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Introduction

The ultimate aim of this paper is in an attempt to understandthe role of localized nonlinear
objects— solitons or solitary waves— in plasmaphysics. Being discoveredin the last century on the
surfaceof liquids (seeref. [1]) solitonsfor a longtime remainedof interestonly for a smallnumberof
specialistsin hydrodynamicsandmathematicswho tried to prove their existence.In the late50s of our
centurythe solitonconceptpenetratedinto plasmaphysics.Here,dueto work by Sagdeev[2], Gardner
andMorikawa [3] andothers,solitonsweresuccessfullyusedto constructthetheoryof a fine structure
of shockwavesunder the conditionsof rare collisions. Nowadaysa greatnumberof soliton types in
plasmasare known. They are widely used for various theoreticalspeculations,and especiallyfor the
constructionof differentversionsof strongturbulencetheory.In orderthat thesespeculationsshouldbe
realit is necessaryfor the consideredsolitonsto be stable.Thereforetheproblemof solitonstability is
of particularimportance.

Let us considerthe problem of solitonclassification.For a long time only one type of soliton was
considered— plane solitary waves whose profile with a one-dimensionallocalization is stationaryin
somesystemof reference.Sucharethe solitons on the liquid surfaceandalso the first typesof solitons
discoveredin plasmas— ion-acousticand magnetosonicsolitons.We will call them simple one-dimen-
sional solitons.Similarly solitons with a stationaryform in a definite referencesystembut localizedin
two or threedimensionswill be calledsimple two- andthree-dimensionalsolitons.Suchstablesolitons
propagatingalongthe magneticfield in a magnetizedplasmawith alow pressurewerediscoveredin ref.

[41.
Besidessimple solitons, oscillating solitons can propagatein a plasma. Inside them there occur

oscillationscharacterizedby a definite frequencyandwavelength.Sucha solitonprofile is, in the mean,
stationaryin somereferencesystem.

Like the simple ones,oscillatingsolitonswhich can also be one-, two- andthree-dimensionaldo not
representa specific phenomenonfor plasmaphysics.They naturally occur in problemsof quasimono-
chromaticwavepacketpropagationin nonlinearmediawith dispersionincluding self-focusingproblems.
“An inner” wavelengthof such solitons is much lessthan their size and so they aresometimescalled
“envelope solitons”. Along with the envelope solitons in plasma physics one considersspecific
oscillating solitons whose inner scale is comparablewith their size or is entirely absent (spatially
homogeneousoscillations takeplace inside the solitons). Many authorstried to usethesesolitonsfor
solving thevery actualplasmaphysicsproblemof constructingastrongLangmuirturbulencetheory.As
awhole, the problemof the descriptionof all plasmasolitons,both simple andoscillating, is far from
beingsolved.

Going over to the solition stability problemone should note that stability problemsare naturally
divided into two groups.First, thereis the problemof solitonstability with respectto perturbationswith
the samedimensionas the original soliton. Sucharethe problemsof three-dimensionalsolitonstability
(here perturbationshave to be essentiallythree-dimensionalones) and also the problemsof two-
dimensionalsoliton stability relative to two-dimensionalperturbationsand one-dimensionalsoliton
stability with respect to one-dimensionalperturbations.These problems are usually not solved in
explicit form and one has to limit oneselfto variational estimatesand qualitativemethods.

It is evidentthat suchan analysisis insufficient for one- andtwo-dimensionalsolitons.It is necessary
to studythe soliton stability againstperturbationswhich breakthe symmetryrelativeto both neck and
snaketypesalongthedirection of the original solitonhomogeneity.Experienceshowsthat this problem
can be successfullysolvedin the limit whenthe perturbationwavelengthexceedssignificantly thesoliton
size.



106 E.A. Kuznetsovet al., Soliton stability in plasmasand hydrodynamics

It is well-known that a comparativelysmall number of mathematicalmodels possessinga great
degree of universality plays a very important role in soliton theory. Such are, for example, the
Korteweg—de-Vries equation (KdV) with its multi-dimensional generalization, the Kadomtsev—
Petviashviliequation(KP) describingsimple solitons, and the nonlinearSchrödingerequation(NSE)
which is the simplest model for defining oscillating solitons. Universal models also find a wide
applicationin plasmaphysicsandthe presentationof the solitonstability theory shouldthereforebegin
with thesevery models. The first chapterof this review is devotedto a description of the most
important universalmodels and thoseproblemsof plasmaphysics to which they may be applied. In
chapter2 the stability problem of solitons, both simple and oscillating, is consideredin terms of
universal models with respect to perturbationswhich do not change the soliton dimension. The
principal resultsof this chapterare obtainedby meansof a variationalmethod.Further,problemsof
soliton stability relative to perturbationsbreakingtheir symmetry are discussedin termsof universal
models. Here in most cases it is possible to obtain explicit expressionsfor growth rates using a
long-wavelengthapproximation.It shouldbe notedthat the resultsobtainedin chapters1 and2 areof
importancebeyondthe framework of plasmaphysicsitself. They areof importancefor hydrodynamics
(this is reflectedin the title of thepresentpaper)and alsofor nonlinearoptics, in particular,for theory
of light self-focusing. Contraryto this, chapter3 is devotedentirely to a detailedconsiderationof the
importantproblemof Langmuirsolitonstability in a plasmawithoutan externalmagneticfield or in the
presenceof a weak field. In that chapterwe show that Langmuirsolitons arealwaysunstablethougha
one-dimensionalsoliton is stable with respectto purely one-dimensionalperturbations.The latter
circumstanceexplainsfrequentobservationsof Langmuirsolitonsin one-dimensionalnumericalsimul-
ation of plasmas which once gave rise to the concept of soliton Langmuir turbulence. A one-
dimensionalLangmuir soliton is howeverunstableagainst transverseperturbations.This makesthe
conceptof the soliton Langmuirturbulenceunreal, though it doesnot excludea possibility of solition
turbulence realization for other caseswhen solitons are stable. To construct a realistic picture of
turbulenceit is necessaryto studythe nonlinearstageof Langmuirsoliton instability development.

It is generallyacceptednowadaysthat as a result of the nonlinearstageof the instability a Langmuir
collapse takes place— a spontaneousconcentrationof the Langmuir wave energyin a small spatial
region (of the order of a few Debye radii) with subsequentdissipationdueto Landaudamping.From
the mathematicalpoint of view collapserepresentstheformationof a singularity in the input equations
which happensafter a finite time. As it is getting clear, collapseis one of the standardwaysof soliton
instability development.The investigationof wave collapsesis one of the most importantproblemsof
plasmaphysics and, in general,of wave physics in nonlinearmedia,but it is outsidethe frameworkof
the presentpaper. In the last chapterwe give a brief presentationof the principal conceptsof the
collapsetheory.

1. Variational principle. Soliton existence

1.1. Basicequations

By solitonsone usually meanssomesolutionof nonlinearequationswhich is spatially localizedand
keepsits form. The latter is of particularimportance.It meansspecificallythatsolitonscan exist only in
conservativemedia.
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Among conservativesystemswe are interestedin systemspossessinga Hamiltonian structure. It
should be notedthat for conservativesystemsHamiltonianstructure,as a rule, can be introducedin
spite of the fact that thereare no generalmethodsof its introduction. (This situationis discussedin
detail in ref. [5].) It should be emphasizedthat the Hamiltonian structureexistenceallows all the
stability methodsdevelopedin classicalmechanicsto be extendedto systemswith a continuumnumber
of degreesof freedom.

The universalnonlinearmodels[6—10]well-known nowadaysaresuchas the KdV equationandthe
nonlinearSchrödingerequation(NSE). Their universalityis explainedby the fact that they describea
wide spectrumof phenomenain various nonlinearmedia; their fundamentalityconsistsin a latent
symmetry in the one-dimensionalcasewhich resultsin the integrabilityof the given equationsby the
inverse scatteringtransform. The methodsof soliton stability studiesare also universalwithin the
frameworkof thesemodels.The KdV equationariseswhendescribingweaklynonlinearwavesin media
with a dispersionlaw w(k) which is close to the linear one

co(k)=kc~(1+ak2), ak2’~1. (1.1)

According to this law in a linear approximationthe wavespropagatingall in the samedirection are
describedwith the helpof the equation

t9u/ilt —c
5~9uIôx+ c~a ô

3uh9x3. (1.2)

The first term on the right-handside of this equationdescribesdrift with a soundvelocity, the second
one is responsiblefor a slowerprocess— dispersivediffusion of the wavepacket.Forweakly nonlinear
wavesthe local soundvelocity will differ from the meanvalue. In the linear approximation in the
amplitudeone may assumec

5(u) = c5(1 + /3u). Taking into accountthat f3u is small as comparedto
unity, we get as a result the well-known KdV equation

u5 + c~u~— c~(au~~~— f3u~u)= 0. (1.3)

This schemeof the KdV equationderivation is very convenientfor concretecalculationssince the
constantsa and/3 can be determinedindependently[6]. This equationcan alsobe derivedby a formal
method(see,e.g. [11]) with the helpof the introductionof a smallparameterr, slowcoordinatesand
time. We shall illustrate the aboveby an exampleof ion-acousticwavesin a collisionlessplasmawhen
Te ~‘ T1. In thiscasefor the ions one can neglectthe thermalpressureandusefor their descriptionthe
hydrodynamicequations

un 9
-~--+~—nv=0, (1.4)

ôv ôv e ~q,
—+v——=——— (15
ôt ax Môx

(whereM is the ion mass).Undertheseconditionsthe electronscan be considereddistributedaccording
to the Boltzmannlaw as

lie = n0 exp(epITe). (1.6)
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The system of equations(1.4)—(1.6) is closed by the Poissonequationfor the electric potential ~

a2ipIax2 = —4ire(n — n
0 exp(etp/Te)). (1.7)

We would remindourselvesthat the equations(1.4)—(1.7) in a linear approximationdescribewavesfor
k—*0 with the dispersionlaw (1.1):

wk=\fk(l2krd), rd=42, C~7~j.

