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Introduction

The ultimate aim of this paper is in an attempt to understand the role of localized nonlinear
objects — solitons or solitary waves —in plasma physics. Being discovered in the last century on the
surface of liquids (see ref. [1]) solitons for a long time remained of interest only for a small number of
specialists in hydrodynamics and mathematics who tried to prove their existence. In the late 50s of our
century the soliton concept penetrated into plasma physics. Here, due to work by Sagdeev [2], Gardner
and Morikawa [3] and others, solitons were successfully used to construct the theory of a fine structure
of shock waves under the conditions of rare collisions. Nowadays a great number of soliton types in
plasmas are known. They are widely used for various theoretical speculations, and especially for the
construction of different versions of strong turbulence theory. In order that these speculations should be
real it is necessary for the considered solitons to be stable. Therefore the problem of soliton stability is
of particular importance.

Let us consider the problem of soliton classification. For a long time only one type of soliton was
considered — plane solitary waves whose profile with a one-dimensional localization is stationary in
some system of reference. Such are the solitons on the liquid surface and also the first types of solitons
discovered in plasmas - ion-acoustic and magnetosonic solitons. We will call them simple one-dimen-
sional solitons. Similarly solitons with a stationary form in a definite reference system but localized in
two or three dimensions will be called simple two- and three-dimensional solitons. Such stable solitons
propagating along the magnetic field in a magnetized plasma with a low pressure were discovered in ref.
[4].

Besides simple solitons, oscillating solitons can propagate in a plasma. Inside them there occur
oscillations characterized by a definite frequency and wavelength. Such a soliton profile is, in the mean,
stationary in some reference system.

Like the simple ones, oscillating solitons which can also be one-, two- and three-dimensional do not
represent a specific phenomenon for plasma physics. They naturally occur in problems of quasimono-
chromatic wavepacket propagation in nonlinear media with dispersion including self-focusing problems.
“An inner” wavelength of such solitons is much less than their size and so they are sometimes called
“envelope solitons”. Along with the envelope solitons in plasma physics one considers specific
oscillating solitons whose inner scale is comparable with their size or is entirely absent (spatially
homogeneous oscillations take place inside the solitons). Many authors tried to use these solitons for
solving the very actual plasma physics problem of constructing a strong Langmuir turbulence theory. As
a whole, the problem of the description of all plasma solitons, both simple and oscillating, is far from
being solved.

Going over to the solition stability problem one should note that stability problems are naturally
divided into two groups. First, there is the problem of soliton stability with respect to perturbations with
the same dimension as the original soliton. Such are the problems of three-dimensional soliton stability
(here perturbations have to be essentially three-dimensional ones) and also the problems of two-
dimensional soliton stability relative to two-dimensional perturbations and one-dimensional soliton
stability with respect to one-dimensional perturbations. These problems are usually not solved in
explicit form and one has to limit oneself to variational estimates and qualitative methods.

It is evident that such an analysis is insufficient for one- and two-dimensional solitons. It is necessary
to study the soliton stability against perturbations which break the symmetry relative to both neck and
snake types along the direction of the original soliton homogeneity. Experience shows that this problem
can be successfully solved in the limit when the perturbation wavelength exceeds significantly the soliton
size.
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It is well-known that a comparatively small number of mathematical models possessing a great
degree of universality plays a very important role in soliton theory. Such are, for example, the
Korteweg—de-Vries equation (KdV) with its multi-dimensional generalization, the Kadomtsev-
Petviashvili equation (KP) describing simple solitons, and the nonlinear Schrodinger equation (NSE)
which is the simplest model for defining oscillating solitons. Universal models also find a wide
application in plasma physics and the presentation of the soliton stability theory should therefore begin
with these very models. The first chapter of this review is devoted to a description of the most
important universal models and those problems of plasma physics to which they may be applied. In
chapter 2 the stability problem of solitons, both simple and oscillating, is considered in terms of
universal models with respect to perturbations which do not change the soliton dimension. The
principal results of this chapter are obtained by means of a variational method. Further, problems of
soliton stability relative to perturbations breaking their symmetry are discussed in terms of universal
models. Here in most cases it is possible to obtain explicit expressions for growth rates using a
long-wavelength approximation. It should be noted that the results obtained in chapters 1 and 2 are of
importance beyond the framework of plasma physics itself. They are of importance for hydrodynamics
(this is reflected in the title of the present paper) and also for nonlinear optics, in particular, for theory
of light self-focusing. Contrary to this, chapter 3 is devoted entirely to a detailed consideration of the
important problem of Langmuir soliton stability in a plasma without an external magnetic field or in the
presence of a weak field. In that chapter we show that Langmuir solitons are always unstable though a
one-dimensional soliton is stable with respect to purely one-dimensional perturbations. The latter
circumstance explains frequent observations of Langmuir solitons in one-dimensional numerical simul-
ation of plasmas which once gave rise to the concept of soliton Langmuir turbulence. A one-
dimensional Langmuir soliton is however unstable against transverse perturbations. This makes the
concept of the soliton Langmuir turbulence unreal, though it does not exclude a possibility of solition
turbulence realization for other cases when solitons are stable. To construct a realistic picture of
turbulence it is necessary to study the nonlinear stage of Langmuir soliton instability development.

It is generally accepted nowadays that as a result of the nonlinear stage of the instability a Langmuir
collapse takes place —a spontaneous concentration of the Langmuir wave energy in a small spatial
region (of the order of a few Debye radii) with subsequent dissipation due to Landau damping. From
the mathematical point of view collapse represents the formation of a singularity in the input equations
which happens after a finite time. As it is getting clear, collapse is one of the standard ways of soliton
instability development. The investigation of wave collapses is one of the most important problems of
plasma physics and, in general, of wave physics in nonlinear media, but it is outside the framework of
the present paper. In the last chapter we give a brief presentation of the principal concepts of the
collapse theory.

1. Variational principle. Soliton existence
1.1. Basic equations
By solitons one usually means some solution of nonlinear equations which is spatially localized and

keeps its form. The latter is of particular importance. It means specifically that solitons can exist only in
conservative media.
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Among conservative systems we are interested in systems possessing a Hamiltonian structure. It
should be noted that for conservative systems Hamiltonian structure, as a rule, can be introduced in
spite of the fact that there are no general methods of its introduction. (This situation is discussed in
detail in ref. [5].) It should be emphasized that the Hamiltonian structure existence allows all the
stability methods developed in classical mechanics to be extended to systems with a continuum number
of degrees of freedom.

The universal nonlinear models [6-10] well-known nowadays are such as the KdV equation and the
nonlinear Schrodinger equation (NSE). Their universality is explained by the fact that they describe a
wide spectrum of phenomena in various nonlinear media; their fundamentality consists in a latent
symmetry in the one-dimensional case which results in the integrability of the given equations by the
inverse scattering transform. The methods of soliton stability studies are also universal within the
framework of these models. The KdV equation arises when describing weakly nonlinear waves in media
with a dispersion law w(k) which is close to the linear one

wk)=ke(1+ak’), ak’<1. (1.1)

According to this law in a linear approximation the waves propagating all in the same direction are
described with the help of the equation

duldt=—c,duldx +c, a 3°ulox’ . (1.2)

The first term on the right-hand side of this equation describes drift with a sound velocity, the second
one is responsible for a slower process — dispersive diffusion of the wavepacket. For weakly nonlinear
waves the local sound velocity will differ from the mean value. In the linear approximation in the
amplitude one may assume c(u) = c,(1+ Bu). Taking into account that Bu is small as compared to
unity, we get as a result the well-known KdV equation

u, tcu, —clau,, —Buu)=0. (1.3)

This scheme of the KdV equation derivation is very convenient for concrete calculations since the
constants « and B can be determined independently [6]. This equation can also be derived by a formal
method (see, e.g. [11]) with the help of the introduction of a small parameter &, slow coordinates and
time. We shall illustrate the above by an example of ion-acoustic waves in a collisionless plasma when
T.> T,. In this case for the ions one can neglect the thermal pressure and use for their description the
hydrodynamic equations

on 0
Frii nv=0, (1.4)
au av e Jdo

W __ede (1.5)

(where M is the ion mass). Under these conditions the electrons can be considered distributed according
to the Boltzmann law as

n,=nyexplee/T,). (1.6)
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The system of equations (1.4)-(1.6) is closed by the Poisson equation for the electric potential ¢
d’plix* = —4me(n — n,explep/T,)) . (1.7)

We would remind ourselves that the equations (1.4)-(1.7) in a linear approximation describe waves for
k— 0 with the dispersion law (1.1):

Te Te 2 Te

Hence we can conclude that in the long-wave limit for one-dimensional weakly nonlinear waves one can
obtain the KdV equation. Formally it can be obtained if one seeks a solution of the equations
(1.4)—(1.7) in the form of series in a small parameter ¢

n=n,+ ;I e n (x', 1)

D s

v=_2, e*u (x', 1) (1.8)

k

| SZk (Pk(x,’ t[)

(P:

T M

where x' = e(x — c,t), t' = &'t are the slow coordinates and time.

Substituting (1.8) into eqs. (1.4)—(1.7) and equating to zero coefficients at every power in the
equations we get an infinite set of equations for n,, v, and ¢,.

In the first order of ¢ algebraic relations arise:

0
ax (cn, = ng,) =0
I fﬁ) _
P (csv, M =0 (1.9)

v (nem )
| = + 1| = .
o Lt T, 0

The solvability condition of this system gives ¢ = T ./ M.
The next order of ¢ has the form

an, d _d

o7 T o M T g (cny — ngvy)
w89 (C b — e_‘P_z)
gt Vigy VT e\ T Ty

d ( 1 4’ no(e<p1)2> 9 ( e<p2>
—— 00— == = |-, +n, =)
gx' \dme gx2 O 2 T, ax \ T T,
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The right-hand side of the equations coincides with the linear system (1.9). Hence the KdV equation is
obtained as the orthogonality condition of the solution conjugate to (1.9)

2 3
on, ¢rydn, ¢
2

s J
g™ =0. (1.10)

axl?r n_[) nl W nl
After simple transformations the KdV equation in the form of (1.3) or (1.10) can be reduced to a
standard form

utu, +6uu, =0. (1.11)

t

A stationary solitary wave or soliton of the KdV equation (1.11)
u =2« cosh’e (x — 4x’t — x,) (1.12)

is the simplest solution of the KdV equation (1.11). It plays a fundamental role in the evolution
problem for an arbitrary initial distribution [6-9].
Together with the KdV equation we shall also consider its generalization

wtu, +f'Wu =0 (1.13)

where the prime denotes differentiation with respect to u. As for the function f(u), we assume that it
tends to zero as u—0 like au? (@, ¢>0) and increases faster than u as u— . This behaviour
guarantees the existence of soliton solutions of the type u = u(x — Vt) determined by the integration of
the equation

u,=—fluy+Vu. (1.14)

In multi-dimensional cases the well-known Kadomtsev-Petviashvili (KP) equation [12] is a natural
generalization of the KdV equation. The KP equation can be obtained if a characteristic transverse
scale of sound disturbances is assumed to exceed significantly the longitudinal size (in this case along x):

9 (u,+ 6uu, +u, )= ~3B%A p =P 1.15
ox u, uu, uxxx - B U, _L_ayZ (922' ( )

The sign of 8° on the right-hand side of the equation is opposite to the sign of the dispersion a in (1.1).
All changes in comparison with the KdV equation in (1.15) are connected only with an additional term
on the right-hand side, which describes the acoustic wave diffraction in the transverse direction. This
equation is apparently valid for ion-acoustic waves, and for long-wavelength gravitational-capillary
waves on the surface of a liquid of a finite depth. It is also valid for fast magnetosonic waves in the
magnetized plasma with 8 =8mnT/H” <1 propagating at angles distant from 0 and 7/2 to the magnetic
field. As to angles close to 0 or 7/2, it is known that the dispersion of fast magnetosonic waves
undergoes in these regions changes and eq. (1.14) becomes invalid.

All the above-mentioned equations are of a Hamiltonian type and can be presented in the form
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Jd oH

= ax ou

where the Hamiltonian H for the KdV equation is expressed as

H=f[%§—u3J dx; (1.16)

—x

for eq. (1.13) as

H=|

and for the KP equation as

% s ax, e =rw: (117

% 2 5
H=J{%—3—§—(VLW)2—u3]dV, — (1.18)

The other simplest integrals for these equations are M = [”_u dx and P = [ u” dx having the meaning
of a total “mass” and the momentum along the x-axis.

The nonlinear Schrodinger equation is usually used for the description of the propagation of
wavepackets with a small amplitude, i.e., when the field differs weakly from a harmonic one and
nonlinear effects are small. This gives an opportunity to take into account dispersion and nonlinear
effects separately for the derivation of the equation. Let a wavepacket propagate in an isotropic
medium with a dispersion law w = w(k) and the field in it change as y(r, t) exp(—i w(k,) t + i(k,r)).
Here y(r, t) is a wavepacket envelope, a slowly varying function of r and ¢. In its Fourier spectrum
there are only frequencies and wavevectors, much smaller than w(k,) and k,. It means that the
frequency width of the wavepacket will be small and, therefore, in the dispersion law w = w(k) the
right-hand side may be expanded in a series [10]

(k)= w(k,) + ux, + %(w"xi + (u/kO)Kzl)

where u = dw/dk|,_ k, is the group velocity, w"= ’wldk’|, . k> K=k~ kg is the wavevector of the
envelope; «,, k, are the components of the wavevector along and across the direction of the packet
propagation. Accomplishing the inverse Fourier transform with respect to {2 = w — w(k,) and & for the
envelope ¢, we obtain

) wu u
1(¢t+u¢z)+ 7 l/jzz + 2_k0AJ_w=O

Now we have to include the nonlinearity. It is clear that for quasiharmonic oscillations the total effect
will be reduced to a nonlinear shift of the frequency w(k,), representing a certain functional depending
only on |¢)>. Combining the linear and nonlinear terms we come to the generalized nonlinear
Schrodinger equation
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i+ ) + 00, + 51 uA Y+ Aoy =0,
, ’ (1.19)
Aoy, = f(lu).

This equation describes, in particular, propagation of electromagnetic waves in nonlinear isotropic
dielectrics, for example, in an isotropic plasma. In this case  has the meaning of a complex amplitude
of the electric field and f(|¢|*) ~ a nonlinear addition to the refraction index. For a Kerr nonlinearity

) < u’ ,
In the simplest case when f depends on the local value of ||°, this equation in dimensionless
variables in the system moving with the group velocity can be expressed as follows:

i, +A y+ay, + P v=0, a=ko"u. (1.20)
Equation (1.20) also belongs to the Hamiltonian type
iy, =dH/dy*

with Hamiltonian

H= f {al,F+1V. 9l - o(u)} AV, é(w)= f fu) du. (1.21)

Other simple integrals of motion of (1.20) except H are the adiabatic invariant N = [ |¢|* dV which
has the meaning of the total number of waves, the momentum P = —3i [ (¢*Viy —c.c.)dV and the
angular momentum.

Equation (1.20) has in the one-dimensional case (¢ depends on z only) a solution in the form of a
soliton dependent on four parameters:

v=glz-Vt—zy)expi(At+ 1Vi—1Vz— ¢,) (1.22)
where the function g satisfies the equation
~Ng+ag. +f(g") g=0 (1.23)

with the boundary condition g— 0 as |z|— .
Such soliton solutions exist only when af >0. When f(|¢[*) = |¢|>, a =1

g=V2A/cosh Az . (1.24)

Stationary waveguide configurations localized in the transverse direction and realizing energy
propagation without diffraction divergence (which will later be called waveguides) are formally
analogous to solitons. Such solutions exist only for f >0, f' > 0. Solutions in the form of cylindrical
waveguides are of great interest from the physical point of view.



