Physica 3D (1981) 1 & 2,193-202
© North-Holland Publishing Company

CN '[Hi BENNEY BQUATIONS

V.ne,Zakharov
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I. The system of Benney ejuations describing long shallow water
waves has the form (wit&out an assumption on the potential flow):

o

2 (2)
W div =0

5T (3
Here \'\- = \"\- U-\’-_;-“-') *(‘L: (X, ‘&3 0<z< LL ) is the fluid

surface shape, W = IL(T,*) - the horizontal velocity
vector, W = W(Q, ?:) — the vertical velocity component. Gravi-
ty is assumed to be equal to unity., Let us show that the system of
(1)-(%) can be reduced to an infinite system of two-dimensional
hydrodynamics equations,

Let us divide the fluid volume into layers in the # —-direction
and enumerate them by means of the index § (04 ¥¢ 1) , thus
giving the location of each layer., Thus we obtain the function:

Z = ZL‘I,'S,‘}:\ h&t,t)=’ 1&{)4"‘\'.)

It is clear that this function must satisfy the condition:

R
22 sz =w ()
ot
which means that the fluid does not penetrate through the boundary
of the layer. Assuming that § = 4 y We see that Eq.(1)
follows from Eq.(4). The derivatives taken at the constants *
and g are interrelated by the formulae:
»>\ 2\ _ ix 2 @y - Vz 22
(’th "&Nz)s a S (V\* = W)g W 0% (5)
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Besides we have

g . N
2 “ °S (6)
Here
2 2Z
W= 53 7
Differentiating the relation (4) with respect to ¥ and using
formulae (5)-(7) , one easily obtains the following equation:
N -
2‘% + AWy =0 &

Here and elsewhere the derivatives are taken at the constant E .

Applying formulae (5)-(6) to kg.(2) (involving derivatives at
constant Z ) and using relation (4) we obtain after simple
manipulations:
-p -3y K _
W 4+ (UM + YR =0 )
Yy (9)
Besides, it is clear Ehat

W(T,D = (@3 ds

So, Egs.(8)-(9) repreosent an infinite (parametrized by S )]
system of two-dimensional equations of hydrodynamics of perfect
compressible fluid with self-consistent pressure. Such representa-
tion of Benney equations solves the problem of their Hamiltonian
structure reducing it to the problem of the Hamiltonian structure
of hydrodynamics equations,

In fact, if the fluid flow is potential in the (% & ) plane

W= VP(T s+) (10)
the functions CPUL.', s, ‘ts and "L(ﬁ,"} S, ‘\:) are canonical
variables ((;\“L

R e —
Tt S

where
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For a more general flow, introducing the Klebsch variables (see,
e.g. Lz} s, one can obtain the Hamiltonisn structure.

If the flow parameters depend on the X coordinate only, the
Hemiltonian structure has a simple form in variables f , W

R Y Tl % T hY (12)

where \'\_ is the total fluid energy given by (11).

Anothe approach to the Hamiltonian structure of Benney equations
for one-dimensional flow is described in[3] .

2. Let us consider 4.the function
-, >
§H, Vt) = S mg’{ﬁ,i}%ﬁ?’—u(&,sﬂ)ig (139
o
It is clear that

W = SK"{»VJ*‘“V (14)

Straipghtforward calculations make it clear that the function
satisfies the Vlasov equation

)‘\» 2 - 2%,:0
‘}T*VT%E Vk‘o (15)

with the self-consistent field (14).

T R . 2 =0 _ :

n the one-dimensional case 2% the system of (8),

(9) generates all the solutions of the Vlasov equation, For example,
to obtain the solution satisfying the condition .g.(x,u,‘t) rgo(x,u)
at £t <O the solution of the system (8),(9) with the initial
condition u _ ..g

v\'k*.:o_: %° S \’t-=° )

is substituted into Eq.(1%), This correspondence is a one-to-one
correspondence as far as the function W = | (¥, "g,'t) is a
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single-valued reversible functionb{'g o If % is an anoalyti-
cal function of WV s the one-dimensional equation (15) is
equivalent to the following equation:

S A A 2As = |
5t T e w0 2 Ay =0 (16)

where
Auw = S\rh&(v)c\v o=l = %Q(v)é\/

This equation is known as a moment Benney equation l_}] .