Hencewe can concludethat in the long-wavelimit for one-dimensionalweaklynonlinearwavesonecan
obtain the KdV equation. Formally it can be obtainedif one seeksa solution of the equations
(l.4)—(1.7) in the form of seriesin a small parameterr

\‘ 2k ,
flfl0+~ ~ nk(x,o)

k= 1

V = ~ E~ V/~(X~t’) (1.8)

V 2k
q=Ld8 ~

k= 1

wherex’ = r(x — c5t), t’ = e~tarethe slow coordinatesand time.
Substituting (1.8) into eqs. (1.4)—(1.7) and equatingto zero coefficientsat every power in the

equationswe get an infinite set of equationsfor ~k’ Vk and ‘ph.
In the first order of r algebraicrelationsarise:

~ (c~n1 — n0t1) = 0

7 ~ — =o (1.9)

a ( ep1~

~ ~—n1+ tio y) 0.
The solvabilityconditionof this systemgivesc~= TeIM~

The next orderof e has the form

an, a a
—- + ~—. n1v1 = ~—- (c~n2— n0v2)
av1 a a / ep2
—~-j-+Vi ~fl~9~fk\s2~A

a / 1 a
2 n

0 /e~1~
2\ a / e~

2
~ ~
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The right-handsideof the equationscoincideswith the linear system(1.9). Hencethe KdV equationis
obtainedas the orthogonalitycondition of the solution conjugateto (1.9)

~+~-!-+5-n —~---n=0. (1.10)at’ 2 ax’3 n
0 ‘ ax’ 1

After simple transformationsthe KdV equationin the form of (1.3) or (1.10) can be reducedto a
standardform

u,.+u155+6uu1=0. (1.11)

A stationarysolitary wave or soliton of the KdV equation(1.11)

2 2 2

u=2KIcoshK(x—4Kt—x0) (1.12)

is the simplest solution of the KdV equation (1.11). It plays a fundamentalrole in the evolution
problemfor an arbitrary initial distribution [6—9].

Togetherwith the KdV equationwe shall also considerits generalization

u,+u555+f’(u)u1=0 (1.13)

wherethe primedenotesdifferentiationwith respectto u. As for the function f(u), we assumethat it
tends to zero as u—*0 like ~ (a, q >0) and increasesfaster than u as u—*cc. This behaviour
guaranteesthe existenceof solitonsolutionsof the type u = u(x — Vt) determinedby the integrationof
the equation

u~= —f(u)+ Vu. (1.14)

In multi-dimensionalcasesthe well-known Kadomtsev—Petviashvili(KP) equation[12] is a natural
generalizationof the KdV equation.The KP equationcan be obtainedif a characteristictransverse
scaleof sounddisturbancesis assumedto exceedsignificantly thelongitudinal size (in thiscasealongx):

(u, + 6uu5 + u555) = _3p2 ~u, ~ + ~. (1.15)

The sign of ~2 on the right-handsideof the equationis oppositeto thesign of the dispersiona in (1.1).
All changesin comparisonwith the KdV equationin (1.15) areconnectedonly with an additionalterm
on the right-handside,which describesthe acousticwave diffraction in the transversedirection.This
equation is apparentlyvalid for ion-acousticwaves, and for long-wavelengthgravitational-capillary
waveson the surfaceof a liquid of a finite depth. It is also valid for fast magnetosonicwaves in the
magnetizedplasmawith /3 8irnT/H

2~ 1 propagatingat anglesdistantfrom 0 andir/2 to themagnetic
field. As to angles close to 0 or ii12, it is known that the dispersionof fast magnetosonicwaves
undergoesin theseregionschangesandeq. (1.14) becomesinvalid.

All the above-mentionedequationsare of a Hamiltonian type and can be presentedin the form
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a ~H
U

ax ~u

wherethe Hamiltonian H for the KdV equationis expressedas

H=f [~— dx; (1.16)

for eq. (1.13) as

H=f[~_~(u)]dx, ~‘(u)=f(u); (1.17)

and for the KP equationas

f1u~ 313 2 31
H=j ~ _ujdV~ w~=u. (1.18)

The othersimplestintegralsfor theseequationsareM = S_~udx andP = ~ f u2 dx havingthemeaning
of a total “mass” and the momentumalongthe x-axis.

The nonlinear Schrödingerequation is usually used for the description of the propagationof
wavepacketswith a small amplitude, i.e., when the field differs weakly from a harmonicone and
nonlineareffects are small. This gives an opportunity to take into accountdispersionand nonlinear
effects separatelyfor the derivation of the equation. Let a wavepacketpropagatein an isotropic
mediumwith a dispersionlaw w = w(k) and the field in it changeas ~!i(r,t) exp(—i w(k

0) t + i(k0r)).
Here qi(r, t) is a wavepacketenvelope,a slowly varying function of r and t. In its Fourierspectrum
there are only frequenciesand wavevectors,much smaller than w(k0) and k0. It means that the
frequencywidth of the wavepacketwill be small and, therefore,in the dispersionlaw w = w(k) the
right-handside maybe expandedin a series[10]

~ ,,2 2w(k) = w(k0) + u~+ ~(w K~+ (uIk0)K1)

where u = awIak~kk0is the group velocity, w” = a
2wIak2~kk

0K = k — k0 is the wavevectorof the
envelope;K~,K1 are the componentsof the wavevectoralong andacrossthe direction of the packet
propagation.Accomplishingthe inverseFourier transformwith respectto Q = w — w(k0) andK for the
envelope~i, we obtain

i(~+u~)+~— ~55+~1~fr0.

Now we haveto include the nonlinearity.It is clear that for quasiharmonicoscillationsthe total effect
will be reducedto a nonlinearshift of the frequencyw(k0), representinga certainfunctionaldepending
only on ~ij

2. Combining the linear and nonlinear terms we come to the generalizednonlinear
Schrodingerequation
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+ u~)+ ~w”~Ii~~+ ~ ~1~I’ + ~nl~ = 0,

(1.19)
~0)ni =f(~2).

This equationdescribes,in particular, propagationof electromagneticwaves in nonlinear isotropic
dielectrics,for example,in an isotropicplasma.In this caseq~hasthe meaningof a complexamplitude
of the electric field andf(~’~2)—~a nonlinearaddition to the refractionindex. For a Kerr nonlinearity

f(kI’~2)~~,I2
In the simplest casewhen f dependson the local value of 2, this equationin dimensionless

variablesin the system moving with the groupvelocity can be expressedas follows:

+ + a~/’~+f(~!,~)tJ, =0, a = ku”Iu. (1.20)

Equation (1.20) also belongsto the Hamiltoniantype

iqi
5=~HI*

with Hamiltonian

H J {aJ~zI
2+ IV

1~I
2- ~(I~d2)}dV, ~(u) =J f(u) du. (1.21)

Other simple integralsof motion of (1.20) exceptH arethe adiabaticinvariant N= f ~/i~ dV which
hasthe meaningof the total number of waves, the momentumP = — ~i f (~V~/’— c.c.)dV and the
angularmomentum.

Equation(1.20) hasin the one-dimensionalcase(~idependson z only) a solution in the form of a
solitondependenton four parameters:

l//=g(z—Vt—z
0)expi(A

2t+~V2t—~Vz—~
0) (1.22)

where the function g satisfies the equation

—A
2g+ ag~,+f(g2) g = 0 (1.23)

with the boundarycondition g—* 0 as zI—* ~.

Such soliton solutionsexistonly whenaf >0. When fft~42)= ~2 a = 1

g = ‘[2A/cosh Az. (1.24)

Stationary waveguide configurations localized in the transverse direction and realizing energy
propagationwithout diffraction divergence (which will later be called waveguides) are formally
analogousto solitons. Such solutionsexist only for f >0, f’ >0. Solutionsin the form of cylindrical
waveguidesare of greatinterestfrom the physical point of view.
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The nonlinear Schrödinger equation describessomeother physical phenomena.For example,for
oscillations of a weakly non-ideal Bose gas the value ~/‘has the meaningof the condensatewavefunc-
tion, and eq. (1.20) is actually a Schrödinger equation.As a rule, the nonlinearSchrödingerequation
describes, at least in the one-dimensional case, the evolution of long-waveoscillationswith a quadratic
dispersion law and a gap in the spectrum

2w(k)rw0+ak

Its applicability for the descriptionof Langmuiroscillations will be discussedlater in detail.
Equation(1.20) assumesthe mediumto be inertia-free,i.e. the nonlinearityfollows the wavefield.

But for manyproblemsit is necessaryto take into accounta finite time of mediumrelaxation.Thus for
propagationof electromagneticradiation in an isotropicplasmathe nonlinearfrequencyshift is caused
by densitymodulationunder the actionof a powerful wave,

~ ~ rn/i.

A densityvariation n causedby ponderomotiveforces is describedby the equation(see,for example,
[10])

22 2 2n,,—c~Vn=V~(,

where

c~= TeIM.