112 E.A. Kuznetsov et al., Soliton stability in plasmas and hydrodynamics

The nonlinear Schrodinger equation describes some other physical phenomena. For example, for
oscillations of a weakly non-ideal Bose gas the value ¢ has the meaning of the condensate wavefunc-
tion, and eq. (1.20) is actually a Schrodinger equation. As a rule, the nonlinear Schrodinger equation
describes, at least in the one-dimensional case, the evolution of long-wave oscillations with a quadratic
dispersion law and a gap in the spectrum

w(k) = w, + ak’.

Its applicability for the description of Langmuir oscillations will be discussed later in detail.
Equation (1.20) assumes the medium to be inertia-free, i.e. the nonlinearity follows the wavefield.
But for many problems it is necessary to take into account a finite time of medium relaxation. Thus for
propagation of electromagnetic radiation in an isotropic plasma the nonlinear frequency shift is caused
by density modulation under the action of a powerful wave,
" )

: u _
(g, +uy) + 2_k0 Ay+—14y, = o,

ny .

A density variation n caused by ponderomotive forces is described by the equation (see, for example,

[10])
n,—c:Vn=V|y|’
where
2=TJIM.
When the characteristic times of the nonlinear processes are much longer than the period of the

ion-acoustic oscillations, n o« |¢|* and the given system is reduced to the nonlinear Schrodinger equation
with a cubic nonlinearity. In dimensionless variables these equations assume the form

(Y, +uy)+A g+ ay,,=ng

n+Ve=0

(1.25)

¢ +n=—|y|*. (1.26)
The system (1.25), (1.26) is also Hamiltonian
iy, =8H/dy*, n,=3H/d¢, ¢ =—-8H/dn

where
H= f {alg,|” + |V 4" + in* + 1(Vo)* + n|¢|’} dV + Pu

P, = %if(w:j —c.c.)dV. (1.27)
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When electromagnetic waves propagate in a plasma, modulation of the density is often caused by
plasma heating. In this case instead of the second equation (1.26) we have [13, 14]

-3 . (1.28)

Here 6 is the temperature perturbation, « is the thermal conductivity coefficient, »,; is the frequency of
the electron-ion collisions. The first term on the right-hand side of (1.28) describes the collision
damping of an electromagnetic wave while the second one describes the energy transfer to ions,
radiation losses, etc. Due to a large group velocity the longitudinal scales of parameter variations
exceed greatly the transversal ones. So in (1.28) only the derivatives transverse to the direction of
radiation propagation remain. The ratio of 8 and » is found from the pressure constancy condition

ning=—80/T,. (1.29)

The written equations are valid when the mean free path is less than the soliton size (see, e.g. [14]).
The obtained equations are not Hamiltonian but their investigation is carried out by similar methods.

1.2. Multi-dimensional solitons and their stability in models of the KdV type

In the previous section the simplest examples of solitons have been considered, whose forms are
determined analytically. When the nonlinearity is of a more complicated character, the problem of
soliton existence in one-dimensional cases is far from being trivial. Variational methods are most
effective here. They give an opportunity to reach a number of conclusions about their stability.

Let us discuss these methods in detail by an example of the KdV equations (1.11) and (1.13). For
simplicity the function ¢(u) in (1.17) is considered as a power one, ¢ = au”. It follows from the
formulation of the equations of motion in the Hamiltonian form that stationary solutions of the type
u = uy(x — Vt) vanishing at infinity can be found from the following variational problem

3H+ PV)=0. (1.30)

This expresses the fact that such solutions are stationary points of the Hamiltonian H for fixed P. In this

case the velocity plays the role of a Lagrangian multiplier. Due to the boundedness of the solution as
|x| =< the velocity V is positive.

For soliton solutions the relation between the Hamiltonian and momentum P can be found directly

from the variational principle (1.29). First, let us consider a one-dimensional case (a = 1).
Multiplying the equation

3
™ (H+PV)=0
by u and integrating it over x, we obtain

2VP+1,—nl, =0 (1.31)

where I, = [ u’dx, I, =fu" dx .
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The other relation between the integrals can be found with the help of the virial theorem. Let us
consider test functions of the form u,(ax). Then, by virtue of (1.30) the following identity* must be
valid

% (H+PV)[,_, =0,
As a result, we have
-VP+3i,+1,=0. (1.32)
Combining (1.30) and (1.31) we obtain
n—2 4 _n- 6

ni2 P L=im VP H=Emm

[,=2 vP. (1.33)
Thus for small powers of nonlinearity, n <6, H is negative; for n = 6 it turns to zero; for all other values
of n>6, H is positive.

For the KP equation (1.14) the situation is more complicated. First, soliton solutions exist only for
positive dispersion (8> = —1). Their explicit form in the two-dimensional case (d =2) can be found by
the inverse scattering transform method [17]:

1+ vy = v (x = 3v't)’
[+ v +u'(x-3vtyY]’

ug(x —Vt, y)y=4v' V>0, v'= (1.34)

As for three-dimensional solitons, they were found by Petviashvili by means of numerical simulation
[18].

Second, to find the relation between the integrals H and P, the following two relations analogous to
(1.31), (1.32)

2PV +1,+21,-31,=0,

(1.35)
-VP+3iL+L+1,=0,

11=fu§dv, 13=fu3dv, 12=f(va)2dv

are insufficient. To obtain the third one, it is necessary to analyse test functions of the form u,(x, Br ).
By analogy with (1.32) we have

(d-1)(VP+3i-L)+3(d-3),=0. (1.36)
From (1.36), (1.35) we get

H=PV(2d - 5)/(1-2d).

* The first time such an approach was used was apparently by Derrick [15] for the Klein-Gordon model. It should be noted that for a variation
of &, Su = (rV)u, da. So, (1.32) can be obtained by multiplying the previous equation by (#V)u, and integrating over x, ref. [16].
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It is seen that for d =2, H= —PV/3 and is negative,* in the three-dimensional case H is positive.

Particular attention should be paid to the nondiscrepancy of the ratios (1.32), (1.33), and (1.35),
(1.36) which is to be considered as a necessary condition of the existence of soliton solutions. It is clear
that this requirement does not replace a total proof of the solution existence.

Now let us turn to the stability of the soliton solutions. For a solution of this problem we use the
Lyapunov theorem (see e.g. [110]) according to which in a dynamic system there exists at least one
stable solution when some integral, for example, the Hamiltonian will be bounded from above or
below. The sense of the theorem is very clear. The boundedness of the integral results in its absolute
minimum or maximum existence. Let us consider the system in the state corresponding to the absolute
minimum of this integral. Every variation of the solution must increase its value in contradiction to the
integral conservation. Hence, the solution must be stable. Therefore for the soliton solution stability it
is sufficient to prove the boundedness of H for fixed P (in this case from below, since the Hamiltonian is
not bounded from above, H can be made arbitrarily large due to the presence of the integral I, for a
given integral P).

First let us consider the scaling transforms

u(x,r )=a "B %u (xia, r IB)

which conserve P. For such transforms H becomes a function of the parameters a« and B. In the
one-dimensional case (d =1) H depends only on a; in two- and three-dimensional geometrics for the
KP equation it depends on two parameters:

2
H=-L 1 +3%
2a 2B

12 _ a—1/2B(1—d)/213 .

For d =1 and a power-law nonlinearity ¢ = 4" in (1.13), H as a function of & has a minimum for n <6
only. When n =6 this function has no extremum. When n>6, H is unbounded from below and a
maximum appears instead of a minimum.

An analogous situation takes place for the KP equation. When d =2 the Hamiltonian is bounded
from below but in a three-dimensional case the opposite situation takes place. Instead of a minimum a
saddle point is available, and the Hamiltonian as a function of two parameters is unbounded from
below. In order to make sure of it, it is sufficient to consider the lines

a2=cﬁ.

It should be noted that the unboundedness of the function H(a, B), strictly speaking, does not mean
the Hamiltonian boundedness. In principle, its boundedness is possible because of other integrals.
However, in this case this remark is insignificant, since for n>6 the equations (1.13) and the KP
equation for d = 3 have no nontrivial integrals [111, 112].f It means that in these equations there are no
absolutely stable solutions for the above values of the parameters. As for the other values of n and
d =2 in the KP equation, the scaling transformations indicate only the boundedness of H. Below we
adduce a rigorous proof of this fact [19, 20]. For this purpose we will estimate the integral I, through

* Certainly this result can also be obtained by a direct substitution of the solution (1.34) into the Hamiltonian and the momentum.
1 The angular momentuin in the KP equation cannot lead to the boundedness of H, since it turns to zero for cylindrical-symmetric distributions.
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the integrals I, I, and P. For d =1 we have
fu" dx < (max uz)("_z)/ZJ’u2 dx . (1.37)
Using later the obvious inequality
max u252f|u||ux|dx (1.38)
and Holder’s inequality, we obtain

Jun dxS Cnlgn_Z)/ZP(n+2)/4 (139)

where C, =2""? P=2P = [ 4*dx. This estimation can be improved. For the multiplier C, (1.39)

one can find an exact lower boundary [21]

C, =Inf Flu]=Inf """ P*24) (1.40)
To obtain Inf F[u] it is necessary to choose among all stationary points F[u] a minimizing one. It is easy
to see that the Lagrange-Euler equation for F

n+2 1 I nel _
e N A rEr YA

after a simple transformation u = i(I,/(n — 2)1 )"~ coincides with eq. (1.14) or eq. (1.30) for the
stationary solutions of the KAV equation with a power-law nonlinearity

n+2 I

-, (1.41)

xx

3
[\
o |

It has a unique localized solution in the form of a soliton. Thus all integral relations (1.31), (1.32),
(1.33) in which the value (n +2)I,/(n —2)P should be set instead of V, are valid for this solution.
Hence, taking into account (1.39), (1.40) and (1.41) for H with n <6 we have the following estimation

n—6 115=H

H=zmin[}l, - C 1" P+ = — 5 = H.

=

where I, is the integral value I, for the soliton solution (1.41) or (1.14). Thus for n < 6 the Hamiltonian

H is bounded from below, while an absolute minimum of H (for fixed P) is attained for the soliton.
In the two-dimensional case the proof of the boundedness of H is based on the following inequalities.
First, with the help of Holder’s inequality we have

1/2 1/2
Ju3dxdyS(ju2dxdy> (ju"dxdy) .
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Then we estimate [ u* dx dy:

0 x y
fu4dxdy5fm3xu2dyfdxjuuy,dy’
(in the latter integral we change the integration over x and y’ and integrate by parts):

Zde max uzjdy’[uuy, dx = —2fdy max uzfdy'fuxwy, dx .
Then, using the inequality (1.38) we obtain
I <2P3/411/211/4
3 1 2
Substitution into the Hamiltonian gives the boundedness of H from below
H=1iI+3L-2P"' )L =-%pP°. (1.42)

The inequality (1.42) and the relations (1.31), (1.36), (1.37) show that the nontrivial stationary
soliton solution corresponds to the lower boundary of H. It is evident here that for fixed P, H has a
unique minimum. It is this fact that proves the stability of solitons for the KdV equation (1.4) for n <6
[19] and for the two-dimensional KP equation [20].

1.3. Variational estimates for equations of the NSE type

Now let us consider the soliton stability in the nonlinear Schrodinger equation:
iy, + Vi +|y]> ¢=0. (1.43)

Here the dispersion is regarded to be positive, @ >0 in (1.20), while the nonlinearity is assumed to be
cubic. Now let us seek a stationary solution of (1.43) in the form ¢ = exp(iA*) g(r). Such a type of
solution with the multiplier oscillating in time is natural, because the interaction leads to a nonlinear
frequency shift A general for all harmonics. The function g is determined from the equation

and represents the stationary point of H for a fixed number of waves N
S3(H+ A’N)=0 (1.45)

where H = [ {|%|* - }|¢|*} dV.
The ratio of H and N for the solution (1.44) can be found by analogy with (1.32):

d-2
H=\* 14 (1.46)



118 E.A. Kuznetsov et al., Soliton swability in plasmas and hydrodynamics

from which it follows that only for d = 1 the Hamiltonian is negative. Scaling transformations show that
only in a one-dimensional case the Hamiltonian boundedness is possible. The proof of this fact follows
from the inequality (1.27), (1.39) generalized into complex-valued functions

f|‘/’|4 deC4Ii/2N3/2 (1.47)

where 1, = [ |¢,|* dx and C, is defined from (1.40). Hence it follows that for d = 1 the Hamiltonian H
for the NSE for fixed N is bounded from below, its lower boundary is attained for the soliton (1.24).
Therefore in accordance with the Lyapunov theory the soliton in the one-dimensional NSE is absolutely
stable.

For power-law nonlinearities ¢ =|¢|*/n and an arbitrary dimensionality d the generalized
inequalities (1.47) have the form [22, 23]:

JW" dr= c(f |V¢1|2dr)d(n_l)/2<j|¢|2dr) e (1.48)

where a minimal value of the coefficient C, is determined from solution of the variational problem
coinciding with (1.45)

- , 2n—nd+d [
g~y + VY D- N0 (1.49)
The localized solution (1.49) exists only in the case of positivity of A*> = (2n — nd + d)I,/d(n — 1)N. In
the three-dimensional case this requirement is violated when n =3 (compare with [24]).

From (1.45) it is clear that a minimum for the corresponding functional H will be attained in the
central-symmetrical distribution with a phase independent of r: ¢ = g e*, ¢ = ¢(1).

For these distributions the equation (1.49) can be rewritten in the form

dg d-1dg 212 _
dr2+ — 3, T Ag=0. (1.50)

The soliton solution should satisfy the boundary condition
dg/dr|r=0 = g|r=m = 0 N

Equation (1.50) is analogous to Newton’s equation for a particle moving in the potential U =
g”"12n — A*g*12 (see fig. 1). Here g is the coordinate, r the time, the term ((d — 1)/r) dg/dr plays the
role of a friction force. The boundary conditions mean that the “particle” trajectory begins from the
reflection point (r =0) with a “velocity” equal to zero and ends at the origin of the coordinates. It is
also obvious that in the one-dimensional case there exists only one soliton solution discussed above.

In two- and three-dimensional cases there exists a denumerable set of soliton solutions [25] where the
m-soliton has m modes which corresponds to the number of particle oscillations in the potential. Its
amplitude increases monotonically with the number of m. The soliton without nodes is called a
ground-state soliton.

The minimum is reached for the ground-state soliton. Substitution of the inequality (1.48) in H
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u

]

Fig. 1. (a) The “effective” potential well for eq. (1.50), (n = 2). The curves (1), (2), {3) correspond to one-dimensional, ground-state and first excited
cylindrical solitons respectively. (b) Soliton solutions correspond to the curves (2), (3).

shows that boundedness of H takes place when
n<2ld+1. (1.51)

In this case the minimum of H is attained for the ground-state soliton which is stable for this reason.
When n>2/d + 1, H occurs to be unbounded from below.

When n=2/d + 1 an additional symmetry arises in the nonlinear Schrodinger equation. In particular
it is manifested in that for a scaling transformation conserving N, the dispersive and nonlinear terms in
H are transformed in a similar way. For the soliton these terms are equal so that H =0 (cf. (1.46)). A
more general consequence of this symmetry is the existence at n=2/d +1 of a transformation
translating the solution of ¥ of NSE to another solution :

0= (-2) vy ewfigr =)
(1.52)

r=rrl(r—t), t=ul(r—1).

