(x- Vool = qu)) + exp(qut —qu)
1
Pl = » at s #p g
1+ 2ch(apq(x— Vgl = x;q)) exp (- qut +qu)
where
@pe=p =g Bpg=By= By vpg=Bog/%pg %pg =~ h(C,/Cy) /apg,

CLB —aB [
r -6-pPa”""gp = « =3(ap+aq)(x—qut—qu)—qu,

Pq paq
%pq
’” 2 i 2
To=ag p(x;q + x;’)s) + asq(x;q + xzq), a,= AZ (bp/|/\o— 1%+ ap/{ A+ L),

B, = NS (=b,/Ix, - 1%+ a,/IA, + 11%).
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If the matrices 4° and B° are linearly dependent (i.e., a,b,—a_b,=0), then all I',,=0
and the solution is a soliton on the decay boundary (with zero mass defect). In the
nondegenerate case all the I',, cannot be of the same sign. Let, for example,
I',>0> Iy, Iy, and then, as 7—= — oo, there exists one soliton moving with velocity

U),:

Pyl s Py Py, o0,
2ch(a;,(x = v, ,t =x7,))

att~ —T,/I,, this soliton decays and as t—+ o two solitons are produced, moving
with velocities v,; and v,;, respectively:

1 1
Xxi > > PZB—» .
2chla (x ~ v, 52 - x5)) 2chla,;(x = vyt - x%3))

The decay time is determined by the increment I',,. If I';y, I';;>0> I', (this can be
attained by another choice of the parameter 4,), then the solution describes the coales-
cence of two solitons.

YFollowing the terminology introduced by L.D. Faddeev, we define the principal chiral field as fields with
values in the Lie group.
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