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The problem of stochastization of the initial conditions is studied numerically
within the framework of the nonlinear Klein-Gordon equation. A specific case of
the classical Yang—Mills equations is shown to identify the absence of
stochastization.
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1. Recent years have witnessed a rapid development of methods of exact integra-
tion of nonlinear equations that occur naturally in physics, especially the two-dimen-
sional relativistically invariant field theory models (see, eg. Ref. 1). However, regard-
less of the sufficient generality and power of these methods, they were unable to
provide an answer to whether a given model is integrable. To answer this question
within the framework of purely analytical models is hardly possible. In this paper, we
wish to emphasize the fact that in solving this problem methods of numerical modeling
by an electronic computer may be successfully applied.

We studied two-dimensional field theory models described by the nonlinear
Klein—~Gordon equations
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U”—Uxx+U3=0. 1
Current analytical methods provide for the integration of Eq. (1) in two cases
F(U) = c expix) + ¢, exp(-ax) [2]
and |
F(U) = ¢ exp(s) + c,exp(~2Ax)  [3]),

(¢, ¢,, A are arbitrary constants). It may be shown that in only these two cases the

system [Eq. (1)} has nontrivial (different from momentum and energy) integrals as
follows

I =(fU,0,U0,U0,,, U, ...)dx. )

In our experiments, F(U) was a polynomial in the odd degrees of U. Models of

this kind are frequently used in field theory. Thus, with regard to the problem of a

spontaneous perturbation of the vacuum symmetry, a number of works considered the
Higgs field*

F(U) ==m?U + U3,

The question of integrability of the classical Yang-Mills field is exceptionally
important for classical and quantum field theory

[V; , Fik] =‘0, Fik ={VL ’Vk]" (3)

An indirect indication of the possibility of its integrability is the fact that the particular
solutions of Eq. (3) in Euclidean space-time care given by self-dual equation.

which constitutes an integrable system.’ In a simpler case of a SU, gauge group where
A; may be assumed as three-dimensional isotropic vectors, Eq. (3) may be reduced to
the form of Eq. (1) by means of the following substitution:

2% 0, A=A =0, A =nU, A, =mU,
9%,  om,
n?=m?=1, (nm) =0 C)]
moreover
U, -U,+U>=0 Q)

2. In those cases where the solutions to Eq. (1) are solitons, the question of
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integrability may be decided, to some degree, by the numerical modeling of soliton
collisions. (Inability to integrate is indicated by inelasticity of collisions.) In the case of
the Higgs field, inelastic collisions were shown in Ref. 8). However, Eq. (5) has no
soliton-type solutions. Therefore, to clarify the integrability question of it is reasonable
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FIG. 1. Dependence of function J on time for equations (a) U, — U, + 10sinU =0; (b) U, — U, + 10U*

=0;(¢) U, -U_ +10(U—-06U"+0.1U»=0; (d) U, — U, + 10UU" —0.1089)x (U’ - 0.36)U*
-- 0.81) = Q; initial condition is shown in Fig. 2e.
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FIG. 2. Form of solutions at a
time ¢ = 37 for equations shown

08 75 70  in the caption of Fig. 1. (2a-2d),
20 curve in 2e represents the initial
“T d condition.
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X/ 2r

to consider the problem of stochastization of an arbitrary initial condition of Eq. (1)
under periodic boundary conditions.

This formulation approaches the classical work of Fermi, Past and Ulam.® The
Friedman principles of statistical mechanics indicate that an evolution of a sufficiently
general initial condition should exhibit a tendency toward a equipartition of energy
with respect to the degrees of freedom. In the language of the X Fourier harmonics,
this-means that the energy should flow into a region of large wave numbers K. More-
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FIG. 3. Dependence of function J on time for Eq. (5) for the initial condition U,(X) = 0.8 +0.2 cosX.

over, the energy distribution function in the k-space E, should converge to a constant
(due to finiteness of the total energy), and J = =,k *E 2 should grow indefinitely. The
smoothness of the function U (x) in this case will deteriorate sharply and a tendency for
stochastization—conversion of the function to white noise—is demonstrated. The con-
servation of the smoothness of U(x), as well as conservation of the mean value of J
during a relatively long period of time, definitely point to the existence in Eq. (1) of
implicit integrals of motion and, possibly, to their integrability. An additional indica-
tion of integrability is the quasi-periodic behavior of E, in the case where the initial
condition contains a small number of Fourier harmonics.

Inasmuch as the classification of integrable systems of the Eq. (1)—type is far
from completion, and because Eq. (1) may also havé particular quasi-periodic solu-
tions also in the nonintegrable cases, the initial condition

U,(x) = Ulx, 1) ,

should be of a sufficiently general form. Otherwise, there is a risk of being close to the
quasi-periodic motion, where the conservation of the value of J would demonstrate
once more the correctness of the Kolmogorov—-Arnol’d-Moser theory (see, e.g., Ref.
7.

We solved Eq. (1) for the following periodic boundary conditions

v x =0 ='le=-21r' Ux‘x= 0= Ux\x-—-‘m ’

As the initial condition U, = U |, _,, we picked a segment of a trigonometric series

Uo {x) =-Uo +:2a”cos (nx + ¢>n) ,

where U, and a, are random numbers in the interval (0,1), and ¢,, random numbers
in (0,27). Figure 2e shows the characteristic curve of the function U, (x). Figures 1 and
2 show curves of J(¢) and a form of solution of U (x) at t = 37 for four different forms
of the function F(U). Figures la and 2a correspond to the integrable case “sine-Gor-
don.” Figures 1b and 2b correspond to the Yang-Mills problem ¥ (U) = 10 U*. Fig-
ures lc and 2c correspond to the polynomial F(U) = 10(U — 0.6U* 4 0.1U°) which
contains no zeros, except U= 0. Figures 1d and 2d correspond to the polynomial
FU)=10UU? - 0.1089)(U* — 0.36)(U? — 0.81) which contains three zeros for
U> 0. Figure 3 shows a curve of J(¢) for Eq. (5) for the following initial condition

38 JETP Lett., Vol. 30, No. 1, 5 July 1979 Zakharov e/ al. 38



U =08+ 0.2cos X

The results of numerical experiments show that the general polynomial F(U)
exhibits a tendency to stochastize and set a nonintegrable system. This tendency is
rapidly enhanced if F (U') contains additional zeros, a fact explained by the existence of
unstable stationary states in the system. On the other hand, Eq. (5) behaves practically
the same way as the integrable “sine-Gordon” system. This result permits us to hope
that Eq. (5) [and, possibly, the entire system of the Yang-Mills equations, Eq. (3)]
contains implicit integrals of motion of a more complex form that Eq. (2), and consti-
tutes an integrable system.

In conclusion, the authors wish to thank S.V. Manakov and Ya.G. Sinaya for
taking an active part in the discussion of this work at all its stages.
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