The transform (1.52) includes the inversion transformation with respect to time and a scaling transfor-
mation with respect to the space coordinates. In the two-dimensional case when the NSE describes a
stationary self-focusing in media with a Kerr nonlinearity, the transform (1.52) was found by Talanov
[26]. It is easy to verify that a superposition of two transforms (1.52) with parameters u, = 7;' and
u, =7, are transforms of the same type with u =g, + u,, i.e. the relation (1.52) defines a
one-parameter Abelian group relative to which NSE is invariant for n =2/d + 1. Moreover, the given
symmetry belongs to the Noether type; it leads to the invariance of the action,
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— Y™ 2 2n
1=[2aar, g=igy,- WPl

and hence, according to the Noether theorem, generates an additional integral /. This integral can be
found in the usual way (see [27]). It occurs also as a result of the transform of the Hamiltonian

[28]:
- 1 1 X ) 1
Hz?I("’”“’):;z“[H(f—f) +%fr |y|* dv + Z(t—r)%jrzwlde].

Differentiation of H by t leads to the remarkable result obtained in [29]

2

d
Wfr2|¢|2dv=8H. (1.53)

This equality is sometimes called the virial theorem since it is a direct analogue of a well-known
differential relation of classical mechanics after averaging of which the virial theorem is obtained [109].
The virial theorem (1.53) also takes place for arbitrary values of n and d (see e.g. [30])

2

%fﬁwfdv:sy— % (n— % —1)f|¢\2" dr (1.54)

which can be established by a direct check.

The transformation (1.52) gives an opportunity to investigate the soliton solution y,(r,t)=
go(r) exp(iA’t) for stability (in problems of light self-focussing a stationary waveguide propagation
corresponds to such a solution). If a solution is known, then its transformation with the help of the
procedure (1.52) defines a one-parameter family of solutions. It is easy to see that the derivative of ¢,
with respect to the parameter u =1/7 satisfies the equation linearized on the background of y,. A
perturbation

sy =

(. d ir a2 ) L
C du ,L=08'U‘_(t2 - — g +HiAt g+ trV)g)exp(ir)

caused by the soliton solution ¢,(r, t) describes an instability of the power-law type [28]. The nonlinear
stage of this instability development describes the formation of a singularity after finite time, collapse
(again, one can see this with the help of formula (1.52)).

It should be added that the soliton solution instability for d =2 has been observed in numerical
experiments {31, 32].

Therefore it follows from the above that multi-dimensional stable solitons can exist if the nonlineari-
ty grows rather slowly with amplitude (see criterion (1.51)). In two- and three-dimensional cases such a
situation arises for propagation in one direction with close group velocities of three resonance-
interacting waves. In this case for a description of three wavepackets in equations of motion in
comparison with the known Bloembergen system [33] it is necessary to take into account both
dispersion and diffraction terms [34]:
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"

i a4+ 24 = 4n
I(Alr+lelz)+‘271 TS A T 23,
v wl/
i(A2,+v2A22)+2—1§2 A A+ 5 Ay, = —AAT, (1.55)

"

. U3 w3 — *
(Ay T 0345) + - A, Ay + 5 Ay, = —A AT
3

2 3zz
This system is also a Hamiltonian one
10A;/9t=3H/dA7
with the Hamiltonian

H=§j:j{ivjAj

&A’;
0z

+—lﬁ— V,A |2+w—"{ |A.|°-(A*ALA +cc)}dr
2k,- 141 7 jz 1432433 L. .
Besides H (1.55) conserves the Manley—Row integrals
L=[dal+laper, =]k +lapar

It is not difficult to show that soliton solutions represent stationary points of H for fixed Manley—Row
integrals. In the simplest case when all group velocities coincide and o’ >0, estimates obtained with the
help of the scaling transforms show that H is bounded from below in both two- and three-dimensional
cases which is in agreement with the estimate (1.51).

Using inequalities similar to the above-mentioned ones, it is possible to state that the Hamiltonian is
bounded from below [34]:

H=4mY(I, + 1)
where

m = min(v;/2k;, 7).
Hence follows the existence of the stable localized stationary solutions (1.55). Here, according to [34],
two-dimensional solitons prove to be unstable with respect to transverse perturbations while the
three-dimensional solitons are absolutely stable. It should be also noted that apart from solitons
realizing the minimum of H, there exist various stationary solutions corresponding to local extrema of
H. Being unstable relative to finite perturbations, these solitons are of little physical interest.

A situation analogous to that in the one-dimensional Schrodinger equation takes place under the
interaction of a quasimonochromatic HF wave with an acoustic one described by means of equations
(1.25), (1.26). It is easy to see that the simplest stationary solution in the form of a soliton at rest

y=exp(iAt)g(r), n=-|¢|’, v=Vé=0 (1.56)
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presents a stationary point H for fixed N
8H + A’N)=0.

The boundedness of H (1.27), possible only in a one-dimensional case, follows from the estimation [35]

2 2
Hy= [ ((vof + 2+ b nluf) av

2 4
v=[{mar s tory+ S - av = v - slol) av = Hee (157

which becomes exact for n = —|¢|* and v =0 (cf. eq. (1.56)).

The inequality (1.57) shows that the Hamiltonian H (1.27) is always majorized by the Hamiltonian
Hy; for the NSE. As was shown above the boundedness of Hyg of the form (1.57) is possible in a
one-dimensional case only while the minimum H for fixed N is attained for the soliton solution. The
latter proves the stability of the one-dimensional solution (1.56) with respect to one-dimensional
perturbations [35, 36]. The stability of one-dimensional solitons moving with velocity v is set almost in
the same way. For this purpose the Lyapunov functional is constructed in the following form (cf. [37])

H=H+ 1p’N-BP, P=j[nv—i¢*wx]dx.

After the transformation @(x, f) = y(x, t) expi( Bx/2 — B’t/4) at B <1 for H we have an estimation
analogous to (1.57)

H=f(|¢;x|2 + %2 + %2 + Bnv + n[d/|2) dx

:J(I‘MZJ“ O 1_2[32 <” ¥ 11_(?';2)2 B 2(1|f|;2)) d"zf ("]’x‘z - —Lﬂiﬁ) dx

from which the desired proof follows.

Now we will discuss the problem of stationary waveguide solutions arising due to thermal non-
linearities. In dimensionless variables the stationary equations (1.25), (1.28) and (1.29) (independent of
t) may be presented in the form

iy, +A y+0p=0, —A6+n0=|y. (1.58)

A thermal self-focusing mechanism is quite clear.

For the usual striction self-focusing pushing the plasma out from the waveguide and hence increasing
the refractive index is due to ponderomotive forces. In this case the plasma displacement is caused by a
temperature increase and consequently by a pressure increase due to energy absorption in the region of
radiation localization. As a rule, the term describing plasma cooling is small, n <1, but, as is easily
seen, after integration of the second equation in the system (1.58) over the volume, without this term it
is impossible to obtain a stationary solution.
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It may be concluded from the first equation (1.58) that for stationary waveguides the transverse size
of the waveguide decreases with increasing amplitude. In its turn, it follows from the second equation
that the effective nonlinearity in (1.58) grows more slowly than in a medium with a cubic nonlinearity.
Hence according to the criterion (1.51) two-dimensional waveguides of the form ¢ = f(r ) exp(iAz)
(having the meaning of two-dimensional solitons for the system (1.58)) should be stable with respect to
stationary perturbations, i.e. in the frame of (1.58).

Let us show it in a more rigorous form. The system (1.58) can be written in Hamiltonian form

iy, = 8H/3y*

with an additional condition 8H/38 = 0. The Hamiltonian H is of the form

H= [ (19,0 + 57,07 + bn'o*  olyf*) dr,
Soliton solutions (1.58)

g =exp(iA’2)fy(r,), 0=06,r)) (1.59)
as before, represent the stationary point of H for fixed N = [ |y|* dr

8H + A°N)=0.

By analogy with (1.46) H appeared to be negative for the soliton solution:

H=-} f(vlo)2 dr, .
Then with the help of integral estimates one can show the boundedness of H from below [14]:
Hz-N((1-7")q").

This inequality indicates the existence of a stable in the framework of the system (1.58) stationary
two-dimensional waveguide. It is rather obvious that the minimum of H will be attained for the
ground-state soliton being cylindrically symmetric and having no nodes.

1.4. Stability of two-dimensional vortices

In concluding this chapter we indicate one important application of the methods considered above.
We will study the problem of vortex stability in hydrodynamics. This question is of special importance
since exact stationary solutions in the form of two-dimensional vortices have recently been found in
geophysics and plasma physics. Up to the present time their stability is far from being completely
studied. There is a wide bibliography devoted to this question; we indicate only some of these papers
[38-43].

Descriptions of plane vortices in various physical situations have much in common. Below we restrict
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ourselves only to a consideration of the flow of an ideal incompressible fluid following mainly Arnold
[44-46]. These results can also be extended to other problems.
Let us consider the two-dimensional Euler equation for an ideal flow in some region D’:

M _DWy) sy 0 o

gt D(x,y) dx dy dy dx’ (1.60)

Here ¢ is the stream function in terms of which the velocity and its curl can be expressed by means of
the formulae

v =—dp/dy, v, =dpldx, 0=(curlv), =V,

Similar to the universal nonlinear equations considered above, equation (1.60) is also a Hamiltonian
one [47]. It can be written in the form (see [4, 48])

aNot={0Q,H},

where the Hamiltonian H coincides with the fluid energy H =} { (Vy)’ dx dy and the Poisson brackets
{F, G} between two functionals represent brackets of the Kostant—Lie—Kirillov type

D(5F/30,5G/50)
F,G =J.() dxdy.
(£, G) D(x, ) y

Besides H, eq. (1.59) conserves integrals of the form R, = { f(2) dx dy with an arbitrary function f.
Consider now stationary solutions (1.60) of the form ¢ = y;(x, y) defined from the condition

D(4y, V') /D(x, y) =0. (1.61)

The solution of (1.61) can obviously be written as

¢, = F(Vz%) or Vz‘p =g(¢y) 8= F™! (1.62)

where Fis an arbitrary function, and g = F " is the function which is the inverse of F.
For the Lyapunov functional L we take a combination of H and R, of the form

L= [ [y + ) dxay.

We choose the function f so that f'(2)= F({2). Then one can directly verify that the stationary
equation (1.62) is the Lagrange equation for L:

SL = j [, + F(2)] 32 dx dy .

It is easy to check that for any perturbation ¢, ¢ = ¢, + ¢, the functional L may be presented in the
form
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L= Lo+ [ (W) + A + @)~ 1)~ /() @) dxdy

For small perturbations w =A@ < (),
G=f(+ w)— fifl) ~ () 0= 3F' () 0*;

from this there follows a sufficient criterion for the stability of two-dimensional solutions ,(x, y) with
respect to small perturbations:

F'(12,)>0.
Provided this derivative for all {2 is bounded from below by a positive constant a, then
G=f(2+w) - f(?) - f'(2) 0= }a0’

is also positive and therefore the functional L has an absolute minimum for = ¢, [45]. This result can
also be shown by simple integration:

[ do, [ da, 1@+ w) =2+ @) - 12 - F () 0.

Thus L becomes positive when f"= F'>0.

The stability of two-dimensional vortex motions of a barotropic liquid has been studied similarly
[49].* However, up to now the problem of the stability of two-dimensional vortex solutions with respect
to three-dimensional perturbations remains an open one.

2. Stability of solitons with respect to small perturbations
2.1. General remarks

As we have seen in the previous chapter, in a number of cases it is possible to show soliton stability
by means of a variational method constructing the corresponding Lyapunov functional. However, this
approach is not suitable when the question is the stability of solitons realising local but not absolute
extremums of functionals. In this case it is necessary to investigate soliton stability with respect to small
perturbations. As a rule, the set of equations linearized on the background of a soliton solution
represents a spectral problem for differential operators which are, generally speaking, non-self-
conjugate ones. These problems are complicated in a technical sense; there is no general method for
their solution. Nevertheless, there are several methods which give an opportunity to investigate soliton
stability for a wide spectrum of problems. In this chapter we consider these techniques choosing very
simple but at the same time sufficiently interesting examples. An effective investigation of soliton

* See also a recent review by the same authors [50].
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stability is possible due to our knowledge of neutraily stable perturbations corresponding to small
changes of stationary solution parameters. The use of this idea goes back to a paper by Barenblatt and
Zel'dovich on the stability of combustion waves [51]. Pitaevsky used this approach to investigate the
oscillation spectrum of vortex filaments in liquid helium [52]. Zastavenko [53] used it to study soliton
stability for the nonlinear Klein-Gordon equation, and so on.

Note that the soliton dimensionality is often less than the dimensionality of the space in which it is
considered. This is the case for the one- and two-dimensional solitons discussed in the previous chapter.
All these solutions possess a continuous symmetry group (a translational group). Therefore the problem
of soliton stability naturally is divided into two parts. First, it is necessary to study soliton stability with
respect to perturbations which do not break the soliton symmetry, i.e. to perturbations with the same
dimensionality. Next, if the soliton dimensionality is less than the space dimensionality, one should
study soliton stability with respect to perturbations of a higher dimensionality, for example, with respect
to “necks” and ‘“snakes”.

In the study of instabilities breaking the soliton symmetry a basic method is efficiently used which is
based on expansion in a small parameter, the ratio of the transverse soliton size to the scale of
perturbation assumed, therefore, to be a long-wavelength one. The proximity of these perturbations to
neutrally stable modes allows us to construct a regular procedure for calculating their spectrum which
has a great degree of universality. This method was first used successfully by Kadomtsev and
Petviashvili for the investigation of one-dimensional soliton stability in weakly dispersive media [12].

2.2. Perturbations without symmetry breaking

In this section we will discuss the problem of the stability of stationary centrally-symmetric solutions
of the NSE with respect to perturbations which do not break their symmetry, i.e. which have the same
dimensionality as the solution itself.

From the methodical point of view we will start with the simplest problem — the problem of the
stability of solitons described by the relativistically invariant nonlinear Klein—-Gordon equation

u, - Vu=fu)=-mu+ru . (2.1)

We consider two cases for positive and negative values of m’ and A°. For the latter case eq. (2.1) is
often called the Higgs equation. One-dimensional stationary solutions of (2.1), u = u(x), obey the
Newton equation

d*u/dx’ = — o¢/du (2.2)
with the potential ¢(u) = —im’u® + 1A%u* (fig. 1). Particle trajectories corresponding to solitons are

represented by the line 1 in fig. 1. For m”> >0, A’ >0 the solitons are analogous to the solitons (1.24)
of the NSE

Uy (x) = : im cosh™" mx . (2.3a)

When m’ and A have an opposite sign solitons acquire the form of a shock wave or kink with width
-1
~m
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m m
uy(x) = n tanh Vit (2.3b)
Now we consider the stability of stationary solutions with respect to small perturbations du. Linearizing
(2.1) on the background of the soliton solution (2.3) and assuming du = (x) exp(—if2¢ +ikr ) we
obtain a spectral problem for the Schrodinger operator

[~d*/dx® = f'(u,) — (0" = *)] ¥ =0. (2.4)

Differentiating (2.2) with respect to x and comparing the result with (2.4) we see that du,/dx is a
neutrally stable perturbation with @ = k =0. This fact is a consequence of the translational invariance
and thus the perturbation ¢ = du,/dx corresponds to an infinitesimal soliton shift. For the solution
(2.3a) an eigenfunction ¢, is zero in the soliton centre and hence it cannot be a ground state according
to the oscillation theorem (see, e.g. ref. [54]). Therefore the ground state has a negative value w” — «*
and consequently corresponds to unstable perturbations. For x =0 the instability growth rate is of the
order of the nonlinear frequency shift y,, ~Aw,,; transverse perturbations with x* <1y _ are also
unstable. For the solution (2.3a) the Schrddinger operator spectrum is well-known [54]. For the
instability growth rate we have

y? = -k’ +3m’

and the corresponding eigenfunction
¥ =cosh™ mx .