Thus, the moment Benney equation is equivalent to the original
Bemney system only if V is a single~valued reversible function
of & .

Ilote that in this case the function ’t has a simple physical mea~
ning - -?(V) d\U is the thickness of a f£luid layer with a horizon-
tal velocity in the interval (V) vid V) .

In the two-dimensional case the Vlasov equation is equivalent to
an infinite system of hydrodynamics equalions which is parametrized
by the vector _-§y = (S, EZX under the condition that the

-

mapping ¥ <> is & one-to-one mapping (bLhe correspondence as
>
above is given by (1%) where = is a vector). In this case

only very specific solutions of the Vlasov equation correspond to
the solutions of the Benney equation.

%+ In what follows only one-dimensional Benney system will be

considered.
AR 2. _
v T Lt =o
“17)
M 2 2k _
€ USx e 7O

h= S1ds

Q
Let us show that the system (17) is naturally related to an infinite
system of Schrodinger equations for the function ‘\f: \{f(x, §’~L~_)

'\.\){t:_ ';\—vax_ky (18)

A
-8
Here \n. =§ \V\ 4 S , Actually, the substitution
o
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x
~t S wdx
Vv=\1 e ‘gcb (19)

reduces Lg.(18) to the fornm

(
"t >
In the limiting case ‘r\ >> “b—)'(‘g, this system is reduced to the
system (17). So we see that the Bemmey equation is a quasiclassi-
cal linit of the system of nomlinear Schrodinger equations (18)
for the two-dimensional case it is valid only for the potential
flow in the ( X, )-plane Ww=Y¥P),

The main remarksble feature of (1&) is that the method of the
inverse scatltering problem can be applied to it [4] « This is the
system that is a compabibility condition for the following system
of linear differential equations for the functions J (},'g-,-l;) ;}o(.x)t)

Jx'—‘ LXJ -+ v}o
Yoy =~iXxfo+ R (20)

Fp = O OV Nm L £ YR
Jor = —iNf, FAR + 5 S -F UK

(21)

L A
R= S ¥osivsvds e S= S\\fx(x,s,ts PR AT

Here X is a spectral parameter, This enables us to advance
in the theory of Benney equation.

Below it would be more convenient to deal with a particular case
of solutions of the Beimney system when the function v is a
step function of % , i.e. the flow is divided into layers, in
each of them the horizontal velocity is not changed in the verti-
cal direction. In this case

N
N
= Z‘ﬂk Qn,t\gks-ié W= \cZ:« L (22)
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and the system (17) is reduced to the following finite system

M %z"\.kuk =0

2t
dh (23)
Nét ""u“}%—;‘g ek =P

2, h
k=4
The linear system (20),(21) also becomes finite
Frx = Ok + ¥ fe )
Yox = ~D)o + R | (e
Yeg = D+ A ¥eto m g Yo for 2R
Yot = - N'¥e AR+ cs-x ks (25)

N _ N
R = Eia“a‘}K S = ZE; Vix ¥l<
k=4

=4

Now the system of the Schrodinger equations is of the form:
N
. A _ 2
Ve = & Vo - % 7, W =
=4

The system (26) has an infinite number of motion inteygrals which
must also be the integrals of the system (23). Yet, it is easier
to calculate the integrals of the system (23) directly but not
from the integrals of the system (26), Then it is necessary to
consider quasiclassigal limit, to make a substitution (18)

\P’h—_- \[ C‘S“n dX .14 to assume

5. e:_&;j“ 1,- geﬁq uydx 2

From (24) we have

§nx+1(=¥;“~”>~3§w=m
R o=to Z.