When the characteristictimes of the nonlinear processesare much longer than the period of the
ion-acousticoscillations,n ~I iiil

2 andthe given systemis reducedto the nonlinearSchrödingerequation
with a cubicnonlinearity. In dimensionlessvariablestheseequationsassumethe form

i(qi, + ul/I~)+ z~~/i+ ~ = rn/s (1.25)

+ v2~=0

~+n=—kfiI2. (1.26)

The system (1.25), (1.26) is also Hamiltonian

= 8HI~/j*, n
1 = ~HI~x/i, ~ = —~HI~n

where

H f {aI~I
2+ IV

1~I
2+ ~n2+ ~(V~)2+ nI~I2}dV + P~u

P
2 = ~if(~-c.c.)dV. (1.27)
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When electromagneticwaves propagatein a plasma,modulationof the density is often causedby

plasmaheating.In this caseinsteadof the secondequation(1.26) we have [13, 14]
W2E2

— KVO = P — ~ (1.28)

Here U is the temperatureperturbation,K is the thermalconductivitycoefficient, ye is the frequencyof
the electron-ion collisions. The first term on the right-hand side of (1.28) describesthe collision
damping of an electromagneticwave while the secondone describesthe energy transfer to ions,
radiation losses, etc. Due to a large group velocity the longitudinal scalesof parametervariations
exceedgreatly the transversalones.So in (1.28) only the derivativestransverseto the direction of
radiationpropagationremain.The ratio of 0 and n is found from the pressureconstancycondition

n/n
0 = —01T0. (1.29)

The written equationsare valid whenthe meanfree path is lessthan the soliton size (see,e.g. [14]).
The obtainedequationsarenot Hamiltonianbut their investigationis carriedout by similar methods.

1.2. Multi-dimensionalsolitons and their stability in modelsof the KdVtype

In the previous section the simplestexamplesof solitons have beenconsidered,whose forms are
determinedanalytically. When the nonlinearity is of a more complicatedcharacter,the problem of
soliton existencein one-dimensionalcasesis far from being trivial. Variational methods are most
effective here.They give an opportunityto reacha numberof conclusionsabouttheir stability.

Let us discussthesemethodsin detail by an exampleof the KdV equations(1.11) and (1.13). For
simplicity the function /i(u) in (1.17) is consideredas a power one, cb = au~.It follows from the
formulation of the equationsof motion in the Hamiltonianform that stationarysolutionsof the type
u u0(x — Vt) vanishingat infinity can be found from the following variational problem

~(H+PV)=0. (1.30)

This expresses the fact that suchsolutionsarestationarypointsof the HamiltonianH for fixed P. In this
case the velocity plays the role of a Lagrangianmultiplier. Due to the boundednessof the solution as

xl —* the velocity V is positive.
For solitonsolutionsthe relationbetweenthe HamiltOnianand momentumP can be found directly

from the variational principle (1.29). First, let usconsidera one-dimensionalcase(a = 1).
Multiplying the equation

(H + PV) = 0

by u and integrating it over x, we obtain

2VP+11 —nIh =0 (1.31)

where 11 = f u~dx, I~= f u~dx.
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The other relation betweenthe integralscan be found with the helpof the virial theorem.Let us
considertest functionsof the form u0(ax). Then, by virtue of (1.30) the following identity* mustbe
valid

~(H+ PV)1a1=0.

As a result, we have

—VP+ ~I1+Ifl=0. (1.32)

Combining (1.30) and (1.31) we obtain

I1=2~~~VP, I~=—~-~VP, H=~~~VP. (1.33)

Thus for smallpowersof nonlinearity,n <6, H is negative;for n = 6 it turnsto zero;for all othervalues
of n >6, H is positive.

For the KP equation(1.14) the situationis morecomplicated.First, soliton solutionsexist only for
positivedispersion(132 = —1). Their explicit form in the two-dimensionalcase(d = 2) can befound by
theinversescatteringtransformmethod[17]:

1+ ,2 2 ,2 ~ ,~2 V
u0(x — Vt, y) = 4u’ [1 + ,22 + v’(x— 3v’t)

2]3’ V>0, v’ = ~. (1.34)

As for three-dimensionalsolitons,they were found by Petviashviliby meansof numericalsimulation
[18].

Second,to find the relationbetweenthe integralsH and P, the following two relationsanalogousto
(1.31), (1.32)

2PV+1
1 +212—313=0,

(1.35)
—VP+ ~I1+I2+I3=0,

11 =Ju~dV, 13=Ju3dV, I2=J(V~w)2dV

areinsufficient. To obtainthe third one,it is necessaryto analysetest functionsof the form u0(x, f3r1).
By analogy with (1.32) we have

(d—1)(VP+ 211 13)+ ~(d—3)l2=0. (1.36)

From (1.36), (1.35) we get

H= PV(2d—5)I(7—2d).

* The first timesuch anapproachwas usedwas apparentlyby Derrick [151for theKlein—Gordonmodel. It shouldbenotedthat for avariation

of a, bu = (rV)u~)ha. So, (1.32) canbeobtainedby multiplying thepreviousequationby (rV)u0 andintegratingover x, ref. [161.
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It is seenthat for d = 2, H = —PVI3 andis negative,* in the three-dimensionalcaseH is positive.
Particularattentionshould be paid to the nondiscrepancyof the ratios(1.32), (1.33), and (1.35),

(1.36)which is to be consideredas a necessaryconditionof the existenceof solitonsolutions.It is clear
that this requirementdoesnot replacea total proof of the solution existence.

Now let us turn to the stability of the solitonsolutions. For a solution of this problemwe usethe
Lyapunovtheorem(see e.g. [110]) accordingto which in a dynamicsystemthereexists at least one
stablesolution when someintegral, for example,the Hamiltonian will be boundedfrom above or
below. The senseof the theoremis very clear. The boundednessof the integralresultsin its absolute
minimumor maximumexistence.Let usconsiderthe systemin the statecorrespondingto the absolute
minimumof this integral. Every variation of the solutionmust increaseits value in contradictionto the
integralconservation.Hence,the solutionmust be stable.Thereforefor the solitonsolutionstability it
is sufficient to prove the boundednessof H for fixed P (in this casefrom below,sincethe Hamiltonianis
not boundedfrom above,H can be madearbitrarily large dueto the presenceof the integral1~for a
given integralP).

First let us considerthe scalingtransforms

—1/2 (1—d)/2u(x,r1)=a /3 u0(x/a,r11f3)

which conserveP. For such transformsH becomesa function of the parametersa and /3. In the
one-dimensionalcase(d = 1) H dependsonly on a; in two- andthree-dimensionalgeometriesfor the
KP equationit dependson two parameters:

H= ~ I~+ ~-- ‘2 a’
2f3U~2I

3.

Ford = 1 and a power-lawnonlinearityq
5 = u” in (1.13),H as a function of a hasa minimumfor n <6

only. When n = 6 this function hasno extremum.When n >6, H is unboundedfrom below and a
maximum appearsinsteadof a minimum.

An analogoussituationtakesplace for the KP equation.When d = 2 the Hamiltonianis bounded
from belowbut in athree-dimensionalcasethe oppositesituationtakesplace.Insteadof a minimuma
saddlepoint is available,and the Hamiltonian as a function of two parametersis unboundedfrom
below. In order to makesure of it, it is sufficient to considerthe lines

a2 cf3.

It shouldbe notedthat the unboundednessof the function H(a, /3), strictly speaking,doesnot mean
the Hamiltonian boundedness.In principle, its boundednessis possible becauseof other integrals.
However, in this casethis remark is insignificant, since for n >6 the equations(1.13) and the KP
equationfor d = 3 haveno nontrivial integrals[111,112].t It meansthat in theseequationsthereareno
absolutelystable solutionsfor the abovevalues of the parameters.As for the othervalues of n and
d = 2 in the KP equation,the scaling transformationsindicateonly the boundednessof H. Below we
adducea rigorousproof of this fact [19, 20]. For this purposewe will estimatethe integralI~through

* Certainlythis resultcan alsobe obtainedby a direct substitutionof thesolution(1.34) into theHamiltonianand the momentum.

t The angularmomentumin theKP equationcannotlead to theboundednessof H, sinceit turns to zerofor cylindrical-symmetricdistributions.
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the integrals ~ 1~and P. For d = 1 we have

u~dx �(maxu2)~2~2J u2 dx. (1.37)

Using later the obviousinequality

maxu2�2J1u1 Iu~Idx (1.38)

and Holder’s inequality, we obtain

Ju~dx � (1.39)

where C,, = 2~_2~2,P = 2P= f u2 dx. This estimation can be improved. For the multiplier C,, (1.39)
one can find an exact lower boundary [21]

C,, = Inf FLu] = Irif ~ 4P~”~214/i,,. (1.40)

To obtain Inf F[u] it is necessary to choose among all stationary points F[u] aminimizing one. It is easy
to see that the Lagrange—Euler equation for F

n+2 1~ I~
uXX

2un(2)Ju =0

after a simple transformation u = ü(11/(n— 2)I,,)1~2) coincideswith eq. (1.14) or eq. (1.30) for the
stationary solutions of the KdV equation with a power-law nonlinearity

(1.41)

It has a unique localized solution in the form of a soliton. Thus all integral relations (1.31), (1.32),
(1.33) in which the value (n + 2)I11(n — 2)P should be set instead of V, are valid for this solution.
Hence, taking into account (1.39), (1.40) and (1.41) for H with n <6 we have the following estimation

H � min[~I1 — C,,I
24P(n+2~4]� + = H~

where ~ is the integral value 1~for the soliton solution (1.41) or (1.14). Thus for n <6 the Hamiltonian
H is bounded from below, while an absolute minimum of H (for fixed P) is attainedfor the soliton.

In the two-dimensional case the proof of the boundedness of H is based on the following inequalities.
First, with the help of HOlder’s inequality we have

1/2 1/2J u3 dx dy � (f u2 dx dy) (J u4 dx dy) .
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Then we estimate f u~dx dy:

fu4dxdy�Jmaxu2dyJdx f uu~dy’

(in the latter integral we change the integration over x and y’ and integrate by parts):

2Jdym~xu2JdyFfuuy,dx=_2fdym~xu2fdy1Ju5wy,dx.