For solutions in the form of a shock wave or kink y, = du,/dx has no nodes and, therefore, represents
the ground-state eigenfunction. Thus w” — «* has only positive values and the solutions (2.3b) are also
stable against transverse perturbations. In particular, the kink stability in the sine-Gordon model where
f(u) = sin u follows from this.

Now we turn to the problem of the stability of cylindrically and spherically symmetric solutions of
NSE

i+ VU +[4]* =0 (2.5)
of the form ¢ = g(r) exp(iA’t) which obey the equation
—Mg+Vg+g’=0. (2.6)

The quantity A* has the meaning of a bound state energy. The S-solutions without nodes correspond to
the ground state which must be the most stable one. Therefore, below, when this point is not discussed
especially, we shall mean by the stationary solution the ground state (2.6). It is clear that the function g
in this case can be considered to be real.

The solutions of eq. (2.5) will be sought in the form

Y=(g+utiv) exp(i)«zt) = J/ exp(i)«zt)
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where u and v are real-valued functions. For such transformation
2
H—->H+AN.

Then assuming u and v to be small we linearize eq. (2.5). As a result for perturbations u, v « exp(i{2t)
we obtain the following spectral problem

Qu=L,Lu
where the self-conjugated Schrodinger operators L, and L, have the form
Ly=-V’+ A -g", L =-V'+A"-3g". (2.7)

For instability it is sufficient to show that the minimum eigenvalue £ is negative.
Consider now some properties of these operators. From a comparison of (2.6) and (2.7) it is seen
that the stationary solution g(r) is an eigenfunction of L, with eigenvalue zero:

Lig=(-V'+A"~g") g=0. (2.8)

Since g nowhere turns to zero, it is an eigenfunction corresponding to the ground state and the operator
L, is nonnegative. This is clearly seen from the fact that L, may be represented in the form

1 1
Ly=- gVg2 v . (2.9)
A derivative of the stationary solution in some direction £ is an eigenfunction of the operator L, with
eigenvalue zero. This can be easily verified by differentiation of (2.6). Since dg/dé vanishes on the line
which passes through the soliton centre it cannot correspond to the ground state and hence L, has
negative eigenvalues. The minimum value of 2° can be found [55] as the functional minimum

Q* =min [(u|L,|u)/{u|L;"[u)]. (2.10)

This minimum is taken on the class of functions orthogonal to zero-eigenvalue eigenfunction of the
operator L,: Lyu, =0, coinciding with g. The operator L on this function class is positive definite, so to
prove instability or stability it is necessary to determine the sign of the functional {u|L |u). This
problem is reduced to the solution of the spectral problem for L,

Liu=Au+ag (2.11)
with an undetermined Lagrange multiplier a and an additional orthogonality condition {(u|g) =0.

Following ref. [56] we expand u and g in terms of a complete orthonormalized system of eigenfunctions
of the operator L, ¢, (L,¢, = A, ¢,). Substituting this expansion into (2.11) we obtain

u——-az <g|_(/jn> ’,l/n-
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The orthogonality condition gives

a2 ——<g|)‘f">_<;/’"g> = a f(})=0. (2.12)

n

It should be noted that in this sum the term with A, =0 is absent due to (Vg | g) =0. Below the level
A, =0 the operator L, has only a ground state which is an S-state with A, <0. Let us consider a A-value
between the first positive eigenvalue A, and the negative eigenvalue A,. When A increases from A, to A,,
f(A) changes monotonically from — to « and, consequently, passes through zero. Therefore to define

the sign of A, it is sufficient to determine f(0). For f(0)>0, A_,, <0 but for f(0) <0, A_, > 0. From
(2.12) it follows that
(gl¥.) (¥.18) .

f0)=2 == =(elLi'[g)
Differentiating (2.6) with respect to A> we obtain

L, dglox* +g=0,
whence

f(0)=—(g|dglor’y=—LaNIa* .
Thus, the solitons are unstable when [56]

ANIN*<0, N= f ly|>dv (2.13)

and stable in the opposite case. It should be noted that the given criterion is valid for an arbitrary
functional dependence f(|¢|*). For media with a cubic nonlinearity g(A, r)= A ¢(A,r) and Nx A*™,
i.e. in the three-dimensional case N« A~', in the one-dimensional case N« A, while in the two-
dimensional case N does not depend on A. Thus, three-dimensional solitons in this situation are
unstable while one-dimensional ones are stable in agreement with (1.51). In the two-dimensional case
the criterion (2.13) does not answer the question about the stability; from (2.13) it follows that
exponential instability is absent. This fact agrees with the result of section 1.3 according to which the
two-dimensional instability relative to two-dimensional perturbations is of a non-exponential character.
This instability is however weak. The instabilities considered below play a more essential role. They are
connected with the transverse modulation of the soliton.

The above considerations are suitable for the investigation of soliton stability in a medium with a
power-law nonlinearity

i, + Vg + gy =0.

In this case N(A) = A*”*™?. One can see that the cubic medium for d =2 is on the stability boundary.
The criterion obtained above gives us the possibility to determine only the very fact of instability. The
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characteristic growth rate of instability is of the order of the only characteristic frequency, the nonlinear
frequency shift; y, ., ~Aw,,.

The criterion (2.13) may be obtained also from a consideration of the second variation of the
Hamiltonian of the solution g:

8°H = f [vLy + uLu]dV .
In this case the functions u and v are the usual canonical variables
2u,=68H'/dv 2v,=6H'/bu

and the Hamiltonian H' = 8°H is the sum of the terms (v|L,|v) and (u|L,|u) which can be considered
as “kinetic” and “potential” energies. When each of these terms is positive (or negative) definite, the
state being investigated is stable. If one of them is positive definite and the other is negative definite,
instability takes place. Due to conservation of the number of waves [ |¢|°dV and of momentum
i[(¢* Vg ~c.c)dV the function u must be orthogonal to g and v must be orthogonal to Vg:

jung=0, vang=0. (2.14)

For a linear problem the given conditions serve as solvability conditions. Taking (2.14) into account it is
easy to see that the first term (v|L/|v) is positive definite while the condition of the second term to be
negative leads to the criterion (2.13). The soliton stability for a KdV equation of the type (1.4) can be
considered in a similar way. In this case the instability criterion takes the form [19]

dP/V <0,

Whence, in particular, there follows the soliton instability for n > 6 which is in agreement with the
results presented in chapter 1. It should also be noted that the analogue of the criterion (2.13) in field
theory was obtained in the work by Friedberg, Lee and Sirling [57].

2.3. Soliton stability with respect to transverse perturbations

In the present section we consider a number of problems which are difficult to investigate with the
help of the variational principle. In particular, this is the problem of soliton stability with respect to
perturbations breaking the translational symmetry. First the soliton stability described by NSE, will be
discussed, following mainly ref. [S8]. As we noted before two types of soliton solitions may be
distinguished in this equation: solitons localized along the direction of wave propagation and
waveguides localized in the transverse direction. For concreteness we will consider the problem of
waveguide stability; the result of soliton stability studies can be obtained by a simple change of
notation.

The waveguide instability
Let us start the discussion of the stability of flat waveguides which are the solutions of the following
equation
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W, +A y+ag, +|Yf y=0, a=kw'u, (2.15)

in the form (1.22), (1.24) ¢, = g(¢) exp(iA’f). In contrast to the preceding section, here we also consider
the case when w”<0. Linearizing eq. (2.15) on the background of a flat waveguide, for the
perturbations ¢ = (g + u +iv) exp(iA’t); u, v xexp(—iQt+ikz) the following spectral problem is
obtained:

Q%u=(Ly+ ax®)(L, + ax*)u (2.16a)
or
Q%= (L, + ax®)(L, + ax*)v, (2.16b)

where L, and L, are the operators introduced in the previous section. The principal concept for further
considerations is the following. First let us consider a perturbation with « = 0. Then it is not difficult to
define neutrally stable modes (2.13), corresponding to the eigenvalues (2 = 0. They relate to infinitesi-
mal variations of the soliton parameters. Further we consider long-wave modes (along z) locally slightly
differing from the neutrally stable ones and define their spectrum using perturbation theory with
neutrally stable modes as a first approximation.

Waveguides, as was mentioned above, are the four-parametric family of equations (1.22). The
difference between two stationary solutions with close parameters is a neutrally stable mode. Differen-
tiating the stationary solution with respect to parameters we introduce the following functions:

-_ -_ 1
Ug = 8x> Vo = —2X8,

ug =—aglaA*>, v, =g. (2.17)
Here the indices * correspond to functions with different parity. Generally speaking, a waveguide with
amplitude A, +dA is not stationary because it has an additional nonlinear frequency shift 2A 3A.
Therefore dy,/dA *contains a term increasing linearly with time which does not make a contribution into
(2.16).

As was mentioned above

Ly, =0. (2.18)
Differentiating (2.18) with respect to x and A”> we get

Lu, =0, (2.19)

Lug =v, . (2.20)
It is easy to verify the relation

Ly, =u, . (2.21)

We see that the functions u, are the solution of the equation
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LyLiu,=0 (2.223)

which is obtained from (2.16a) by putting x* = £2° =0, and the functions v, are the solutions of the
conjugate equation:

L,Ly,=0. (2.22b)

Obviously

— + ot t [
Uy =Cuy +Cu, , Uy = €Uy t 030,

where ¢, ¢,, ¢}, c; are arbitrary constants.
The scalar product between functions of different parity is equal to zero. For functions of the same
parity we have

(valvg) =N, (vglug)==1NIar*,  (vglug)=iN. (2.23)
The even and odd neutrally stable modes correspond for «” # 0 to two branches of the spectrum of the

operators (L, + ax’)(L, + ax®), 02 (k) and, respectively, the eigenfunctions u*(x). For ax’ smaller
than A we have

W) =u; tu;+o, Q=00 +0.+-. (2.24)
Substituting (2.24) into (2.16a) we obtain to first order in k*:

LoLu; =23, —ax*(Ly+ L)) ug . (2.25)
The solubility condition of eq. (2.22) is the orthogonality of its right-hand side to the solutions of the
conjugated equation (2.22b). It is obviously sufficient to verify the orthogonality to the even solution of
v, . Multiplying (2.25) scalarly by v, and taking into account the relations (2.18), (2.20), (2.23) we

obtain

(vg|Lo+ Lilug) = 2k’

03, =ax’ oras) a’ —es (2.26)
Analogously, for the odd mode

0 =ak® (vg|Ly+ L|ug Y/ {vg |ug ) =dar® (uy |uy )/IN . (2.27)
Using the specific form of the solution, we calculate (u, |u, ) and obtain [58]

Q) =—4a’r’; 0 =ta’At. (2.28)

It is clear that for any sign of dispersion a the instability takes place. For a >0 the symmetric mode is
unstable and for a <0 the antisymmetric mode is unstable. It follows directly from (2.16) that
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0° = (ax’)’ for ax’> A% The instability is limited at ax’~ A%, and for the maximum growth rate of
both modes we have the estimate y_, ~ A’ =Aw,,. The growth rate is of the order of the nonlinear
frequency shift of the wave due to nonlinearity, and it is of the same order as the instability growth rate
of the monochromatic wave. The symmetric neutrally stable mode has the meaning of an infinitesimal
waveguide amplitude and phase modulation. The exp(ixz) dependence leads to a successive decrease
and increase of the amplitude with a period 27/k. The increase of such perturbations leads to the
bunching of the waveguide in a longitudinal direction (sausage-type instability), whereas the antisymmet-
ric instability leads to waveguide bending (screw type instability). Qualitatively, the symmetric
instability is analogous to the modulational instability of a monochromatic wave. For @ <0 when the
antisymmetric instability takes place, the interacting waves are similar to the particles being attracted to
one another in a transverse direction and being repelled in a longitudinal one. The antisymmetric
instability is therefore analogous to the instability of a rod compressed at both ends.

It can be easily verified that all the obtained results are valid for a description of media with an
arbitrary nonlinearity f(||’). As dN/GA*—0 the symmetric mode growth rate formally turns to
infinity, and when dN/dA> <O the instability disappears. In this case, however, the instability with
respect to one-dimensional perturbations found in the previous chapter with the help of the variational
method takes place. For dN/dA”> < ax’N/A* the formula (2.26) is, of course, invalid. This case which is
of particular importance for cylindrical geometry will be considered below.

To calculate the remaining terms of the expansions (2.24) it should be taken into account that the
value 022, appears as the solubility condition of the equation for u> and the knowledge of u_ | is
necessary for its evaluation. To find u,_, it is, generally speaking, necessary to invert the operator L,L,.
Note, that the operator L, can take the form g '(d/dx)g’(d/dx)g. " as follows from formula (2.19).
This formula in combination with formula (2.9) demonstrates the possibility in principle to invert the
operator L,L, and calculate any terms of the series (2.24) through quadratures. Let us present the
results of the calculations for a one-dimensional waveguide with a cubic nonlinearity [58]

0% =—4a’2+ 31+ 773)a’kt; 0% =tak’A+ A +2779)a’k? .

It is clear that the growth rates reach their maximum and are bounded for ax®~ A>. However, in this
region all the terms in the series are of the same order and the given formulae can only be used for
estimates. In a medium with a cubic nonlinearity one can also calculate the boundary value of «, for
which the instability disappears, and determine the growth rate structure near this point.

Let us first consider the case of positive dispersion, a > 0. Equations (2.16) can be presented in the
form of a set of equations, assuming u, v xe”

Ly=My+ My (2.29)
where
L +ak’ 0 0 -
() )
0 L,+ax®/’ M, y 0
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We seek the solution of (2.29) in the form of the series
¢=1//0+(//1+¢2+--'.
The function ¢, is defined from (2.29) for y=« =0
Ly, =0. (2.30)

Since the operator L, is nonnegative, a > 0, the localized solution (2.30) is of the form ¢, = ( §), where

i is an eigenfunction of the bound state of the operator L, = —d*/dx’+ A*> —6A%cosh® Ax. This

operator has two bound states: a shift mode corresponding to the first excitation state and a ground

state mode i, = 1/cosh’Ax, L,y = —3A%,. Therefore, y(x) for « >0 vanishes when ax’ =3\’ and

k,=0. When a <0, y(x) has only one zero for x,=0. Let us assume that in the neighbourhood of
— 2 2 : . .

K =Ky, ¥ > a(k” = k;). Then in the first approximation we have

L, = M, i, or (L, + aKé)Ul =Yl .

The latter equation can be explicitly integrated by means of the representation (2.9) (where instead of g
it is necessary to write ¢, = V2 cos V2Ax + tanh Ax sin V2Ax). A dispersion equation is obtained from
the solubility equation of the second approximation

Ly, = My, + My,

by taking the scalar product with the function ;. As a result of rather cumbersome calculations one can
get [60]:

v =2a(k] - k)(ir’ - 1) =3.1la(xl - 7).