W=

L) = Z T (29)

In the quasiclassical llmlt we must neglect the differential term
Bhx in (28). Then we have:

i

(26)
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N
Ky . ('
gh = ;+u"‘~t} R, = L}'D 2;4,\-\44“—4 (30)
N
1w
JEI= 24 A YU

With the quasiclassical accuracy we pet
o u
S Z v(h n
- kA % +u" -.j
Therefore it follows from (a)) thdb

(A-Z U
2 ( A= Z VL“AH,?:_ )) (31)

Dt
With the help of (30) we reduce ()1) to the form:

U2 (%u-*ﬁk)

oY - (2)

Egs.(30),(3%2) represent an overdetermined system of equations one

of which is a differential equation and the other one is algebraic,
Let us check +their compatibility. For this purpose let us find
the derivatives )t yx from hq. (50) end substitute them into
(32). The rational function of X - has to vanish identical-
ly and the condition of this coincides with Lgs.(23).

the integral dependent on the parameter A is an 1nteblal
oo
T = §J (xt) dx
- oo

kgl (30) gives OX as a (W +4) sheet algebraic function of A
When A -2 ©° this function can be expanded in asymptotic series
over i,; « at every sheet. ALl bthe coefficients of these expan-

A
sions are motion integrals for the system (23%).

93)

\_\\

At one of the sheets we have (v)
- “+ J n
J » Z' TN (34)

Here \ = oo :i"G M- —>0 , therefore (using the expan-
sion in powers of -j—_j-)‘ ) we can write (3C) in the form:
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h= 00 A)h (35)

dere Ah = é‘gkuk are moments of the Benney system,
Hence, it is clear that all inteprals of this type are expressed
by An in a polynomial way. These integrals have been found in
[5] by Miura; The convenient form to writem them down has been
found by Lebedev and ilanin int6.;\The first three of these integrals

J« =Ro }z =A4 }3 :‘\Hs "'\ﬂo:b

have a physical meaning of conservation laws for mass, momentum
and snergy.The first non~trivial integral is the following

‘X‘L = \n?,—' i-ﬂo\Az'*'JLtl
In terms of [6] we can rewrite (35) in the foim

RS +<P(s) +2) =0
PG = Lo

Hence the result of [6] follows immediately:

L, = s (s +“P(S)Y"

Here _T_v; is eny of the above-mentioned motion integrals,

where "
TNt 4

Let us now show that we are able to calculate new integrals of the
Benney system. We shall study the asymptotic behaviour of the
function at other sheets of the Liemann surface., Let

J —5 X+ Uy when A — “ , Let us denote

OX ,\«—u“«-j

For J we obtain

(TN
pz»uu &'\v-*} 2, mcx) (36)

wmARn
Let J be expanded :Ln asymptotical series

<)( Zl (a,\)“

(In the course of thls expansion, we must consider )(44 UM UL‘ ’
which accounts for the use of the discrete approximation of the

Benney system).

Comparing the expansions we get



V.E. Zakharov | On the Benney equations 201

\=vlh o
- (LT U

~ w AN
)(3 = -

In the contlnuous limit these quantities correspond to:

= (s, x,t) 1

/
I
;‘: — = (5% [usd - g 1(5,x8) 4 lon

u(s) x,—y(sxt)

Here an integral is taken in its principle value,

5. The Hamiltonian structure (12) of the one-~dimensional Benney
equations enables us to determine the Poisson bracket for any
functionals 6~ and % of ‘Ln, U

[ e Y S N NS
s = Z §<\X S :%E 'L». SUn 2% 84, (38)
Let us calculate the Poisson bracket for 1 ()«\ I(X')

where 10\ - K](x,t,X}JX

Simple Dbut long calculations result in the following relation
\
3ION.IW =0 (39

which means +that all the motion integrals of the Benney equa-
tions obtained by the asymptotical expansion ofl(kx commutate,
This leads to a hypothesis of total integrability of the Benney
system though it cannot be considered as a proof of total integra-
bility since it is necessary to prove that the set of these
integrals is complete. The "highest" Beunney systems

Me _ 2. W

~t R U, (40)
NUh . DM

At X $"Ln

have the seame motion integrals., Here H is an arbitrary functional
of X (X\ . The simpleat of the systems of type (40) when
is one of the integrals of the First (polynomial) series has been
studied in [5] by Manin and Coupershmidt.
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