Then, using the inequality (1.38) we obtain

13 s 2P
314I~2I~4.

Substitutioninto the Hamiltonian gives the boundednessof H from below

H � ~ + 2’2 — 2P314I~2I~4� — (1.42)

The inequality (1.42) and the relations (1.31), (1.36), (1.37) show that the nontrivial stationary
soliton solution correspondsto the lower boundaryof H. It is evident here that for fixed P, H has a
uniqueminimum. It is thisfact that provesthe stabilityof solitonsfor the KdV equation(1.4) for n <6
[19] and for the two-dimensionalKP equation[20].

1.3. Variational estimatesfor equationsof the NSEtype

Nowlet us consider the soliton stability in the nonlinear Schrodinger equation:

i~~+v2~+l~I2/i=0. (1.43)

Here the dispersion is regarded to be positive, a >0 in (1.20), while the nonlinearity is assumed to be
cubic. Now let us seeka stationarysolution of (1.43) in the form i/i = exp(iA2t) g(r). Such a type of
solution with the multiplier oscillating in time is natural, because the interaction leads to a nonlinear
frequency shift A2 general for all hannonics. The function g is determined from the equation

—A2g+V2g+g3=0 (1.44)

and represents the stationary point of H for a fixed number of waves N

b(H+A2N)=0 (1.45)

where H=f {IVt/42— ~j~/íI4)dV.

The ratio of H and N for the solution (1.44) can be found by analogy with (1.32):

H=A2~~N (1.46)
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from which it follows that only for d = 1 the Hamiltonianis negative.Scalingtransformationsshow that
only in a one-dimensionalcasethe Hamiltonianboundednessis possible.The proofof this fact follows
from the inequality (1.27), (1.39) generalizedinto complex-valuedfunctions

f ~ dx � C4I~
2N3’2 (1.47)

whereI~= f t/s
11

2 dx and C
4 is definedfrom (1.40). Henceit follows that for d = 1 the HamiltonianH

for the NSE for fixed N is boundedfrom below, its lower boundaryis attained for the soliton (1.24).
Thereforein accordancewith the Lyapunovtheory thesoliton in the one-dimensionalNSEis absolutely
stable.

For power-law nonlinearities /~= t/iI
2~In and an arbitrary dimensionality d the generalized

inequalities(1.47) havethe form [22, 23]:

d(n—1)/2 (2n—nd+d)/2J~ dr� Cn(J Iv~I2dr) (J l~l~dr) (1.48)

wherea minimal value of the coefficient C,, is determinedfrom solution of the variational problem
coincidingwith (1.45)

l~I2~2~+ - 2n-nd+ d ~ = 0. (1.49)

The localized solution (1.49) existsonly in the caseof positivity of A2 = (2n — nd + d)1
1/d(n — 1)N. In

the three-dimensionalcasethis requirementis violated when n � 3 (compare with [24]).
From (1.45) it is clear that a minimum for the correspondingfunctionalH will be attained in the

central-symmetricaldistributionwith aphaseindependentof r: ~ti= ge~,~ =

For thesedistributions the equation(1.49) can be rewritten in the form

~ (1.50)

The solitonsolution should satisfythe boundarycondition

dg/dr~~0= gIr=~= 0.

Equation (1.50) is analogousto Newton’s equation for a particle moving in the potential U =

g
2~/2n— A2g212 (seefig. 1). Hereg is the coordinate, r the time, the term ((d — 1)/r) dg/dr plays the

role of a friction force. The boundaryconditionsmeanthat the “particle” trajectorybeginsfrom the
reflection point (r = 0) with a “velocity” equal to zero and ends at the origin of the coordinates. It is
also obviousthat in the one-dimensionalcasethereexists only one soliton solution discussedabove.

In two- and three-dimensional cases there exists a denumerable set of soliton solutions [25]where the
m-soliton has m modes which corresponds to the number of particle oscillations in the potential. Its
amplitude increasesmonotonically with the number of m. The soliton without nodesis called a
ground-statesoliton.

The minimum is reachedfor the ground-statesoliton. Substitutionof the inequality (1.48) in H
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U

(a) (b)

Fig. 1. (a) The “effective” potentialwell for eq. (1.50),(n = 2). The curves(l),(2), (3) correspondto one-dimensional,ground-stateandfirst excited
cylindrical solitonsrespectively.(b) Soliton solutionscorrespondto thecurves(2), (3).

showsthatboundednessof H takesplacewhen

n<2/d+1. (1.51)

In this casethe minimum of H is attainedfor the ground-state soliton which is stable for this reason.
Whenn > 2/d + 1, H occursto be unbounded from below.

Whenn = 2 Id + 1 an additional symmetryarisesin the nonlinearSchrodingerequation.In particular
it is manifested in that for a scaling transformationconservingN, the dispersiveandnonlineartermsin
H are transformed in a similar way. For the solitonthesetermsareequalso that H = 0 (cf. (1.46)). A
more general consequenceof this symmetry is the existenceat n = 21d + 1 of a transformation
translating the solution of t/i of NSEto anothersolution i/i:

~(r, t) = (~)d/2~(rp,t’) exp{i 4(t— r)

(1.52)
r’=rTI(T—t), t’=trl(r—t).

Thetransform(1.52) includesthe inversiontransformationwith respectto time anda scalingtransfor-
mationwith respectto the spacecoordinates.In the two-dimensionalcasewhenthe NSEdescribesa
stationaryself-focusingin mediawith a Kerr nonlinearity,the transform(1.52) wasfound by Talanov
[26]. It is easyto verify that a superpositionof two transforms(1.52) with parameters~ = r ~1 and

= are transforms of the same type with p~= p.~+ p.
2, i.e. the relation (1.52) defines a

one-parameterAbelian grouprelativeto which NSEis invariant for n = 2 Id + 1. Moreover, the given
symmetry belongsto the Noethertype; it leadsto the invarianceof the action,
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1—_f~dtdr, 1=i~*~,_Iv~2+~I2*

andhence,accordingto the Noethertheorem,generatesan additional integral I. This integralcan be
found in the usual way (see [27]). It occursalso as a resultof the transformof the Hamiltonian
[28]:

~ [~~t_r~~+ fr2I~l2dV+ ~(t-r) ~ fr2I~l2dV].

Differentiation of H by t leadsto the remarkableresult obtainedin [29]

~f r2 I~I2dV= 8H. (1.53)

This equality is sometimescalled the virial theorem since it is a direct analogueof a well-known
differential relation of classicalmechanicsafter averagingof which thevirial theoremis obtained[109].

The virial theorem(1.53) alsotakesplace for arbitraryvaluesof n and d (seee.g. [30])

~Jr2I2dV=8H_~(n_~_1)1~2ndr (1.54)

which can be establishedby a direct check.
The transformation (1.52) gives an opportunity to investigate the soliton solution t/s

0(r, t) =

g0(r) exp(iA
2t) for stability (in problemsof light self-focussinga stationary waveguidepropagation

correspondsto such a solution). If a solution is known, then its transformationwith the help of the
procedure(1.52) definesa one-parameterfamily of solutions.It is easyto seethat the derivativeof q~

0
with respectto the parameter~i = 1 /r satisfiesthe equationlinearizedon the backgroundof t/s~.A
perturbation

= ~ = (~~ g — ~-~-- g + iA
2t2g+ t(rV)g) exp(iA2t)

up. ~~=o 2 4

causedby the solitonsolution t/i
0(r, t) describesan instability of the power-lawtype[28]. The nonlinear

stageof this instability developmentdescribesthe formation of a singularity after finite time, collapse
(again, one can seethis with the helpof formula (1.52)).

It should be added that the soliton solution instability for d = 2 hasbeenobservedin numerical
experiments[31, 32].

Thereforeit follows from the abovethat multi-dimensionalstablesolitonscan exist if the nonlineari-
ty growsratherslowly with amplitude(seecriterion (1.51)).In two- andthree-dimensionalcasessucha
situation arises for propagationin one direction with close group velocities of three resonance-
interacting waves. In this case for a description of three wavepacketsin equationsof motion in
comparisonwith the known Bloethbergensystem[33] it is necessaryto take into account both
dispersionanddiffraction terms [34]:
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V 0)”

i(A1, + v1A15)+ ~— i~1A1+ —~ A122 = —A2A3,

i(A11+ V2A2~)+ ~1A2+ A7~2= —A1A~, (1.55)

i(A31 + v3A3~)+ ~-~-- ~1A3 + -~ A325 = —A1A~’.
3

This system is also a Hamiltonian one

iaA1Iot = ~HI6A7

with the Hamiltonian

H = ~ f {ivj~j—~—~- + ~-/~-V1A~
2+ %i~ 1A

151
2 — (A~A

2A3+ c.c.)} dr.

BesidesH (1.55) conservesthe Manley—Row integrals

1~= J(1A11
2 + 1A

21
2) dr, ‘2 = I (1A

11
2 + 1A

31
2) dr.

It is not difficult to show that soliton solutions represent stationary points of H for fixed Manley—Row
integrals. In the simplest case when all group velocities coincide and w’ >0, estimates obtained with the
help of the scaling transforms show that H is boundedfrom below in both two- and three-dimensional
caseswhich is in agreementwith the estimate(1.51).

Using inequalitiessimilar to the above-mentionedones,it is possibleto statethat the Hamiltonianis
bounded from below [34]:

H� ~m3(I
1+ ‘2)

where

m = min(v112k1,w’).