The plot of this instability growth rate obtained numerically [61] is shown in fig. 2.

In the case of a negative dispersion, as was shown above, in (2.30) there is no localized solution
except k, =0. It is easy to verify that in this equation there exists the solution u = tanh Ax for ax; = A®
lying on the continuous spectrum boundary. It is impossible to construct a localized solution with finite
y for ax® — A> < A” which is likely an indication of the fact that the stability disappears stepwise for
finite «. This is in particular verified by the results of numerical calculations [62] given in fig. 3. The
results of the numerical calculations of the work [63] are apparently incorrect. In fact, in accordance
with these results the growth rate smoothly vanishes at the point ax; = 1.091> However, localized
solutions must be absent for ax>>A” It is also clear that perturbations of the continuous spectrum
cannot be unstable. Such perturbations are obviously stable at infinity with respect to x. Thus the
instability can be described only by localized solutions.

We have considered so far the instability of a flat waveguide against the onset of modulation along
the z axis. It is easy to generalize these results by taking into account the possibility of modulation along
the y axis. Assuming for the perturbations u, v x exp[if2¢ + ik(cos 6 z + sin 6 y)] we arrive at the same
formulae as before in which, however, it is necessary to replace a by e = a cos’ 6 +sin” 6. Here 8 is
the angle between the wavevectors of perturbation and the initial wave. We see therefore that in a
medium with a« >0 (medium with a positive dispersion) symmetric instability takes place for all
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Fig. 2. Growth rate of the soliton instability versus the perpendicular Fig. 3. Growth rate of the soliton instability versus the perpendicular
wave number for the positive dispersion case [60]. The solid curve wave number for the negative dispersion case [62].

represents the numerical results of the paper by Anderson et al. [61).
The dotted line corresponds to the expansion near & =0 (formula
(2.28)), the dotted-dashed line the expansion near k = k,.

propagation angles of the perturbation. In fact, it leads to a breakdown of the flat waveguide into
three-dimensional bunches within which amplitude singularities in the form of wave collapses appear
after a finite time [29, 30]. These collapsing bunches propagate with the group velocity. In a medium
with negative dispersion w”<0 we have antisymmetric instability inside the cone tan® 6 <|a| and
symmetric instability outside the cone. Their combination leads to fragmentation of the flat waveguide
and to a subsequent energy scattering at large angles. The question of the existence of singularities for
a <0 remains open.

The obtained results allow us to establish the fact of the “spatial” instability of a flat waveguide. Let
us assume that ¢ < exp(iA’t) in eq. (1.19) written down in the fixed coordinate system and neglect the
term ay,,. In this case the well-known self-focusing equation arises:

iy, + Vi — A%+ f(|y]) g =0.

A stationary flat waveguide represents the solution of this equation in the form ¢ = g(x). Let us
consider a stationary solution close to it in the form ¢ = g(x) + (u + iv) exp(ipz + iky) and determine
p(k). Obviously this problem is identical to that of the symmetric instability in a self-focusing medium
for a = 1; for the growth rate formula (2.28) is valid. The spatial instability leads to a fragmentation of
the flat waveguide into cylindrical beams collapsing up to the formation of point focuses.

The problem of a stationary cylindrical waveguide instability against the onset of modulation along
the z-axis leads to equations (2.16) where the operators L, and L, take the form

1d d ., , m
rdrrdr+/\ 8+

b

Ly=-

X (f(&)=¢)
L =L,-2g".



136 E.A. Kuznetsov ei al., Soliton stability in plasmas and hydrodynamics

It is assumed here that the perturbation has an angular dependence exp(im#); r, 6 are polar coordinates
in the x, y plane. We consider first the case m = 1. Introducing the notation v, = —3rg we verify that
relations (2.19), (2.21) remain valid as before. This is natural since the mode m =1 corresponds to a
displacement of the waveguide centre. Hence it follows that in the cylindrical case the instability
according to the m =1 mode is perfectly analogous to the flat waveguide instability. For the growth rate
we have a result analogous to (2.27)

2’ =4ak’(g2)IN.

From (2.17) we find the relation

(87)=AN
and get
07 =2ark’\*.

The instability takes place in media with negative dispersion " <0 and leads to a spontaneous bending
of the waveguide.

Consider now the centrally symmetric mode m = 0. The singularity of the growth rate (2.26) means
the necessity to reconstruct a perturbation theory series.

To a first approximation we have

LoLu =0Q%, . (2.31)

Since (v, |ug )= LaN/or* =0, the first approximation solubility condition does not impose restric-
tions upon £2°. In the second approximation we have

L,Lui =0 —a*(Ly+ L)u, . (2.32)
To calculate u; we should note that u, can be presented in the form

._ 98 1
L= 1
0 ‘9A2 AZ

9
ar'8"
Besides, L, can be written in the form (m = 0)

1d ,d1

_Edrrg dr g

0=
and eq. (2.31) is integrated twice. We get

L
L =2 r'g. (2.33)
This relation proves to be sufficient for obtaining the dispersion relation. Multiplying (2.32) by v, we
get
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2*ug |uy ) = ax*(vg Loy ) .
Further, taking into account that v, = L,u, and using the relation (2.33), we obtain

0 =16ax’A*N/{r'g*) . (2.34)
It is obvious that an instability occurs with growth rate

Y~ A Va?,
which as before reaches its maximum at ax’ ~ A% This instability is also analogous to the modulational
instability of a monochromatic wave.

When a medium with a nonlinearity close to cubic is considered, instead of (2.34) it is easy to obtain
58]

8(aN/aA2)A4> _ 16ak’A*N
(r'g’) (r’g")
For «k =0 (2.35) describes two modes, a neutrally stable mode and the mode found in the previous
section with the help of the variational principle.

.()2( o (2.35)

2.4. Instability of a waveguide in a medium with an inertial nonlinearity

Equation (2.5) presupposes that the nonlinear medium is inertialess, i.e., the nonlinearity “follows”
the wavefield instantaneously. In many physically important situations (see chapter 1) the nonlinearity
has a finite relaxation time connected with the inertia of processes which occur in the medium under the
influence of the wavefield. In this case eq. (2.5) must be replaced by a pair of equations which in the
laboratory reference system take the form

(g +0) + A, U+ e, + PY=0,
AP=f(ly]).

Here A is a linear operator which is, generally speaking, nonlocal in the coordinates; it takes into
account the delay of the nonlinearity. If ||* does not depend on time, the operator A =1, and the
system (2.36) has the same stationary solutions as (2.5).

Let us compare the effects of the inertia of the nonlinearity and the dispersion. Let the time of the
inertial nonlinearity be 7. The inertialess instability of the waveguide has the largest growth rate
y~Aw,, for ak’ ~ Aw,,, i.c., when k ~ (Aw,/w")"". A perturbation of this scale drifts over a length of
the order of its size within a reciprocal time

(2.36)

ku~(w; Aw, /K0")’> Ao, .

Obviously, the inertia of the nonlinearity can be neglected if 7°'>ku, i.e. when Aw /o<
0"k*lw(wr)’; when "~ w/k’, Aw, /o <(wr) > This rather rigid condition is usually not satisfied in
laser experiments. It is therefore natural to consider the opposite case Aw, /@ > 1/(w7)” with the inertia
of nonlinearity as the decisive factor, and to neglect the dispersion term ai,,.



138 E.A. Kuznetsov et al., Soliton stability in plasmas and hydrodynamics

Taking this circumstance into account, linearization of the system (2.36) against the background of a
stationary waveguide leads to the equations

L(L, +8Lyu=0%; L,=-A +A"—f(g"), (2.37)
(L,+8L)Ly=0%; L,=L,-28f(g"). (2.38)

Here 8L =2g[A™'(2, ) — 1] f'(g°) g; when 2=0, A" =1, 3L =0.

As was shown in section 2.3, a flat waveguide as well as a cylindrical one in a medium close to cubic,
experiences a “‘spatial” instability (for 2 = 0) which is conserved for media with any relaxation time.
We therefore restrict ourselves to the case of a cylindrical waveguide in a medium with a strong
saturation of the nonlinearity.

Multiplying (2.37) from the left by g we find that the symmetric instability mode is absent.
Multiplying (2.38) from the left by gr and assuming v = v, = rg, we obtain after simple transformations

AT (8%)se,) - (2.39)

(2~ wuf = 3 {gg,
The applicability criterion of this formula is the condition
N -ku<low,.
Let us consider the case of a medium with a nonlinearity relaxing in accordance with the law
TdPlot=—P+ f(|¢]*) .

In this case A =1—1i7 and eq. (2.39) in dimensional variables takes the form

40

— 2=__
(@ =ww) == 3730,

(Aw,,)’ c(A), (2.40)

c(A)={g’g’f'(g’))/NA*>0 is a dimensionless structure factor. For k =0 eq. (2.40) has a neutrally
stable solution (2 =0 generating for « # 0 an unstable branch of the spectrum. For {2r <1 we have

Q = ku +2ir(Aw,)’ C(A)[\/l + ﬁ—cw - 1] . (2.41)

Expanding the radical for small xu, we obtain

i (Ku):2
_ 1 . 2.42
4 Bup) 7 e 24
The positive sign of the imaginary part in (2.42) corresponds to instability.
The physical meaning of the instability is absolutely clear. During the waveguide bending the
nonlinearity cannot, due to inertia, compensate the diffraction divergence and prevent further bending.
When the inertia is large, Aw, 7> 1, formula (2.42) is valid up to ku ~Aw,,, where the instability

nl?
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growth rate attains the maximum value 7", In this case only waveguides of a length L < A,w/Aw,, are
stable (A, is the wavelength). In the opposite limiting case of small relaxation times Aw,_, <1 one should
neglect unity under the radical in formula (2.41). Then we have for the growth rate

y~2(kur c(A)"? Aw,, .

The maximum of it is reached for ku ~ ' and is of the order of y ~ Aw,,, the same as in the inertialess
medium. The maximum length of the stable waveguide in this case is of the order of L ~ Ajwr.

Considerable physical interest is attached to self-focusing in a medium with striction nonlinearity,
where the connection between P and ¢ is given by the wave equation

1
- ? Pu+AP=Af(|¢'|2)

To investigate the waveguide instability in a medium with striction we use the previous results.
Obviously, the operator A" takes the form

2
A=1+Q—2A“.
N

For sufficiently small 2° 2°<k2s* Aw_/w, we can put

_ (75
A‘—1=—?A;. (2.43)

Substituting (2.43) into (2.39) we obtain in dimensional variables

0%
(2 - ku)’ = - =N c,(A),

| (2.44)
o) =5 (&1-a7'If'(8) &7) -

Here ¢,(A) is a dimensionless structure factor, ¢, ~ 8w, /w. The equation (2.44) has an unstable root

2
Q- Ku(l +i % c}”)/(l +Z cl) . (2.45)
N

Just as before, the applicability condition (2.45) is
- ku<lo,.
Two limiting cases can be distinguished. For a low nonlinearity level (w/k,s)’ Aw, /o <1

. U 1n
Q- ku=iku 56
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The maximum instability growth rate is attained for k ~ k,(s/u)(Aw,/w)'"%, y~Aw,. As a result of
instability the waveguide breaks up into elongated bunches /, ~ (u/s)/, > 1, which are particularly long
in the case of striction self-focusing [, ~(c/s)/,. It is easy to see that the waveguide is stable with
respect to shorter perturbations. In the case of a large nonlinearity (u/s)’ Aw,/w > 1 the instability
becomes aperiodic:

0 =iks(Aw, /o) ",
The maximum growth rate is reached for k ~ k; Aw /w and is equal to
y~ o, (s/u)Ao,/w)'"* <Aw, .

For larger « the growth rate remains approximately constant up to k ~ A, then the instability
disappears.

In conclusion, we discuss two more examples in which the above-mentioned instability is manifested.
Let us consider the waveguide instability in the case of thermal self-focusing of light. If the instability
growth rate is sufficiently small, the temperature variation due to plasma heating by electromagnetic
radiation is described by means of the heat-transfer equation [14]:

a, 99/9t+ V0 =—n"0"+|y|’.

The evolution of the electric field is described by eq. (1.25). Here the same dlmensmnless variables as
in the previous chapter are used, while the parameter o, = nju/2xk,~ v c YJwv’.. The nonlinearity is
of an inertial character. We have shown above that for thermal self focusmg, the nonlinearity is
effectively a nonlinearity with saturation. Therefore as above, we shall only consider instability of the
mode with m =1.

The equation for small perturbations against the background of the solution (1.59) f; takes the form

(L, +3L)Lyw = (o — ku)’ v
where the operators L,, L,, 8L are the following:
L=V -§-A*; L =L, +2fA'f,,
SL=2f[A,' - A)'lfy, A,=-A +7'-iqe, A,=-A +7°.

The spectrum 2(k) is obtained as a solubility condition to first order in «° [14]

(2 2 <fo|fo (k
a {(alar) A™'f3 | (alar) AT fo)

u)’. (2.46)

We have stated above that thermal self-focusing is conditioned by pushing out plasma from the
waveguide region due to its local heating. For greater « the growth rates are so large that it is necessary
to take into account the ion inertia. In so doing the evolution of the ion density is described by eq.
(1.26) while the density variation due to the temperature modulation can be neglected. The instability
growth rate is given by the formula (2.45).
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Fig. 4. Schematic representation of the waveguide before and after bending. The oscillations are carried out from the dashed regions due to the
mismatch of the group velocities. As a result, the nonlinearity can no longer compensate for the diffraction expansion and the bending increases.

In the following example we consider the stability of waveguides conditioned by mutual focusing of
three resonantly interacting waves [34]. A bending mode also proves to be unstable here. We will
restrict ourselves to a brief description of its properties. For waveguide bending (see fig. 4) due to a
great difference in group velocities Au > u(Aw_/w)''? oscillations are taken away from the shaded
regions. As a result, as in the inertial medium, the nonlinearity level decreases in these regions and
cannot compensate the diffraction divergence.

2.5. Soliton instability in weakly dispersive media

To demonstrate the efficiency of the above-mentioned method let us consider the problem of soliton
stability described by the KP equation with 8> <0. We study the stability of the two-dimensional soliton
(1.34) with respect to a variation along the z-axis

du=exp(—iwt +ikz)P(x — V1, y).
Linearization of the KP equation gives
Ay =iw dplix -3k,
where the operator
. (92 < ‘92 ) ‘92
A=—|—+6u,~-V)-3—.
ox’ \ gx* %o ay2

As before we will investigate soliton stability in the long-wave limit considering neutrally stable modes

b=ttt

as a first approximation. It is clear that the derivative du,/dx is a neutrally stable mode like du,/dy.
These perturbations are independent and can be discussed separately. As follows from the equation
defining the soliton shape

2
J°u,

2.47
5 @.47)

3’ 3’
W (—V+3u0+52-> u0=3

a zeroth order eigenfunction of the operator conjugated with A takes the form
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As will be shown below, w is a quantity of first order in «, and therefore to the first approximation we
have

d

Ay, =i = Uoe - (2.48)

Differentiating the stationary equation (2.47) with respect to V and comparing it with (2.48) we get
P, =1w du,/dV .

In the second approximation we have
2

oV

du,
ax

Ap, + 0’ u, = -3k
From this the spectrum w(k) is obtained as the solubility condition. Multiplying this equation scalarly
by the zeroth eigenfunction of the operator conjugated to A, we obtain

82
® fwoa &Vuodxdy——3kfw0 $dxdy.
Integrating by parts we get the expression

w® §P 2

A =3k°P. (2.49)
The dependence of P on V can easily be found. For this purpose it is sufficient to note that eq. (2.47)
admits scaling transformations:

u,— Vu,(xVV, yV).

