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Inverse-problem equations, which describe the propagation of an amplifying
wave pulse in a medium with an inverse population, are constructed. A self-
similar solution, which describes the propagation of such a pulse, is obtained and
interpreted in terms of the inverse problem. A self-similar solution describes the
compression of an amplifying pulse.

PACS numbers: 03.40.Kf

1. The propagation of a wave pulse in a two-level medium, disregarding the dis-
sipation effect, is described by the equations

E,+E =2ip; n,=i(Ep* - E*p); p, =—2inkE, ¢y

where E is the complex amplitude of a wave and p and # are the elements of the den-
sity matrix

<[} 2]
P ox
It follows from Egs. (1) that
n? +}pl2 = A%x). (2)

A(x)>>0 is the space density of the atoms that interact with the wave. In the steady
state p=0, and two situations are possible: n=A4(x), which corresponds to an in-
versely populated medium and n=-4(x), which corresponds to a medium in the

589 0021-3640,/80/220589-05$00.60 © 1981 American Institute of Physics 589



normal state. If n—>-A4(x) as ¢t >0, then we are dealing with self-induced transpar-
ency.

We shall examine the case
n-»A(x) n-»—A(x)

t > — o0 t » o0 ’

which describes the transition of inversely populated atoms to the normal state. We
analyze the problem on the semiaxis 0 <x <oo; the incident pulse is given for x=0

E(x, )| =E_(t).

We obtain the following relation from Eqs. (1):

SUE ds = f |E_1%dt + 2¢( %)

which clearly shows that the pulse is amplified during propagation and absorbs ener-
gy that was previously contained in the inversely populated atoms.

This amplification can be described by a self-similar solution

E=g(x)e(€) n=A(x)N(E)
p=A(x)R(E) E=p(xMt —x—1t))
where £, is an arbitrary constant. We have from Eqgs. (1)
fef +e =2iR Ng = if(e R* - ¢*R)
flel?dé =2 Rg=-2iNe
N(ew) = -1 N2+ |R|%2=1.

FIG. 1.
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We can assume without loss of generality that the field e is real and R =-iW is purely
imaginary. The general solution of Eqs. (7) has a singularity at £=0. The physical
solutions, which do not have a singularity, are characterized by the parameter
€,= elg -0 which has values in the limit 0<e, <2

The solution is symmetrical e(~£) = e(£) in the limiting case ¢;=2, W=1. The
computer-generated plot of this solution is illustrated in Fig. 1. Equation (7) reduces
to a type-3 Penleve equation in all the cases.

In a homogeneous medium when A = const the total energy flux through a given
point is proportional to its distance from the origin and the pulse duration is in-
versely proportional to this distance. In the presence of a small attenuation 3£/0¢
->(8/0t +v)E, a self-similar solution describes the initial phase L <y/c of the forma-
tion of a stationary n pulse that propagates at the speed of light.

2. The method of the inverse-scattering problem (MISP) has already been ap-
plied!+* to the system (1). This application is based on the fact that the system (1)
is a commutation rule [L ,4]=0 of two operators

L:Ot—i(lA+H)

5 (8)
A=6x+i(/\1 +H+—)x—).

Here A is the spectral parameter -

1 0 0 F
I=[ H .
0 -1 E* 0

Until now, however, only the self-induced transparency has been analyzed. The
boundary conditions (3) give rise to a number of essentially new effects from the
point of view of the MISP theory.

We shall determine the Jost function for the Y solution of the equation Ly =0,
which has the asymptotic form

I i)\z—-i()\x L )
1//»((])/3 >‘ t > + o

@ (x))

‘pq(a(/\,x)ei)”)e—i()‘x_ by o oo

b(A, x)e” it
We determine from the condition 4y =0
-2i¢(x) 2i A x
alA, x)=0qa _(X)e A 3 BN, x) =b_(A)e

Here a(Ax) and b(A,x) are the elements of the transition matrix (see Ref. 3),

afM) and b)) are their values for x =0, which are determined by the initial pulse

E [1), and a( x) is the analytic function in the upper half-plane of A, which can have
zeros at the points A=A, ImA, > 0. The a(\x) function in the conventional scat-
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tering theory (see Ref. 3) is continuous on the A real axis and the number of zeros
in this case is finite. In our case a(A.x) has an essential singularity at the point A=0,
which can be treated as an infinite-order zero. In this case [ |[Eldt > oo, although
S2IEP dt<eo.

The inverse-scattering problem looks as follows in the presence of an essential
singularity. The Gel'fand-Levitan-Marchenko equation has the form

t ot
K(t,y, x)=F*t +y,x)-f [ Kt, s, x)F(s +s"x)F*(s'+y, x)ds ds’

%)
E(t,x)=2iK(x, x, t ).

The F(¢ x) function, which determines the solution, can be broken down into a sum
of the terms F=F+ F,. Fj is expressed by the initial pulse

—i)\u: + 2i<Anx + ¢)\(nx))
dA + Z'Ane . (10

.

® b(A x) =ikt
F1= f._.__e

1
2n - g (A, x) n
Here A, are constants which determine the initial location of solitons.

The function has the form

-i At +2i()\ x + ¢)fx))
€ dA, (11)

Fo _1_ s(A)

2 24 ao()\)

where s(A) £0 is an arbitrary analytic function in the neighborhood of A=0,
such that Eq. (9) is solvable. The integral in Eq. (11) is taken over a small neigh-
borhood with the center at the point A=0.

3. The system (1) has solutions even if £ ) =0. These solutions are called
spontaneous solutions. For the spontaneous solutions, F; =0. An infinite set of
motion integrals is associated with the L operator

oR 30,

ox ot

Here R, is a polynominal of E, of E*, and of their time derivatives; R, =[E]?. We can
show that

1n=0 for n> 0 1, =2¢(x)

for all the spontaneous solutions. The self-similar solution is the simplest solution
among the spontaneous solutions. For it

2 X by —————eay
= V22 eVae(at - =),

—(277)2 t - x

Here J; is a Bessel function. The constant s, is related to the parameter £, in the

F
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solution of Eq. (6); this relation must be determined from the equation.

The existence of spontaneous solutions, which is attributed to the physical insta-
bility of the medium with an inverse population, indicates that the problem (1)—(4)
is mathematically incorrect. The spontaneous values “grow’ out of the small fluc-
tuations that occur as £ -0, The problem (1)—(4) can be corrected if we assume
that these fluctuations are missing. It is simpler to complete the definition of the
problem if Eo(t) =0 when 1 <t,, where ¢, is a certain instant of time. The extension
of the definition is the causality requirement (absence of velocity greater than that

of light)
E(x,t) =10 for t <t +x. (12)

The b(A) coefficient now becomes an analytic function at fmX>0.

The causality requirement (12) allows us to determine s(A) uniquely. It turns
out that s(A\) =ib(A). The F function in this case is defined by Eq. (10), where the
integration is performed by bypassing the special point A =0 from above. Such effect
was analyzed in Ref. 4.

We can show that the self-similar solution (6) is an asymptotic solution of the
system (1), as x oo, for almost any shape of the initial pulse.

In conclusion, the author thanks I. Gabitov, S. V. Manakov, and A. V. Mikhailov
for useful discussions and L. N. Shehur for the computer calculations.
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