Hencefollows the existenceof the stablelocalizedstationarysolutions(1.55). Here, accordingto [34],
two-dimensional solitons prove to be unstablewith respect to transverseperturbationswhile the
three-dimensionalsolitons are absolutely stable. It should be also noted that apart from solitons
realizingthe minimumof H, there exist various stationarysolutionscorrespondingto local extremaof
H. Being unstable relative to finite perturbations, these solitons are of little physical interest.

A situationanalogousto that in the one-dimensionalSchrOdingerequationtakesplace under the
interactionof a quasimonochromaticHF wave with an acousticone describedby meansof equations
(1.25), (1.26). It is easyto see that the simpleststationarysolution in the form of a soliton at rest

tilt = exp(iA
2t)g(r), n = _1tP12, v =V4 = 0 (1.56)
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presentsa stationarypoint H for fixed N

~(H+A2N)=0.

The boundednessof H (1.27),possibleonly in a one-dimensionalcase,follows from the estimation[35]

H~= J (lv~l2+ + + nl~)dV

V=f{lV~j2+ ~(n+l~l2)2+~ - }dv�J{lv~l2_1I~I4}dVH (1.57)

which becomesexact for n = —It/il2 andV =0 (cf. eq. (1.56)).
The inequality (1.57) showstha/ the HamiltonianH (1.27) is alwaysmajorizedby the Hamiltonian

HNSE for the NSE. As was showil abovethe boundednessof HNSE of the form (1.57) is possible in a
one-dimensionalcaseonly while the minimum H for fixed N is attainedfor the solitonsolution. The
latter proves the stability of the one-dimensionalsolution (1.56) with respectto one-dimensional
perturbations[35, 36]. The stability of one-dimensionalsolitonsmoving with velocity V is setalmostin
the sameway. For this purposethe Lyapunovfunctionalis constructedin the following form (cf. [37])

H=H+~/32N—/3P, P=f[n*dx.

After the transformationi/i(x, t) = t~(x, t) exp i(/3x/2— f32t14) at /3 < 1 for H we havean estimation
analogousto (1.57)

~1(1~x12~+13n~12)dx= I (~l~+ ~(v+ /3~)2+ 1 13 ( + 1_p2) - 2(1_~2))dx � J (l~~l2- 2(1~p2)) dx

from which the desired proof follows.
Now we will discuss the problem of stationarywaveguidesolutions arising due to thermalnon-

linearities. In dimensionless variables the stationary equations (1.25), (1.28) and (1.29) (independent of
t) may be presentedin the form

it//
2 + ~ + Ut/i = 0, ~ + ~20 = l~l2. (1.58)

A thermalself-focusingmechanismis quite clear.
For the usualstriction self-focusingpushingtheplasmaout from the waveguideandhenceincreasing

the refractiveindexis dueto ponderomotiveforces.In thiscasethe plasmadisplacementis causedby a
temperatureincreaseandconsequentlyby a pressureincreasedueto energyabsorptionin theregion of
radiation localization. As a rule, the term describing plasma cooling is small, ~ < 1, but, as is easily
seen, after integration of the second equation in the system (1.58) over the volume, without this term it
is impossibleto obtain a stationarysolution.
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It maybe concludedfrom the first equation(1.58) thatfor stationarywaveguidesthe transversesize
of the waveguidedecreaseswith increasingamplitude. In its turn, it follows from the secondequation
that the effectivenonlinearityin (1.58) grows moreslowly than in a mediumwith a cubicnonlinearity.
Hence according to the criterion (1.51) two-dimensionalwaveguidesof the form t/i=f(r1)exp(iAz)
(havingthe meaning of two-dimensionalsolitons for the system(1.58)) shouldbe stablewith respectto
stationaryperturbations,i.e. in the frame of (1.58).

Let us show it in a morerigorous form. The system(1.58) can be written in Hamiltonianform

it/i.. =

with an additional condition ~HI~O= 0. The Hamiltonian H is of the form

H=f{lV±~l2+~(v1o)
2+~2O2—Ol~l2}dr±.

Soliton solutions(1.58)

= exp(iA2z)f
0(r1) , 0 = 0~(r1) (1.59)

as before, representthe stationarypoint of H for fixed N = S qi~

2dr

Fi(H+A2N)=0.

By analogywith (1.46) H appearedto be negativefor the soliton solution:

Hs=_~I(V±0)2dri.

Then with the helpof integral estimatesonecan showthe boundednessof H from below [14]:

H� —N3((1 2)/2)3

This inequality indicates the existenceof a stablein the framework of the system(1.58) stationary
two-dimensionalwaveguide. It is rather obvious that the minimum of H will be attainedfor the
ground-statesoliton beingcylindrically symmetricand having no nodes.

1.4. Stability oftwo-dimensionalvortices

In concluding this chapter we indicate one important applicationof the methodsconsideredabove.
We will studythe problemof vortex stability in hydrodynamics.This questionis of specialimportance
since exact stationary solutions in the form of two-dimensional vortices have recently been found in
geophysicsand plasmaphysics. Up to the presenttime their stability is far from being completely
studied. There is a wide bibliography devoted to this question; we indicate only some of thesepapers
[38—43].

Descriptions of plane vortices in various physical situations have much in common. Below we restrict
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ourselvesonly to a considerationof the flow of an ideal incompressiblefluid following mainly Arnold
[44—46].Theseresultscan also be extendedto otherproblems.

Let us considerthe two-dimensionalEulerequationfor an ideal flow in someregion D2:

au — D(Q, t/i) — a at/i ~fl at/i 1 60
at — D(x, y) — ax ay ay ax ( . )

Here t/’ is the streamfunction in termsof which the velocity andits curl can be expressedby meansof
the formulae

= — at//lay, Vy = at/i/ax, [1= (curl V)
2 = V

2t/i.

Similar to the universalnonlinearequationsconsideredabove,equation(1.60) is also a Hamiltonian
one [47]. It can be written in the form (see[4, 48])

aQlat={fl,H}

where the Hamiltonian H coincideswith the fluid energyH = ~ 5 (Vt/i)2 dx dy andthe Poissonbrackets

{ F, G} betweentwo functionalsrepresentbracketsof the Kostant—Lie—Kirillov type
— f~D(~F/~[l,~GI~Q)d d

{F~G}_j D(x,y) x ~v.

BesidesH, eq. (1.59) conservesintegrals of the form Rf= 5 f(Q) dx dy with an arbitrary functionf.
Considernow stationarysolutions (1.60) of the form t/i = t/i

0(x, y) definedfrom the condition

D(t/I(),V
2t/s

0)ID(x, y)=0. (1.61)

The solutionof (1.61) can obviouslybe written as

t/~1—F(V~/‘~) or V
2t/i=g(t/i

0), g=F~ (1.62)

whereF is anarbitraryfunction, andg F’ is the function which is the inverseof F.
For the Lyapunovfunctional L we takea combinationof H and Rf of the form

L = J [~(V~)
2+f(Q)]dxdy.

We choose the function f so that f’(f 1) = F(fl). Then one can directly verify that the stationary
equation(1.62) is the Lagrangeequationfor L:

~L J[_t/’0 + F(Q)] ~tl dx dy.

It is easyto check that for anyperturbation~, t/, = t/i0 + ~, the functional L may be presentedin the
form
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L = L0+f (~(V~)
2+f(ul~+w)—f(1~

1)—f’(Q0)w)dxdy.

For small perturbations w = L~424 fl1

G f(fl0 + w) —f(fl0) —f’(fl0) w — ~F’(D0) 2

from this therefollows a sufficient criterion for the stability of two-dimensionalsolutionst/i0(x, y) with

respectto small perturbations:
F’(120)>0.

Providedthis derivative for all (.1 is boundedfrom below by a positive constanta, then

G=f(f1+ 0))f(fl)f’(u1)W�~QW

is alsopositiveandthereforethe functionalL hasan absoluteminimumfor t/’ = t/i0 [45]. This resultcan

also be shown by simple integration:

Jdw~ dw2 f”(ul + ~2) = f(Q0+ w) — f(fl0) — f’(u10)

Thus L becomespositive whenf” = F’ >0.
The stability of two-dimensionalvortex motions of a barotropic liquid has beenstudied similarly

[49].*However,up to now theproblemof the stability of two-dimensionalvortex solutionswith respect
to three-dimensionalperturbationsremainsan open one.

2. Stability of solitonswith respectto small perturbations

2.1. General remarks

As we haveseenin the previouschapter,in a numberof casesit is possibleto showsoliton stability
by meansof a variationalmethodconstructingthe correspondingLyapunovfunctional. However, this
approachis not suitablewhen the questionis the stability of solitonsrealising local but not absolute
extremumsof functionals.In this caseit is necessaryto investigatesolitonstability with respectto small
perturbations.As a rule, the set of equationslinearized on the backgroundof a soliton solution
representsa spectral problem for differential operatorswhich are, generally speaking,non-self-
conjugateones.Theseproblemsare complicatedin a technicalsense;thereis no generalmethod for
their solution. Nevertheless, there areseveralmethods which give an opportunityto investigatesoliton
stability for a wide spectrumof problems.In this chapterwe considerthesetechniqueschoosingvery
simple but at the sametime sufficiently interestingexamples.An effective investigationof soliton

* Seealso a recent review by thesameauthors[501.
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stability is possible due to our knowledge of neutrally stable perturbationscorrespondingto small
changesof stationarysolutionparameters.The useof this idea goesbackto a paperby Barenblattand
Zel’dovich on the stability of combustionwaves [51]. Pitaevskyused this approachto investigatethe
oscillation spectrumof vortex filaments in liquid helium [52]. Zastavenko[53] used it to studysoliton
stability for the nonlinearKlein—Gordon equation,and so on.