From this we have P~V'"? or v’ = —12k’V <0 [28]. Thus, the two-dimensional soliton is unstable.
The one-dimensional soliton instability is established in a similar manner. In this case the expression for
the growth rate follows directly from (2.49): w’ = —4k’V (cf. ref. [12]).

The instability of both one- and two-dimensional solitons in positive dispersion media is explained by
the decrease in the soliton velocity when its amplitude increases. It means that a local change in the
soliton amplitude results in its bending and in wave self-focusing [64]. As a result, a self-focused type
instability is developed, the nonlinear stage of which leads as for the NSE to collapse [65]. This
instability is stabilized for k ~VV. The exact value of k can be found for the one-dimensional soliton
only. In this case we have a spectral problem for the fourth order operator:

d4 d2
I:d_x4 + 2‘7 (6“0 _4K2):| (/J = _3k6¢l

where u, =2« cosh’x(x — 4«’t) is a one-soliton solution for d =1.
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If one seeks the solution of this equation in the form ¢ = dp/dx, the equation for ¢ can be written as
(L, + &) — 4] = ~3koo . (2.50)

Here L, = = —d%/dx’ —6K2/COSh kx + x° is the well-known operator (2.7) with the known discrete
spectrum E =0, E, = —3«’. From this it is evident that eq. (2.50) has two solutions with k, =0 and
kg ona = K (cf [66]) The function

d 1
=—

dx cosh’® kx
corresponds to the latter value.

If one considers the one-dimensional soliton stability in a medium with negative dispersion (which
corresponds to the selection of the opposite sign for the right-hand side of the KP equation), similar
calculations provide neutral stability with respect to long-wave oscillations [12]:

W’ =4’V >0. (2.51)

Thus, the developed perturbation theory permits us to draw a conclusion about soliton instability. In
the case of stable solitons the analysis of long-wave perturbations does not, of course, offer a
comprehensive answer. The problem of the convergence of the perturbation theory series also remains
uncertain. It may be solved either by means of a numerical solution of the spectral problems or with the
help of exact methods, such as the inverse scattering transform method. Using this technique, below we
will give an exact solution of the one-dimensional soliton stability problem for the two-dimensional KP
equation following ref. [67],

2&u

— (u +6uu t+u.)=3p
y

(2.52)

This problem was first solved in the paper [68].
Equation (2.52) represents the compatibility condition for a linear overdetermined system

(Balay— L)W =0,  (aldt— A@)y =0,
(2.53)

L —_&_2_ . A=— 8_3_6 i_3 +3 . —

(x)= Fy u, = ”axs oy O Bfs  fi=u,.

Along with (2.53) let us consider the set of two equations for some function F(x, y, z, t):

(Bdldy— L(x)+ L"(2)) F(x, y,z,1)=0,

2.
(9/0t— A(x) + A" (2)) F(x, y,z,1) =0, (2:54)
where L*, A" are the operators which are the conjugates of L and A. It is not difficult to see that by
virtue of (2.53) this system is also compatible when u(x, y, t) obeys the KP equation.
Let us show that the system (2.54) solves the stability problem with respect to small perturbations for
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any solution u(x, y, t) of the KP equation (2.52) when the perturbation du is defined as follows [67]:
du(x, y, 1) =(d/dx + 31dz) F(x, y, z, 1)| . .

This is verified by direct calculations. For this purpose it is necessary to apply the operator d/dx + d/dz
to the first equation (2.54), while the operator 9%/9x* — 3*/3z> should be applied to the second
equation. The obtained result must be considered on the characteristic x = z.

An important feature of equations (2.54) is that they admit separation of variables. As a result, there
appear spectral problems for operators of a lower order than those of the initial linearized equation.
The advantage of the inverse scattering transform method for the solution of the stability problem lies
just in the reduction of the order of the differential operators.

The stability problem is most simply solved for a one-dimensional soliton

K
U, = .
® cosh’k(x — 4k%)

At first it is necessary in equations (2.53) to turn to the system of a soliton at rest. As a result, the
operator d/dt will be replaced by d/dt — 4x*(d/dx + 3/9z). Then in equations (2.53) we make the
separation of variables

F(x, y, z, 1) = exp(I't —iky) ¢(x) x(2)
where §(x), x(z) are the eigenfunctions of the known operator L, (2.7):

(9°%19x" = 2k cosh’,kx +iBk)y = —Eyr

(0%3z* = 2k*/cosh’kz)y = —Ex .
From this we have

y=¢ "|vik +tanh kx], y=e"[n/k ~tanh«z], (2.55)
where v and 7 are connected by the relation

v —n'=iBk. (2.56)

An expression for the growth rate I"is obtained by the substitution of (2.55) into the second equation of
the set (2.54). As a result we obtain

=4 -7 - «*(v—-1). (2.57)

To determine the spectrum of the linearized problem it is necessary to require the boundedness of the
perturbation du for all x:

du(x, y, t) =exp(l't —iky) ad; {exp[(v - n)x](% + tanh KX)(‘Z — tanh KX)} . (2.58)
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When v # *+« and 7 # =« the solution will be bounded if Im p =0, p =i(» — 7). It is not difficult to
show that in this case independently of the sign of 8% (2.57) proves I'to be a purely imaginary quantity
272
F=ip[3B 2k -p —4K2] (2.59)
p

which for k = 0 goes over into the dispersion law for small oscillations. When 7 = « the solution (2.58)
decreases exponentially when Re v < «, |x|— . This condition is in agreement with eq. (2.56) for
positive dispersion B> < 0. In this case from (2.56), (2.57) we obtain the instability growth rate in the
k-region [68, 67]: I =4|k|(x* — |k|)""*, which agrees well with all the limiting cases obtained earlier.

Unlike for the case of positive dispersion, for the case of negative dispersion there are no localized
modes for finite values of k; there exist only solutions from the continuous spectrum with a frequency
defined by (2.59). In fact for B> >0 from (2.56) for = « there follows an inequality

(Re vy’ = k> + (Im »)* >k’

which is incompatible with the boundedness condition for solutions |Re v| < k. As to the mode (2.51)
obtained with the help of perturbation theory, its exact solution gives an exponential growth with index
Re(V pra iBk — k)x which is small in the limit as k— 0. A similar situation takes place for quantum-
mechanical quasistationary states, when stationary solutions of the Schrodinger equation are considered
formally [69]. The physical cause for this increase is connected with radiation. The given modes can be
interpreted analogously; an exact analysis of the Cauchy problem of a linearized equation [70] proves
this.

3. Stability of plasma solitons

In the present chapter we consider the problem of plasma soliton stability which is of great
importance for plasma physics. Both for laboratory and space plasmas the situation is typical when the
plasma turbulence level is so high that nonlinear effects are comparable with or exceed dispersion
effects. In this case modulation instabilities usually develop in the plasma, giving rise to localized
bunches of the electric field. Solitons are supposed to be formed from these bunches. Therefore
turbulence can be represented as a soliton gas [71]. Such a turbulence picture can be realized when the
main structural unit of it, a plasma soliton, is a stable formation. In the case of an alternative turbulence
picture [30], the cavity formed due to the development of an instability does not reach a stationary
state; it collapses in a finite time. In the final stage of the collapse the energy “trapped” in the cavity is
transferred to the particles. Plasma turbulence is therefore an ensemble of cavities created by the pump
and collapsing. It is important to emphasize that the difference between these turbulence pictures leads
to absolutely different macroscopic manifestations. There is a great difference in absorption rates,
absorption mechanisms, and, consequently, in the distribution functions of the heated particles. The
problem of soliton stability is therefore of primary importance from the practical point of view.

By now the problem of plasma soliton stability seems to be rather clear — plasma solitons are almost
always unstable. In a well-defined sense these instabilities are the continuation of the well-known first
or second order decay instabilities (see the review [72]) or their modifications [73].*

* For stationary waves in the KP equation this correspondence is exactly determined [67] in terms of the inverse scattering transform method.
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In the present chapter we discuss mainly the stability of high-frequency wave solitons in a plasma
which are described with the help of equations generalizing the NSE. These equations are obtained
after averaging the initial equations over a high frequency; they contain information about the vector
structure of the plasma oscillations. Only one section is devoted to the stability of low-frequency
solitons.

To study the solition stability we use all the earlier discussed methods with small modifications.
When considering concrete plasma problems much attention is focused on the description methods as
well as on the applicability boundaries of the obtained equations. Significant attention is also paid to the
discussion of the physical meaning of the results.

3.1. High-frequency solitons in an isotropic plasma and their stability

We will start the description with high-frequency (HF) Langmuir waves in an isotropic plasma. The
dispersion law for Langmuir oscillations is of the form

o, = o, (1+ 3K7r;) .

Here w_ is the electron plasma frequency and r, the Debye radius. Langmuir oscillations exist in the
region kr, <1, where collisionless Landau damping is small. The criterion kr, <1 denote also that the
electrons move as a whole and, therefore, can be described from a hydrodynamic point of view. The
principal nonlinear mechanism in the region E%87 =w <nT is the Langmuir wave scattering by
low- frequency density fluctuations 8n < n,. This implies that the frequency of the nonlinear Langmuir
waves is close to the plasma frequency w,(n,). Due to this, by averaging the dynamic equations
(hydrodynamic equations for the electrons plus the Maxwell equations) over the fast time wp , it 1
possible to get shortened equations similar to (1.25), (1.26). For this purpose a complex envelope
E=1(E exp(—iw,t) + c.c.) of the electric field is introduced, for which from the Maxwell equations we
get [74]:

2

iE, + 2w r:VdivE + =— curlcurl E =

, on
2a, )

E. (G.1)

This equation describes besides plasma waves long-wave electromagnetic oscillations with frequencies
close to w, and their mutual transformation due to mhomogenemes In this equation the ratio of the
potentlal and the non-potential terms contains a large parameter ¢ ’Jv}. This means that the electric field
is approximately potential, E = —Vo, with the exception of small kr, ~v,/c [74]. To distinguish the
potential term in (3.1) let us take the divergence from (3.1) and then assume E = —Ve. As a result we
get [30]:

o, &
V(ig, + 3u,75 Vo) = 2 div n—” Vo . (3.2)
0

We should empha51ze that it is impossible to substitute £ = —Vg directly into (3.1) because due to the
large coefficient c*/v} the nonpotential part appears to be of the order of the potential term. In
particular for this reason the equation
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. - du -
. 2025 _
iE,+ 30, VE = o, o E

may be considered only as a model one.
Under the action of ponderomotive forces the density variation dn is described by an equation
similar to (1.26):

(;2 2 2) _ 1 2 2
<at2 ) bn = —— VYV, (33)
Finally, introducing dimensionless variables
r=3rNMimyr', =3, (MIm)t',
dning=4(m/M)n, o=(T/e)V12¢'
we obtain
Vi(ig, + V’p) — div(nVe) =0,
(008 ~V)n =V?|Vg|? (34)

In the one-dimensional case equations (3.3) are identically the same as (1.25), (1.26) for u = 0 and have
a four-parametric family of soliton solutions

0. =V2(1 - B%) Asech A(x — Bt — x,) expi[(A* — BY4)t + Bx/2+ ] .

The character of these solutions depends significantly on the velocity 8 which in dimensional variables is
equal to 3V, k,r, where k, is a wavenumber corresponding to the packet maximum. The electric field in
the soliton for various values of k,r, is shown in fig. 5. For a soliton at rest k,r, < w/nT the electric field
varies monotonically. When (k,r,)*> w/nT this soliton is an envelope soliton with a quasimono-
chromatic filling. In this case one can make the additional simplification (3.4) and, passing to the
envelope, obtain the equations (1.19). The properties of solitons and their stability in this limit have

AN |

(@) (b) ©)

Fig. 5. Electric field in a Langmuir soliton. a, b, ¢ correspond to the different values of the soliton velocities B/A. a, 0; b, 4; ¢, 20. B <1.
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been studied above. In the present chapter we shall mainly restrict ourselves to consideration of solitons
at rest.
In the static limit when n, < An, the system (3.4) is reduced to one equation

Viig + V) + div|Ve|* Vo =0 (3.5)

This equation describes all stationary solutions except solitons which move with velocities of the order
of the acoustic velocity or close to it.

Let us first consider multi-dimensional solitons. It is not difficult to find stationary central-symmetric
solutions. In this case (3.5) is reduced to a second order equation similar to (1.50)

d°E d-1dE d-1
2 e a1 8& 3_
)\E+dr2+ ; ar —?—'E'FE 0

(3.6)
E=de/dr, ¢=e¢(r)exp(ir’t).

The structure of solutions (3.6) is also investigated qualitatively as has been done for (1.50). However,
in contrast to (1.50), eq. (3.6) contains an additional centrifugal term ((d — 1)/r*)E corresponding to
the orbital quantum number / = 1. Therefore the “wavefunction” E as r— 0 behaves as r' = r. Thus, for
centrally symmetric solutions the electric field in the centre is equal to zero. Thus, field distributions are
energetically more preferable when the field is different from zero for r =0 (see [75, 80]).

Consider now the soliton stability.

Equation (3.5) is like the NSE, a Hamiltonian one

iVl =8H/3¢* .

Besides the Hamiltonian
H=[ V%] - 4Vl av

eq. (3.5) conserves also the total number of plasma waves:
N= f Vol dV .

As for the NSE, the soliton solution ¢ = ¢, exp(iA’t) represents a stationary point H for a fixed number
of waves

S(H + A°N) =0
or ‘
)

V(=A% + V) @, + div|Vg,|* Ve, =0.

By analogy with (1.46) it is easy to check that for the soliton solution
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H=-A’N(d-2)/(4-d)

i.e., the Hamiltonian is positive for d = 3 and negative for one-dimensional solitons. If one performs the
N-conserving scaling transformations,

(2-d)/2

po(r)=a @o(rla)

then the Hamiltonian H as a function of the parameter a
H(a)=1/d" - L/a" (11 = f |V, dV, I,= 1 f Ve, |* dv) (3.7

has a maximum for d = 3, which corresponds to a three-dimensional soliton and it is not bounded from
below as a— 0. It is not difficult to see that the Hamiltonian H will be unbounded from above because
H contains higher derivatives of ¢, than N. This means that a three-dimensional soliton is unstable at
least with respect to finite perturbations. As to a rigorous proof of the three-dimensional soliton
instability against small perturbations, this question remains still open. The same may be said about
two-dimensional solitons. Here a situation similar to the one for the NSE is likely to take place.
Solitons must be unstable against perturbations of a non-exponential character. As far as one-
dimensional solitions are concerned, they are obviously stable with respect to one-dimensional
perturbations.

As has been shown above, stable solitons may exist in a medium with a slowly increasing
nonlinearity. If one assumes the characteristic times of the nonlinear processes to exceed significantly
the time of an ion passing through the cavity, then both electrons in slow movements and ions can be
considered to have a Boltzmann distribution [30]

immenl ey} memen(- )
From this and using the condition of quasi-neutrality we obtain
Ai, = n,exp(-E*/327nT).
Substituting this expression into (3.4) we get the equation
Vi(ip, + V) + div Vo(exp(—|Ve|?) = 1) =0. (3.8)

It is not difficult to verify that this equation has solutions which are stable due to nonlinearity
saturation. In particular, such solutions have been discussed in the paper [76] (see also [77]). It should,
however, be noted that nonlinearity saturation occurs when w/nT ~ 1; a typical soliton amplitude must
be just of the same value. Consequently the soliton size must be comparable with the Debye radius.
Under these conditions eq. (3.8) cannot be applied. As has been mentioned above, eq. (3.4) is valid to
first order in (kr,)’ and w/nT. In the next approximation together with the non-linearity saturation it is
necessary to take into account the variation of the dispersion law for Langmuir waves, electron
nonlinearities [78], and Landau damping. In the region k ~ @ /c relativistic nonlinearities may be of
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importance. Thus, an analytical description of strong plasma turbulence is rather complicated.
However, when the average level of turbulence is low, collapsing cavity evolution does not lead to the
formation of multi-dimensional plasma solitons. Due to the ion inertia the cavity is compressed until its
energy is absorbed owing to Landau damping. In ref. [79] these problems are discussed in more detail.

Recently a numerical simulation (3.16) has been carried out intensively in two- and three-
dimensional geometries (see, e.g. the reviews [80, 81]) in connection with the Langmuir collapse
problem. All these experiments confirm the instability of multi-dimensional plasma solitons. Plasma
soliton instability has been also demonstrated in laboratory experiments (see, e.g. [82]). Localized
bunches of the field may, however, be observed at high energy densities w ~ nT in narrow cavities (of
the order of the Debye radius) when a large fraction of the electrons is trapped in the cavity {79].

Now we turn to the one-dimensional soliton stability with respect to transverse perturbations.

The soliton solution for the potential ¢, has the form

@, = V2 exp(iA’t) arctan sinh Ax .
As before we seek a solution in the form
o=gq+dpexp(iXt+ik r ), dp<gq,.

Separating the real and imaginary parts of 8¢, and taking into account only the first terms essential with
respect to k,, we obtain

v,=—(L,+LYu, u+(Ly+L)v.

Here the operators L, and L, are of the form (2.7) where |6,/dx|* is put instead of g”, and the action
of the operator L' on the function is defined as follows:

X

d ’ 2 2 2 d2 _ 12 dz
d—x-Lu=kL -2+ @y +2@ udx=k; —L0+a3 udx.

Assuming u, v « exp(—if2t) we find
Qu=(Ly+ L)L, +L)u=(L,L,+L,L'+L'L)u. (3.9)

Assuming k | to be rather small and applying the results of section 2.2, let us consider the stability with
respect to both symmetric and antisymmetric modes. It is not difficult to verify that an odd mode is
stable. For symmetric perturbations we get the following dispersion equation

— 2 <(P[)x|L’|¢)0x>

!22
1 9N/oA?

Performing a rather cumbersome integration we obtain [58]

0= -\ (127 £(3)) = —3.60%k" .
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Here
=3 =

is Riemann’s zeta function.

As before the maximum growth rate is reached at the limit of the given perturbation theory. First,
the smallness of the instability growth rate in comparison with the nonlinear frequency shift £ < A” is
necessary for its applicability. Second, it is necessary to fulfill the static approximation condition {2 < A.
The former condition is more important for small amplitudes A <1 or w/nT <m/M, and, therefore,
¥, ..~ A’, while the latter is more important for large ones A>1 or w/nT >m/M and v,,, ~ A. In
dimensional variables

YVenax ~ @, w/nT for w/inT <m/M , (3.10)
Ymax ~ @ (w/nT)'*  for winT>mIM . (3.11)

For small amplitudes w/nT the growth rate maximum is reached for (k r,)* ~ w/nT and then for kr,
values of the same order the growth rate goes to zero. Thus, the given instability is similar to the soliton
instability described by a NSE with a positive dispersion. For large w/nT the growth rate reaches the
value (3.11) for kr, ~V mIM. 1t is clear that for large k, up to k T~ VwinT the soliton is unstable as
before. In fact, if the growth rate begins to decrease in comparison with (3.11), the static approximation
is valid again and the instability takes place. On the other hand, if we neglect the term ¢’V’n in eq.
(3.3), it is not difficult to see that the instability growth rates do not exceed (3.11). This 1mp11es that in
the interval Vm/M <k, r,<V winT the growth rate is approximately constant. As to order of
magnitude the maximum growth rate is the same as that for an unstable monochromatic wave with
k = 0. This is natural, since the wavelength of the perturbations corresponding to the maximum growth
rate is of the order of a soliton size. Note that the fact of soliton instability itself is nontrivial here.

We have considered above the instability of a soliton at rest. The somewhat more complicated
problem of the stability of a soliton moving with an arbitrary velocity has been solved by Benilov [36]
with the help of the same method. It is shown that the magnitude of the growth rate depends weakly on
the motion of the soliton. We shall only note that for a moving soliton the unstable mode does not
possess a definite parity.

As has been mentioned above the problem of plasma soliton stability was considered in many papers
the results of which were often contradictory. A critical discussion of these works has been carried out
in the review [83] and the paper [36]. The drawbacks are connected either with the consideration of a
narrow class of perturbations or with inaccuracies of approximate methods used in them.

3.2. Effect of a weak magnetic field on the Langmuir soliton stability

Consider now the problem of the effect of a weak magnetic field on the Langmuir soliton stability. It
is well-known that a plasma becomes anisotropic in the presence of a magnetic field. In such a situation
the investigation of multi-dimensional solitons presents a complicated problem sensitive to the plasma
geometry and parameters.
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We shall limit ourselves to a discussion of the stability of one-dimensional solitons propagating along
the magnetic field.

First we determine the effect of a weak magnetic field on the Langmuir soliton stability. A
modification of the Langmuir oscillation dispersion law is observed in very moderate fields:

2 2
w, = wp(l + 3k + % 9—}2{ ﬁ) . (3.12)

P
Here k, is the wavevector component perpendicular to the magnetic field H,, eH,/mc = w,, is the
electron cyclotron frequency. From the dispersion law (3.12) it is obvious that the transverse
perturbation frequency is higher than that in an isotropic plasma and hence, the magnetic field must be
a stabilizing factor for solitons. It should also be noted that the magnetic field is important for solitons
with a small amplitude for which the nonlinear frequency shift w, w/nT does not exceed wf,/wp. Here in
the static limit all changes of the averaged equation will refer only to the linear terms

2 2
2/ 2 wH 2 . |V(p| ) B
Vi(ig, + %wprd Ap) — 0l Vieto, le( BanT Ve )=0

P

or in dimensionless variables
Vg + V) — oV @ +div|Vp|’ Ve =0, o=3wj/o,. (3.13)

Consider first a soliton moving with a sufficiently large group velocity 3v,(k,r,) > v (w/nT)"% As
has been mentioned above, in this case one can turn to envelopes and obtain a NSE of the type (2.15)

2

0, + 0, + (14 22 ) Vg w =0,

2 2
3w kory

Hence it immediately follows that a one-dimensional envelope soliton is unstable with respect to
transverse symmetric perturbations (see section 2.2). Therefore for fast solitons the magnetic field does
not stabilize the instability. It is also obvious that the maximum value of the growth rate remains
unchanged. The inclusion of the magnetic field leads only to an increase in the unstable perturbation
wavelengths [84] by a factor wy/w k7.

Now we shall investigate the stability of a soliton at rest. Linearizing eq. (3.13) on the background of
the solution (3.9) (the x-axis is taken along the magnetic field) one comes to the spectral problem
(3.10) in which the operator L’ acquires an extra term depending on the magnetic field

X

2
%L'u=ki(—Lo+%—U) J udx'.

—®

For an antisymmetric mode calculations for small k, give marginal stability:

A 3w2]
2 _ 42| A O Wh
.(2_—4kl[3 g
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At k, — 0 for symmetric perturbations the square of the frequency is given by the expression

2 _ 2 2_2_19_25
2=k 127 e - 2 % ).

@p

It is seen from this that in the long-wave limit a magnetic field stabilizes the instability when
wylw)> A & (12-7£(3))1¢(3) =0.86A
or in dimensional variables
2 2
wylw,>1.7w/nT .

It should be emphasized that this result does not prove the soliton stability. Instability may appear when
we take into account the next terms of the expansion in k. In a weak magnetic field the fact of the
Langmuir soliton instability has been shown in calculations [85]; however, the growth rate structure has
not been studied in detail.

3.3. HF solitons in a strong magnetic field

It is well-known that there exist two branches of potential electron HF oscillations in a plasma in a
magnetic field: the upper and lower hybrid wave oscillations. Upper hybrid oscillations are as H— 0
transformed into Langmuir waves, the dispersion law (3.12) just corresponds to the upper hybrid
oscillations in a weak (wy < w,) magnetic field. The upper-hybrid wave dispersion law for arbitrary
magnetic fields with neglect of thermal additions is of the form

o; = (Vi + 07+ 206, c0s 0 + Vo), + wp ~ 2y, cos0) (314

where 6 is the angle between the propagation direction and the magnetic field. The dispersion law for
lower-hybrid waves w . differs from (3.14) only in the signs of the square ratio. Both in weak and strong
magnetic fields w, has the same angular dependence

wp,

Wy , w, > wy

wH>wp

(3.15)

W, = wy|cos 8], a)0={

This expression is valid up to angles cos  ~Vm/M. For quasitransverse propagation in (3.15) it is
necessary to take into account the ion motion. As 6— /2 the oscillation frequency tends to the low-
hybrid frequency

_ 2 2\1/2
oy = oyo/(oyt+ o).

Near the lower hybrid frequency ( — w; , < @) in the dispersion law it is necessary to consider the
following thermal corrections:
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w, =, (1+ 1K°R* + 1 cos’0 M/m)

2_{ NT/T.)r; , wy > 0 (3.16)
G+3T/T)r, @,>wy

where ry; = v,/ 1s the electron Larmor radius.

Note that (3.16) is similar to the dispersion law for Langmuir waves (3.12).

Consider now the upper-hybrid branch of the spectrum. The equations describing the evolution of
the oscillations can be noticeably simplified as in an isotropic plasma by averaging them with respect to
the high frequency. The structure of the low-frequency equations is analogous to (3.1) (see, e.g.
[86-88]) with the difference that now it is necessary to take into account local frequency oscillation
variations resulting from slow fluctuations of the magnetic field. The structure of the high-frequency
equation is noticeably complicated due to the fact that even in the hydrodynamic limit of a
magneto-active plasma there exist three branches of low-frequency oscillations. A high-frequency force
which generates slow motions remains potential F =V¢; however, in ¢, besides the usual term
proportional to |E|* there becomes essential a term with a vector nonlinearity ¢ ~ [V, Vy*], whose
appearance results from the particle drift in the field of the electric oscillations. The general form of the
closed system of equations describing the evolution of upper-hybrid oscillations can be found in the
papers [10, 86-88]. The system of equations arising here has a wide range of soliton solutions (see, e.g.
(86, 87)).

Now we shall discuss in detail solitons of upper-hybrid waves propagating across the magnetic field.
First it should be noted that in this-case soliton solutions exist under the condition wf) >3w;,. In the
opposite case the thermal dispersion changes its sign [87] and localized solutions are absent. In this case
equations in dimensionless variables which describe the upper-hybrid oscillation propagation are of the
form [87, 89]:

—ip alat+ d*plox’ — np =0 (3.17)
3°nlot — a*nlox* + n=a’|y|Yox* - Blyl® (3.18)

where p = %wpi/ w,, B=8mnT/H" <1. The properties of solitions of this system depend significantly
on the characteristic scale of the electric field variations. For simplicity we shall restrict ourselves to a
consideration of quasistationary motions when the term ¢°n/d¢” in (3.18) may be neglected. Then for
smooth distributions with a scale length L > g~"'? (in dimensional variables [ > clw,)n=-pB ly|* and
the set (3.17), (3.18) is reduced to the NSE. Similarly for narrow distributions L <1 (in dimensional
variables | < v, /®,) we obtain a NSE with a stronger nonlinearity n=—[¢|’. In the intermediate

region 1< L < B~'"? the equation with a nonlocal nonlinearity

i d*
AL B lw|*=0 (3.19)

takes place. For this equation the Hamiltonian H is equal to H = [ {|y,|> — 3(J¢|?)’} dx. Equation
(3.19) can be easily studied with the help of the above-described methods. Its soliton solutions
represent stationary points of H for a fixed number of waves N = | |¢|* dx:

3H + A°N)=0.
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The simplest scaling transformations show that the Hamiltonian is unbounded and therefore one should
expect unstable soliton solutions. A rigorous proof of the soliton instability is not difficult to obtain with
the help of the analogue of the Kolokolov-Vakhitov criterion (2.13). As was shown in ref. [87] the
soliton collapse takes place due to instability even in the framework of the one-dimensional equations.
As a result, the characteristic size of the soliton decreases rapidly down to the limits of applicability
(3.19).

In a medium with dissipation and pumping an auto-oscillating soliton can be constructed [89]. As a
rule, excitation of oscillations by an electromagnetic wave or a beam occurs in the long-wave part of the
spectrum. Since the electric field here is described by a NSE, solitons are an essential structural unit of
one-dimensional turbulence. When the pumping is rather small it leads to a slow growth only and,
accordingly, to contraction of the soliton. When the soliton reaches L < 87'"% (3.19) becomes valid.
The soliton collapses and its size decreases rapidly. In the short-wave part of the spectrum Landau
damping becomes important. The field energy is absorbed in the soliton and it expands up to L = 8™,
and so on. This auto-oscillating mode has been demonstrated in paper [89].

Consider now the problem of upper-hybrid soliton stability with respect to non- one-dimensional
perturbations resulting from decay process into upper- and lower hybrid oscillations

w;=w:+w;0_K. (3.20)

In a strong magnetic field @ ; = wy(1 + () /2wp) sin® §) and the minimum frequency w;, is about e,
for propagation perpendicular to the magnetic field. So the process (3.20) is allowed for 1< wylw, <
3V (M/m). The growth rate of this process for a monochromatic wave can be simply estimated as to
order of the magnitude (see e.g., ref. [10])

y~ (winng)' %k, .
Also the process of induced scattering on ions is possible

wi=0,+k-klv,, (T,=T,) (3.21)
with a growth rate (see e.g., ref. [10])

¥~ w:w/w;nT .

The decay conditions (3.20), (3.21) do not impose restrictions on the value of the wavevector , the
growth rate is approximately constant for k >k, and as a result a growth of the short-wave
perturbations takes place. The soliton can be considered as a monochromatic wave with k = 0 for them
and the above-mentioned instabilities can be developed. Let us emphasize that due to the finite size of
the solitons, the perturbations carried out can stabilize the instability.

Therefore, the solitons propagating along the weak magnetic field are the main subject of interest.
The modulational instability of such solitons was studied in the previous section.

Now let us turn to the lower hybrid branch of the spectrum. First we note that for waves with the
dispersion law (3.15) for any ratio of wy to w, the decay processes

o>
ko

. (3.22)
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are permitted inside the branch. The growth rate of this process for a monochromatic wave as well as
for the process (3.20) tends to a constant with increasing perturbation wavenumber. Due to the finite
size of the soliton the instability can be suppressed by the perturbations carried out.

It should be noted that the decay instability may stabilize due to the finite plasma size. Just this
situation probably took place in some well-known experiments [90]. Oscillations excited in them had a
wavelength comparable with plasma radius a. The dispersion law for such waves may be written in the
form

w, =, k.al\1+ kia*,

that is, they represent a resonator mode with a fixed value of k| ~1/a. In this case for small k,a, waves
with a small amplitude are described by the KdV equation for which, as we have seen, the solitons are
stable. It is probably just this fact that can explain the observation of solitons in these experiments.