Note that the solitondimensionalityis often less thanthe dimensionalityof the spacein which it is
considered.This is thecasefor the one- andtwo-dimensionalsolitonsdiscussedin thepreviouschapter.
All thesesolutionspossessa continuoussymmetrygroup(a translationalgroup). Thereforethe problem
of soliton stability naturally is divided into two parts. First, it is necessaryto studysolitonstability with
respectto perturbationswhich do not breakthe solitonsymmetry,i.e. to perturbationswith the same
dimensionality.Next, if the soliton dimensionalityis less than the spacedimensionality,one should
studysolitonstability with respectto perturbationsof ahigher dimensionality,for example,with respect
to “necks” and “snakes”.

In the studyof instabilitiesbreakingthe solitonsymmetrya basicmethodis efficiently usedwhich is
basedon expansionin a small parameter,the ratio of the transversesoliton size to the scale of
perturbationassumed,therefore,to be a long-wavelengthone. The proximity of theseperturbationsto
neutrally stablemodesallows us to constructa regular procedurefor calculatingtheir spectrumwhich
has a great degree of universality. This method was first used successfullyby Kadomtsev and
Petviashvili for the investigationof one-dimensionalsoliton stability in weakly dispersivemedia [12].

2.2. Perturbationswithout symmetrybreaking

In this sectionwe will discussthe problemof the stability of stationarycentrally-symmetricsolutions
of the NSEwith respectto perturbationswhich do not breaktheir symmetry,i.e. whichhavethe same
dimensionalityas the solution itself.

From the methodical point of view we will start with the simplest problem — the problem of the
stability of solitons describedby the relativistically invariant nonlinearKlein—Gordon equation

u,, —V2u =f(u) = —m2u+ A2u3. (2.1)

We considertwo casesfor positive and negativevalues of m2 and A2. For the latter case eq. (2.1) is
often called the Higgs equation. One-dimensionalstationarysolutions of (2.1), u = u(x), obey the
Newton equation

d2u/dx2= —a~bIau (2.2)

with the potential4(u) = — ~m2u2+ ~A2u’~(fig. 1). Particle trajectoriescorrespondingto solitons are
representedby the line 1 in fig. 1. For m2 >0, A2 >0 the solitonsare analogousto the solitons(1.24)
of theNSE

\7~m

u
0(x) = A cosh mx. (2.3a)

When m
2 and A2 havean oppositesign solitonsacquirethe form of a shockwaveor kink with width
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m m

u0(x) = —,~- tanh x. (2.3b)

Now we considerthestability of stationarysolutionswith respectto smallperturbations~iu.Linearizing
(2.1) on the background of the soliton solution (2.3) and assuming ~iu= t/r(x) exp(—iIlt + iKr1) we
obtain a spectral problem for the SchrOdinger operator

[—d
2Idx2—f’(u

0)— (~2— K
2)] t,lt = 0. (2.4)

Differentiating (2.2) with respectto x and comparingthe result with (2.4) we see that au
0/ax is a

neutrally stable perturbation with w = K = 0. This fact is a consequenceof the translationalinvariance
and thus the perturbation t,li = au0lax correspondsto an infinitesimal soliton shift. For the solution
(2.3a)an eigenfunctiont/s0 is zero in the solitoncentreandhenceit cannotbe a groundstateaccording
to the oscillationtheorem(see,e.g. ref. [54]). Thereforethe groundstatehasa negativevalue~2 — K

2

and consequently corresponds to unstable perturbations. For K = 0 the instability growth rate is of the
order of the nonlinear frequency shift ‘Ymax ~ transverseperturbationswith K2 ~ Y~naxare also
unstable.For the solution (2.3a) the SchrOdingeroperatorspectrum is well-known [54]. For the
instability growth rate we have

= —K2 + 3m2

and the corresponding eigenfunction

= cosh2mx.

For solutions in the form of a shock wave or kink tfr
0 = au0Iax has no nodes and, therefore, represents

the ground-stateeigenfunction.Thus ~2 — K
2 has only positivevaluesandthe solutions(2.3b) are also

stable against transverse perturbations. In particular, the kink stability in the sine-Gordon model where
f(u) = sin u follows from this.

Now we turn to the problem of the stability of cylindrically and sphericallysymmetricsolutionsof
NSE

(2.5)

of the form t/’ = g(r) exp(iA2t) which obey the equation

—A2g+V2g+g3=0. (2.6)

The quantity A2 hasthe meaning of a bound state energy. The S-solutions without nodes correspond to
the ground state which must be the most stable one. Therefore, below, when this point is not discussed
especially,we shallmeanby the stationarysolutionthegroundstate(2.6). It is clear thatthe function g
in this casecan be consideredto be real.

The solutionsof eq. (2.5) will be soughtin the form

cli = (g + U + iV) exp(iA2t) = t,i~exp(iA2t)
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where u and v are real-valuedfunctions.For such transformation

H-*H+A2N.

Thenassumingu and V to be smallwe linearizeeq. (2.5). As a result for perturbations u, V ~ exp(iflt)

we obtain the following spectralproblem
(12u = L

0L1u

wherethe self-conjugatedSchrOdingeroperatorsL0 and L1 havethe form

L0 = —V
2 + A2 — g2, L

1 = —V
2 + A2 — 3g2. (2.7)

For instability it is sufficient to show that the minimum eigenvalue ~2 is negative.
Consider now some properties of these operators. From a comparison of (2.6) and (2.7) it is seen

that the stationarysolutiong(r) is an eigenfunction of L
0 with eigenvaluezero:

L0g=(—V
2+A2—g2)g0. (2.8)

Sinceg nowhereturnsto zero,it is an eigenfunctioncorrespondingto the groundstateandthe operator

L
0 is nonnegative.This is clearly seenfrom the fact that L0 may be representedin the form

L0=— ~Vg2V!~ (2.9)

A derivative of the stationary solution in some direction ~ is an eigenfunction of the operator L1 with
eigenvaluezero. This can be easilyverified by differentiationof (2.6). Sinceag/atvanisheson the line
which passesthrough the soliton centre it cannot correspond to the ground state and henceL1 has
negativeeigenvalues.The minimumvalueof 122 can be found [55] as the functional minimum

2 . —1(1 =min[(ulL1lu)/(ulL0 lu~]. (2.10)

This minimum is taken on the class of functions orthogonalto zero-eigenvalueeigenfunctionof the
operatorL0: L0u0= 0, coincidingwith g. The operatorL0 on this function classis positivedefinite, so to
prove instability or stability it is necessary to determine the sign of the functional (ul L1 I u). This
problem is reduced to the solution of the spectral problem for L1

L1u = Au + ag (2.11)

with an undeterminedLagrangemultiplier a and an additional orthogonality condition (u I g) = 0.
Following ref. [56]we expand u andg in terms of a complete orthonormalized system of eigenfunctions
of the operatorL1, t/i,, (L1 i/i,, = A,, t/.s~).Substitutingthis expansioninto (2.11)we obtain

urra~ ~
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The orthogonalityconditiongives

(gl t/j,,)(çli,,g)a~ — af(A)0. (2.12)
n

It should be notedthat in this sum the term with A1 = 0 is absentdueto (Vg I g) = 0. Below the level
A1 = 0 the operatorL1 hasonly a ground statewhich is an S-statewith A0 <0. Let us consider a A-value
betweenthe first positiveeigenvalueA2 andthe negativeeigenvalueA0. When A increasesfrom A0 to A2,
f( A) changesmonotonicallyfrom —~ to and, consequently, passes through zero.Thereforeto define
the sign of Amjn it is sufficient to determine f(0). For f(0) >0, Am1,, <0 but for f(0)<0, Amin > 0. From
(2.12) it follows that

(gl~n)(~,,lg)

Differentiating (2.6) with respect to A
2 we obtain

L
1 agIaA

2+g=0,

whence

f(0)= —(g~agIoA2)= —~aNIaA2.

Thus, the solitons areunstablewhen [56]

aNIaA2<0, N=JIt/hI2dV (2.13)

and stable in the opposite case. It should be noted that the given criterion is valid for an arbitrary
functional dependence f(lt/’12). For media with a cubic nonlinearity g(A,r) = A ~‘(A,r) and Nc A2’t,
i.e. in the three-dimensional case N°~A - ~, in the one-dimensionalcaseN ~ A, while in the two-
dimensional case N does not depend on A. Thus, three-dimensionalsolitons in this situation are
unstablewhile one-dimensionalonesarestablein agreementwith (1.51). In the two-dimensionalcase
the criterion (2.13) does not answer the question about the stability; from (2.13) it follows that
exponential instability is absent. This fact agrees with the result of section 1.3 according to which the
two-dimensional instability relative to two-dimensional perturbations is of a non-exponential character.
This instability is however weak. The instabilities considered below play a more essential role. They are
connectedwith the transversemodulationof the soliton.

The aboveconsiderationsare suitable for the investigationof solitonstability in a medium with a
power-law nonlinearity

it/i, + V2t/’ + l~l2~t/~= 0.

In this caseN(A) c ~ One can see that the cubic mediumfor d = 2 is on the stability boundary.
The criterion obtainedabovegives us the possibilityto determineonly the very fact of instability. The
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characteristic growth rate of instability is of the orderof the only characteristicfrequency,the nonlinear
frequencyshift; ‘Ymax

The criterion (2.13) may be obtained also from a consideration of the second variation of the

Hamiltonianof the solutiong:

~2HI[VLV + uL1u]dV.

In this case the functions u and V arethe usual canonicalvariables

2u, = ~H’I8V, 2V, =

andthe HamiltonianH’ = ~
2His the sumof the terms K vI L

0 IV) and(ul L1 I u) whichcan be considered
as “kinetic” and “potential” energies. When eachof thesetermsis positive (or negative)definite, the
statebeinginvestigatedis stable. If one of them is positive definite and the other is negative definite,
instability takes place. Due to conservationof the number of waves 5 ltPI~dV and of momentum
if (t/,* Vt/i — cc.) dV the function u must be orthogonalto g and V must be orthogonal to Vg:

JugdV=0, JVVgdV=0. (2.14)

For a linear problem the given conditionsserveassolvabilityconditions.Taking (2.14) into accountit is
easy to see that the first term (V IL0 I V) is positivedefinite while the condition of the secondtermto be
negativeleadsto the criterion (2.13). The soliton stability for a KdV equation of the type (1.4) can be
consideredin a similar way. In this casethe instability criterion takesthe form [19]

aPIaV<0.

Whence,in particular, there follows the soliton instability for n > 6 which is in agreementwith the
resultspresentedin chapter1. It should also be noted thatthe analogueof the criterion (2.13) in field
theory was obtained in the work by Friedberg, Lee and Sirling [57].

2.3. Soliton stability with respectto transverseperturbations

In the present section we consider a number of problemswhich are difficult to investigatewith the
help of the variational principle. In particular, this is the problemof solitonstability with respectto
perturbations breaking the translational symmetry. First the soliton stabilitydescribedby NSE, will be
discussed, following mainly ref. [58]. As we noted before two types of soliton solitions may be
distinguished in this equation: solitons localized along the direction of wave propagation and
waveguideslocalized in the transversedirection. For concretenesswe will consider the problem of
waveguidestability; the result of soliton stability studiescan be obtained by a simple change of
notation.

The waveguideinstability
Let usstartthe discussionof the stability of flat waveguideswhich arethe solutionsof thefollowing

equation
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it/s,+~1t//+at//55+It/iI
2t/i=0, ak

0w”Iu, (2.15)

in the form (1.22), (1.24) t/’o = g(t) exp(iA
2t).In contrast to the preceding section, here we also consider

the case when w”<O. Linearizing eq. (2.15) on the background of a flat waveguide, for the
perturbations t/s = (g + u + iV) exp(iA2t); u, V ixexp(—iult + iKz) the following spectral problem is
obtained:

112u = (L
0 + aK

2)(L
1 + aK

2)u (2.16a)

or

112V = (L
1 + aK

2)(L
0 + aK

2)v, (2.16b)

whereL
0 and L1 arethe operatorsintroducedin the previoussection.Theprincipal conceptfor further

considerationsis the following. First let us considera perturbationwith K = 0. Thenit is not difficult to
define neutrally stablemodes(2.13),correspondingto the eigenvalues11= 0. Theyrelate to infinitesi-
mal variationsof the solitonparameters.Furtherwe considerlong-wavemodes(alongz) locally slightly
differing from the neutrally stable ones and define their spectrum using perturbationtheory with
neutrally stablemodesas a first approximation.

Waveguides,as was mentioned above, are the four-parametricfamily of equations(1.22). The
differencebetweentwo stationarysolutionswith closeparametersis a neutrally stablemode. Differen-
tiating the stationarysolutionwith respectto parameterswe introducethe following functions:

u~=g5, v0=—~xg,

+ 2 + (2.17)
u0——agIoA , v~=g.

Herethe indices±correspondto functionswith differentparity. Generallyspeaking,awaveguidewith
amplitude A0 + ~A is not stationarybecauseit has an additional nonlinear frequencyshift 2A ~A.
Thereforeatp0laA

2containsa term increasinglinearlywith time which doesnot makea contributioninto
(2.16).

As was mentionedabove

L
0v0=0. (2.18)

Differentiating (2.18) with respectto x and A
2 we get

L
1u~=0, (2.19)

L1u~= u~. (2.20)

It is easyto verify the relation

L0v~= ~ (2.21)

We see that the functions u~are the solution of the equation
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L11L1u11 = 0 (2.22a)

which is obtainedfrom (2.16a) by putting K
2 = (12 = 0, and the functionsV~are the solutionsof the

conjugateequation:

L
1L0v0= 0. (2.22b)

Obviously

U0 = C1U~+ C2U0 , V0 = C~V~+ C~VØ

wherec1, c2, c, c~arearbitrary constants.
The scalarproductbetweenfunctionsof differentparity is equalto zero. For functionsof the same

parity we have

(VO~IVO~)=N, (V~ju~)=—~aN/aA
2,(V~IU~)=~N. (2.23)

The evenand odd neutrallystablemodescorrespondfor K2 ~ 0 to two branchesof the spectrumof the
operators (L

0 + aK
2)(L

1 + aK
2), f2~(K) and, respectively, the eigenfunctions u~(x).For ai2 smaller

than A2 we have

u~(x)=u~+u~+..., ~l~++f1~+ +.... (2.24)

Substituting(2.24) into (2.16a)we obtain to first order in K2:

L
0L1u~= (Q~~— aK

2(L
0 + L1)) u~. (2.25)

The solubility condition of eq. (2.22) is the orthogonality of its right-handside to the solutionsof the
conjugatedequation(2.22b). It is obviouslysufficient to verify the orthogonalityto theevensolutionof
v~.Multiplying (2.25) scalarly by v~and taking into accountthe relations(2.18), (2.20), (2.23) we
obtain

2 2 (V~IL0+L1Iu~) 2 N12 = a~ + + = —2aK 2 (2.26)
1+ (v0u0) aNIaA

Analogously,for the odd mode

f1~.aK
2(v~lL

0+L1lu~)I(v~lu~)4aK
2(u~ju~)IN. (2.27)

Using the specific form of the solution, we calculate (u~I u~)and obtain [58]

fl~÷= —4a~A2 f2~= ~aK2A2. (2.28)

It is clear that for anysignof dispersiona the instability takes place. For a >0 the symmetricmodeis
unstableand for a <0 the antisymmetricmode is unstable. It follows directly from (2.16) that



E.A. Kuznetsovci a!., Solitonstability in plasmasand hydrodynamics 133

(aK
2)2 for ctic2 2” A2. The instability is limited at ai2 —~A2, and for the maximum growth rate of

both modeswe havethe estimate‘Ymax — A2 = i~w,,
1.The growth rate is of the order of the nonlinear

frequencyshift of thewavedueto nonlinearity,andit is of the sameorderasthe instability growthrate
of the monochromaticwave.The symmetricneutrally stablemode hasthe meaningof an infinitesimal
waveguideamplitudeandphasemodulation.The exp(iKz) dependenceleadsto a successivedecrease
and increaseof the amplitudewith a period

27T1K. The increaseof such perturbationsleadsto the
bunchingof thewaveguidein a longitudinaldirection (sausage-typeinstability), whereasthe antisymmet-
nc instability leads to waveguide bending (screw type instability). Qualitatively, the symmetric
instability is analogousto the modulationalinstability of a monochromaticwave.For a <0 when the
antisymmetricinstability takesplace,the interactingwavesaresimilar to theparticlesbeingattractedto
one anotherin a transversedirection and being repelledin a longitudinal one. The antisymmetric
instability is thereforeanalogousto the instability of a rod compressedat both ends.

It can be easilyverified that all the obtainedresultsare valid for a descriptionof mediawith an
arbitrary nonlinearity f(It/i12). As aNIaA2—+0 the symmetric mode growth rate formally turns to
infinity, and when aNIaA2<0 the instability disappears.In this case,however, the instability with
respectto one-dimensionalperturbationsfound in the previouschapterwith the helpof the variational
methodtakesplace.For aNIaA2< aK2NIA4 the formula (2.26) is, of course,invalid. This casewhich is
of particularimportancefor cylindrical geometrywill be consideredbelow.

To calculatethe remainingterms of the expansions(2.24) it should be takeninto accountthat the
value fl~,,appearsas the solubility condition of the equationfor u,,5 and the knowledgeof u~

1is
necessaryfor its evaluation.To find u~1it is, generallyspeaking,necessaryto invert theoperatorL0L1.
Note, that the operatorL1 can takethe form g’(dIdx)g~(dIdx)g~as follows from formula(2.19).
This formula in combinationwith formula (2.9) demonstratesthe possibility in principle to invert the
operatorL0L1 and calculateany terms of the series(2.24) through quadratures.Let us presentthe
resultsof the calculationsfor a one-dimensionalwaveguidewith a cubicnonlinearity [58]

2 22 5 2 24 2 4 22 4 2 24fl~= —4cm~A + ~(1+ IT /3)a K ; ul. = ~ A + q(l + 2ir
19)a K

It is clearthat the growth ratesreachtheir maximum andare boundedfor ai2 -~ A2. However, in this
region all the terms in the series are of the same order and the given formulae can only be used for
estimates.In a medium with a cubic nonlinearity one can also calculate the boundary value of !(~for
which the instability disappears,and determinethe growth rate structurenearthis point.

Let us first considerthe caseof positive dispersion, a >0. Equations(2.16)canbe presentedin the
form of a set of equations, assumingu, v~ er’,

Lt/i=M
1t/i+M2t/i (2.29)

where

0 M—(° “

\ 0 L0+aK
2J’ 1 \~t 0

M
2_a(K0 K~ K2K~)’ ~
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We seek the solution of (2.29) in the form of the series

= t/~+ clii + +....

The function t/’0 is definedfrom (2.29) for y = K = 0

Lt/~1=0. (2.30)

Since the operator L0 is nonnegative, a >0, the localized solution (2.30) is of the form t/,0 = (~),where
ü is an eigenfunction of the bound state of the operator L1 = —d

2/dx2 + A2 — 6A2/cosh2Ax. This
operatorhas two boundstates:a shift modecorrespondingto the first excitationstateand a ground
state mode tA) = 1/cosh2Ax, L

1t/i0 = —3A
2t/i

0. Therefore, 7(K) for a >0 vanisheswhena~= 3A
2, and

K
0 = 0. When a <0, 7(K) hasonly one zero for K0 = 0. Let us assume that in the neighbourhood of

K = K0, y 3~’a(K
2 — Kg). Then in the first approximation we have

L
1t/i1=M1t/j0 or (L0+aK~)V1—yu0.