In the case of a homogeneous plasma the process (3.22) will be forbidden only for quasitransverse
propagation when the oscillation frequency is close to w, ;. Let us consider this problem in some more
detail.

The equations describing oscillations with frequencies close to the lower-hybrid one can be obtained
in the usual way by averaging over the “fast” frequency w;,. The equation for the electric field
potential is of the form [91] (see also ref. [10]):

d M M o
Vi(i ot ﬁwLﬂsziﬂ —doy — =i nolc::; [Von, Vyl, . (3.23)
In the static limit
y <(k,vq,, kvy;) (3.24)

the density variation under the action of ponderomotive forces is given by the equation

2 2
1€

on=- moy oy (T, +T,)

[V, V], .
As a result, turning to dimensionless variables, we obtain
Vi 2 ) g g =L V) =By, (3.25)

Note a number of characteristic features of this equation. The nonlinear term in it vanishes for
one-dimensional and axially symmetric solutions. In this case it is necessary to take into account weaker
nonlinear effects. A similar consideration has been given in ref. [92] where it was shown that the
propagation of one-dimensional packets of lower-hybrid waves is described by a modified KdV
equation. It is however clear that these solutions are unstable with respect to transverse modulations
due to stronger nonlinear mechanisms.

Induced scattering by particles [93] can be given as an example of a concrete instability mechanism.

Equation (3.25) describes only three-dimensional problems. In fact, as has been mentioned above,
for axially-symmetric solution the nonlinear term vanishes. Strictly speaking, a consideration of the
planar solutions d/dz = 0 contradicts the criterion (3.24). The analysis shows, however, that upon the
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development of the modulation instability the condition (M/m)y,, = R*V* ¢ must be satisfied. There-
fore, instead of (3.25), the equation

V2, + V) — div([V, V*1,, [h, V) =0 (3.26)
can be considered as a model one. Equation (3.26) has soliton solutions of the form
¥ = exp(iA’t) exp(ime)f(r)

where f(r) is determined by the equation

) a1 4

k< - k)f+2 fo'?rrarf =0,
9 9 m

k=

Both equations (3.25) and (3.26) are Hamiltonian with

H= [ (v + 3w, Py ar,

Its group properties are close to the properties of the two-dimensional NSE. Therefore in this situation,
as well as for other similar examples, one can expect instability of the solitons. In actual fact, the
nonstationary nature of the evolution of an initial local perturbation and its collapse has been confirmed
by numerical calculations [94].

3.4. Stability of low-frequency solitons

As we have seen above, one of the main reasons of HF soliton instability can be associated with
processes of decay of high-frequency oscillations into high- and low-frequency ones. If low-frequency
ion acoustic waves are considered in an isotropic plasma, decay processes are forbidden which is
essentially the main reason of the stability of the one-dimensional small-amplitude solitons described by
the Kadomtsev—Petviashvili equation. A concrete proof of this fact is given in chapter 2 of this review.
The case is quite different for low-frequency waves in a magnetized plasma. It is well-known that in the
region of frequencies less than the cyclotron ion frequency wy;, there exist three branches of
low-frequency waves of the acoustic type: Alfvén waves (A), fast (M) and slow (S) magneto-acoustic
waves. Between these three wave types various decay processes are possible, the matrix elements of
which can be calculated, e.g., with the help of a standard Hamiltonian approach [5, 95] or directly from
the equations of motion [96]. All these methods provide an immediate opportunity to determine
without concrete calculations which solitons can be unstable. For example, for a low-pressure plasma
B =8AnT/H* <1 one can state that the Alfén waves and fast magneto-acoustic solitons will be unstable
due to decays into A- and M-waves and an S-wave. When B <1 the S-waves play a role similar to that
of ion-acoustic waves in the decay processes for Langmuir waves.

Therefore among the three types of waves stable solitons can be expected only for S-waves. Let us
consider this situation in some more detail. If the plasma is collisionless, for frequencies w < w,y; slow
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magneto-acoustic waves exist only in a non-isothermal plasma when T, > T, that is, they represent
magnetized ion-acoustic oscillations. In the long-wave range the dispersion law for these oscillations
takes the form

o=k,c(1- k2= Lkr}) (3.27)

where r, =V, /o, is the Debye radius, ry; = c/wy; is the ion Larmor radius calculated with respect to
the ion sound veloc1ty c,=VT./M. Here, the first dispersion term describes a deviation from
quasineutrality while the second one describes the dispersion of the ion-cyclotron frequency. Since the
oscillation frequency is less than the ion-cyclotron one, one can consider the ions in these oscillations to

move along the magnetic field. Therefore the nonlinear equations can in this case be written as follows
[4, 97]:

d

8—?+——(1+ LV, +; nv, =0,

v ] ] (3.28)
z V. 0 12, 202

o TV, TG [n—3n"+r,Vn]

Here n=38p/p,, dp is the density fluctuation. According to (3.27) the group velocity in the long-
wavelength region of magnetized ion-acoustic oscillations is directed along the magnetic.field; in this
case a weak interaction of waves propagating in opposite directions is observed. This gives an
opportunity for using the procedure described in section 1.1 to reduce the system (3.28) to one equation

[4]

v, d { 5 a 1 }
+ A -
o +c, = 1+ 303+ W zrd 2 . v, (3.29)

which describes ion-acoustic waves propagating in one direction along the magnetic field. Equation
(3.29) is a generalized KdV equation. Passing to a coordinate system moving with the sound velocity
along the magnetic field and introducing the variables

riz—en—>z g+ oy

10—t v,/6c,—>u
we write eq. (3.29) in the dimensionless form:
d
u+— (V+3uu=0. (3.30)
dz
Equation (3.30) can be written in Hamiltonian form

du _ 9 3H

it dz du

where the Hamiltonian
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H:f[lz(vu)2 - u’]dv . (3.31)

Besides H eq. (3.30) has some more very simple integrals:
M(rl)=fudz; P=%fu2dV
1=fmdv—mfu2dv.

The first integral has the meaning of the law of conservation of “mass” along the line r, = const. The
second integral is the law of conservation of momentum, and the third one is the law of conservation of
centre-of-mass. From the latter it follows in particular that the centre-of-mass velocity is equal to
2P/{ M dr | and directed along the magnetic field.

Further let us consider stationary solutions of eq. (3.30) of the form u = u(z — V¢, r ) which obey the
equation

Viu=(v-3uu. (3.32)

For V >0 it has a solution decreasing exponentially as r— . In the one-dimensional case these are the
well-known solutions of the KdV equation

Uy =2k cosh’k(x = 4k’t) .

In the three-dimensional case the simplest soliton is a spherical symmetric soliton without nodes.
According to our classification it corresponds to the ground-state soliton. By analogy with (1.46) one
can find the connection between H and P for the soliton. For this purpose we notice that eq. (3.32) can
be represented in the form

S(H + PV)=0

so that all its solutions are stationary points of the functional H for fixed P. From this it is easy to
determine that for the soliton solution

H =VP(d—4)/(6-d)

is negative for any dimensions d = 1, 2, 3. Using integral estimates (1.48) it is not difficult to verify that
central symmetric solutions of the soliton type without nodes for d =1, 2, 3 are realizing the minimum
of H for fixed P. Thus in the class of finite solutions solitons will be stable for each dimension of those
mentioned above.

As to the three-dimensional case, it remains to consider the stability of one- and two-dimensional
solitons with respect to three-dimensional perturbations. For the sake of simplicity let us consider only
the stability of a one-dimensional soliton u, with respect to perturbations du = y(x — V) exp(—iwt +
ik r ). For ¢ we have the following spectral problem:
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i = Vi ey + 6 A ()~ K, =0,
Let the perturbations be long-wavelength ones k , — 0; we expand ¢ in a series

=y, .

We choose the translational mode duy/dx as y,. To first order as for the KP equation (see (2.48)) we
obtain

P, =1w du,/ oV .
To a second approximation we have

—iw — k2o, = Ady (3:33)
where the operator

PR R J
A_vé'x ; 63}140.

It is easy to see that the conjugated operator A has a zeroth eigenfunction u,. Therefore the
dependence of the frequency w on k is defined as the solubility condition (3.33). Multiplying (3.33)
scalarly by u, we get [113]

' =-%k*Vi0.

Thus a one-dimensional soliton is unstable with respect to bending perturbations. The two-dimensional
soliton instability is determined in a similar way.

The results of this section show that a three-dimensional ion-acoustic soliton with a ratio of
longitudinal and transverse dimensions (1+ rf,/r2)”""* is the only stable soliton. Usually r, <r,, that
is, the solitons are of a pancake form. All other solitons are unstable when g8 <1.

4. On wave collapse

As we have seen, in many cases solitons are unstable, especially solitons in a plasma. In the present
review we have often pointed out that this instability should most commonly lead to wave collapse.
Mathematically it means an increasing of the wave field amplitude till infinity occurs in some space
point after a finite time. From the physical point of view the collapse is a spontaneous concentration of
wave energy in a small area of space with its consequent dissipation. We think that the wave collapse
concept possesses a great degree of universality and collapses are as widely distributed in nature as
solitons. This concept is rather advanced nowadays and is supported by many numerical experiments
and for its detailed description one should need an article of the same volume as the present one.

Here we shall present the simplest facts.
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The nonlinear Schrédinger equation (1.43) is the most important mathematical model of wave
collapse in the case of space dimensions d =2. As has been stated above for the two-dimensional case
(d =2) this equation describes a stationary self-focusing (if we take the longitudinal coordinate z as a
variable ¢). In connection with its physical applications the two-dimensional equation (1.43) (usually an
axial-symmetric one) has been studied numerically since the middle of the 1960’s. In the pioneering
experiments [99] it has been shown that for a sufficiently large initial laser beam intensity the field
amplitude ¢ increases without limits when approaching a certain time ¢ = ¢,. This phenomenon being
interpreted as the formation of “point focuses” was used as the basis of the self-focusing theory by
Lugovoi and Prokhorov [100] which helped to explain the majority of experimentally observed data. In
fact, this was how the first example of wave collapse was discovered. Let us show the way to it from the
analysis of eq. (1.43).

We begin with considerations insufficiently rigorous mathematically but possessing a considerable
physical generality. We shall first notice that the Hamiltonian of (1.43)

H= [ (vl - 4ol av

is not positive and can take negative values. Furthermore, as we have shown in section 1.3, for d =2 its
value for a fixed integral N = [ [¢|* dV can be infinitely large in absolute value. Formula (1.45) is the
confirmation of this fact; it shows that for d =2 the functional H takes nonnegative values at its
stationary points (which exist only for d <4). On the other hand, for waves of a small amplitude the
Hamiltonian H is positive. Let us consider the evolution of a localized initial pulse for which H <0.
This pulse due to the conservation of the integrals of motion can neither be radiated to infinity in the
form of waves of a small amplitude nor pass into one of the stationary states. The formation of a
quasistationary oscillating state should be also excluded since it must be accompanied by energy
radiation to infinity (with the exception of the extremely degenerate case of the “breather” type in the
sine-Gordon equation).

The only possibility remaining is the formation of a singularity in the vicinity of which H— —c,

These heuristic considerations for eq. (1.43) can be supported by a mathematical proof based on the
virial theorem (1.54). In our case n =1 it represents the relation

32
P frzw dV=8H-(d-2) f ly|* dV (4.1)
from which for d =2 there follows the inequality

frz |4 dV <4HE + ¢t + , (4.2)

(cy, ¢, are some constants) which becomes an exact equality for d =2. Let H <0. Then for arbitrary
values c,, c, the equality (4.2) for sufficiently large # becomes contradictory; it signifies the existence of
a singularity of the solution of eq. (1.43). That the field ¢ increases to infinity for this singularity has
been proved by Zhiber [101].

Unfortunately such an elegant proof of the existence of collapse is not known for all cases when
collapse takes place. In a number of cases for equations integrated by the inverse scattering transform
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method the existence of collapse can be determined directly by explicit calculations of exact solutions
which contain the collapse [6, 102].

In other cases the above considerations based on conservation laws should be supported by
numerical experiments.

The question about the nature of the field near the collapse point is a matter of great importance. In
the majority of the investigated situations this dependence is self-similar so that

) 1 r
l‘/f| ~ fd—S(tO ) R<f(t0 _ t)) : (4.3)

Here f(¢) is some function with f(0) = 0. From the conservation of the integral [ |4|dV it follows that
the constant ¢ is nonnegative. Two radically different cases are possible.

When ¢ =0 a finite fraction of the integral N (the number of quasiparticles) is incident upon the
point of collapse. Such a collapse is called a strong one. If £ > 0 the number of quasiparticles trapped in
the collapse process is formally equal to zero. In this case, at the moment of collapse an integrable
singularity is formed at the point r =0. Such a collapse is usually called a weak collapse.

Even for the simplest model of the nonlinear Schrodinger equation (1.43) the problem of the nature
of the collapse has not been completely solved. The collapse is undoubtedly strong in the two-
dimensional case. The form of the function f(£) is not definitively determined but there exist rather
convincing arguments in favour of the fact that as £— 0 it possesses the asymptotic form f(£)x £''% In
the three-dimensional case the exact self-similar solution £ =1, f(£) o ¢''* corresponding to a weak
collapse has been constructed. An integrable singularity |¢|* = c/r’ is formed in the case of such a
collapse. However, recently another approximate solution of the quasiclassical type f(&)~ &% [114]
has been constructed for which the collapse is strong. The detailed picture of the collapse for the
nonlinear Schrodinger equation can ultimately be solved by means of numerical experiments.

Physically the Langmuir wave collapse in a plasma is of the greatest interest; it arises, in particular,
as a result of the development of the plasma soliton instability described above in great detail. The
Langmuir collapse has recently been investigated extensively both analytically and numerically (see the
review [80, 81] and papers [103-105]). The nature of the Langmuir collapse depends significantly on the
oscillation energy level. For a small energy level w/nT <m/M (the subsonic case) the nature of the
collapse is roughly the same as for the three-dimensional nonlinear Schrodinger equation.

In the most interesting, so-called supersonic, case w/nT > m/M the nature of the collapse has been
determined with a high degree of certainty. Here the collapse is strong, with f( &)« £>" This result is
supported by a great number of numerical experiments (see, e.g., refs. [104, 105]).

According to our concepts the Langmuir collapse plays a great role in plasma turbulence physics.
Multiple collapses are present in the majority of experimental and astrophysical situations in which
Langmuir oscillations are excited by an electron beam, by variable electromagnetic field or by other
techniques. They are difficult to observe because of the small size of the collapsing cavities and their
short lifetime (though the fact of the existence of Langmuir collapse has recently been proved
experimentally in the papers by Wong and his group [106]). However, they have a great effect on the
whole picture of the turbulence. The main dissipation of the energy of Langmuir oscillations takes place
in collapsing cavities with this energy being transferred to fast electrons which are frequently observed,
e.g., in experiments on the laser heating of a plasma.

Collapsing cavities also generate intense acoustic oscillations (see ref. [107]).

Since the character of the instability of various plasma solitons, such as acoustic, lower- and




E.A. Kuznetsov et al., Soliton stability in plasmas and hydrodynamics 163

upper-hybrid ones, is very similar to the Langmuir oscillation instability we can expect the existence of
different kinds of collapse whose contribution to plasma turbulence physics must also be fairly
important. The first results in this direction are by now available [108].
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