The latter equation can be explicitly integrated by meansof the representation(2.9) (whereinsteadof g
it is necessaryto write t/’0 = cosV’~Ax+ tanhAx sin\

7~Ax).A dispersionequationis obtainedfrom
the solubility equationof the secondapproximation

Lt/c, = M
1t/i1 + M2t/.~

by taking the scalar product with the function t/’0. As aresultof rather cumbersome calculations one can
get [60]:

2 2 2 1 2 —1 2 2

y 2a(K0—K )(bIT —1) 3.la(K0—K ).

The plot of this instability growth rate obtained numerically [61] is shown in fig. 2.
In the case of a negative dispersion, as was shown above, in (2.30) there is no localized solution

except K0 = 0. It is easy to verify that in this equation there exists the solution u = tanhAx for ai~= A
2

lying on the continuous spectrum boundary. It is impossible to construct a localized solution with finite
y for a,2 — A2 4 A2 which is likely an indication of the fact that the stability disappears stepwise for
finite K. This is in particular verified by the resultsof numericalcalculations[62] given in fig. 3. The
resultsof the numericalcalculationsof the work [63] are apparentlyincorrect.In fact, in accordance
with theseresultsthe growth rate smoothly vanishesat the point a~= 1 .09A2 However, localized
solutions must be absent for aK2> A2 It is also clear that perturbationsof the continuousspectrum
cannot be unstable. Such perturbations are obviously stable at infinity with respect to x. Thus the
instability can be described only by localizedsolutions.

Wehave considered so far the instability of a flat waveguide against the onset of modulation along
thez axis. It is easyto generalizetheseresultsby taking into account the possibility of modulation along
the y axis. Assumingfor the perturbationsu, v~ exp[iflt + iK(cos 0 z + sin 0 y)] we arrive at the same
formulae as before in which, however, it is necessaryto replacea by aeff = a cos20 + sin2 0. Here 0 is
the angle betweenthe wavevectorsof perturbationand the initial wave. We see therefore that in a
medium with a >0 (medium with a positive dispersion) symmetric instability takes place for all



E.A. Kuznetsoveta!., Soliion stability in plasmasand hydrodynamics 135
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Fig. 2. Growth rateof the soliton instability versusthe perpendicular Fig. 3. Growth rateof thesoliton instability versustheperpendicular
wave number for the positive dispersioncase[60]. The solid curve wave number for the negativedispersioncase[62].
representsthenumericalresultsof the paperby Andersonci al. [61].
The dotted line correspondsto the expansionneark= 0 (formula
(2.28)), the dotted-dashedline the expansionneark = k

1.

propagation angles of the perturbation.In fact, it leads to a breakdownof the flat waveguideinto
three-dimensional bunches within which amplitude singularities in the form of wave collapsesappear
after a finite time [29, 30]. Thesecollapsing bunchespropagatewith the groupvelocity. In a medium
with negative dispersion ol’ < 0 we have antisymmetricinstability inside the cone tan

20 < I a I and
symmetricinstability outsidethe cone.Their combinationleadsto fragmentationof the flat waveguide
andto a subsequentenergyscatteringat largeangles.The questionof the existenceof singularitiesfor
a <0 remainsopen.

The obtainedresultsallow us to establishthe factof the “spatial” instability of a flat waveguide.Let
usassumethat t/~x exp(iA2t) in eq. (1.19) written down in the fixed coordinatesystemandneglectthe
term at/i

55. In this casethe well-known self-focusingequationarises:

içli2 + V
2t/i — A2t/~’+f(It/’12) t/i = 0.

A stationary flat waveguide representsthe solution of this equationin the form t/i = g(x). Let us
considera stationarysolution close to it in the form t/’ = g(x) + (u + iv) exp(ipz+ iKy) anddetermine
p(K). Obviously this problemis identical to that of the symmetricinstability in a self-focusingmedium
for a = 1; for the growth rateformula (2.28) is valid. The spatial instability leadsto a fragmentationof
the flat waveguideinto cylindrical beamscollapsingup to the formation of point focuses.

The problemof a stationarycylindrical waveguideinstability againstthe onsetof modulationalong
the z-axis leadsto equations(2.16) wherethe operatorsL

0 and L1 take the form

1 d d 2 2 m
2

= L
0—2g

2.
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It is assumedherethat the perturbationhasan angulardependenceexp(imO);r, 0 arepolar coordinates
in the x, y plane. We consider first the case m= 1. Introducing the notationv~= — ~rgwe verify that
relations (2.19), (2.21) remain valid as before.This is natural since the mode m= 1 correspondsto a
displacement of the waveguide centre. Hence it follows that in the cylindrical case the instability
according to the m = 1 modeis perfectly analogousto the flat waveguideinstability. For thegrowth rate
we havea result analogousto (2.27)

~2 —4aK2(g~)/N.

From (2.17) we find the relation

(g~)= A2N

and get

2 22(1 2aKA

The instability takesplacein mediawith negativedispersionw” <0 andleadsto a spontaneousbending
of the waveguide.

Considernow the centrally symmetricmodem= 0. The singularityof the growth rate (2.26) means
the necessityto reconstructa perturbationtheory series.

To a first approximationwe have

L
0L1u~= Q

2u
1~. (2.31)

Since (v~ I u~)= ~ aNIaA
2= 0, the first approximationsolubility condition doesnot impose restric-

tions upon 112. In the secondapproximationwe have

L
0L1u~= Q

2u~— aK2(L
0 + L1)u~. (2.32)

To calculate u we should notethat u~can be presented in the form

+_ ag 1 a
U0 — — —~-~ — — ~ ~— rg.

Besides, L0 can be written in the form (m = 0)

1 d 2d 1
L0=———rg — —

grdr drg

andeq. (2.31) is integratedtwice. We get

L1u~= ~ r~g. (2.33)

This relationprovesto be sufficient for obtainingthe dispersionrelation. Multiplying (2.32) by v~we
get
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2 + + 2 + +

(1 (v0 I u2 ) = a, (V0 L1u0 )
Further, taking into account that V~= L1u~and using the relation(2.33), we obtain

= 16aK
2A4NI(r2g2). (2.34)

It is obvious that an instability occurs with growth rate

2 3~f~y —A va~

which as before reaches its maximum at ai2 A2. This instability is also analogous to the modulational
instability of a monochromatic wave.

When a medium with a nonlinearity close to cubic is considered,insteadof (2.34) it is easy to obtain
[58]

— 8(aNiaA )A ) = 16aKAN (2.35)

(rg) (rg)

For K = 0 (2.35) describestwo modes,a neutrally stable mode and the mode found in the previous
section with the help of the variational principle.

2.4. Instability of a waveguidein a mediumwith an inertial nonlinearity

Equation (2.5) presupposes that the nonlinear medium is inertialess, i.e., the nonlinearity “follows”
the wavefield instantaneously.In manyphysically importantsituations(seechapter1) the nonlinearity
hasa finite relaxationtime connectedwith the inertia of processeswhichoccur in the mediumunderthe
influenceof the wavefield. In this caseeq. (2.5) must be replacedby a pair of equationswhich in the
laboratoryreferencesystemtake the form

i(t/’, + t/i~)+ + at/i
22 + Pt/i = 0,

AP=f(I~I
2). (2.36)

Here A is a linear operatorwhich is, generally speaking, nonlocal in the coordinates; it takesinto
account the delay of the nonlinearity. If Icl’I2 does not depend on time, the operator A = 1, and the
system(2.36) hasthe samestationarysolutionsas (2.5).

Let uscomparethe effectsof the inertia of the nonlinearityandthe dispersion.Let the time of the
inertial nonlinearity be r. The inertialess instability of the waveguide has the largest growth rate

~ for ai2 ~ i.e., whenK ~ A perturbation of this scale drifts overa lengthof

the order of its size within a reciprocaltime
2 2 ,, 1/2

KU =‘-(~k i~w~
1Ikw ) ~

Obviously, the inertia of the nonlinearity can be neglected if r

1 ~- KU, i.e. when iiw,,
11w 4

w”k
2Iw(wr)2 when w”—wIk2, Aw,,

11w4 (orr)~. This rather rigid condition is usually not satisfied in
laserexperiments.It is thereforenaturalto considerthe oppositecasei~w,,1Iw~- 1 I(wr)

2 with the inertia
of nonlinearity as the decisive factor, and to neglectthe dispersionterm at/i

22.
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Taking this circumstanceinto account,linearizationof the system(2.36)againstthe backgroundof a
stationarywaveguideleadsto the equations

L11(LI + ~L)u = 11
2u; L

0 = —~ + A
2 —f(g2), (2.37)

(L
1 + ~L)L0v = 11

2v ; L
1 = L0 — 2g

2f’(g2). (2.38)

Here 6L = 2g[A~([l, K) — 1] f’(g2) g; when 11 = 0, A’ = 1, ~L = 0.
As was shown in section 2.3, a flat waveguide as well as a cylindrical onein a mediumcloseto cubic,

experiencesa “spatial” instability (for 12 = 0) which is conservedfor mediawith any relaxationtime.
We therefore restrict ourselves to the case of a cylindrical waveguide in a medium with a strong
saturation of the nonlinearity.

Multiplying (2.37) from the left by g we find that the symmetric instability mode is absent.
Multiplying (2.38) from the left by gr andassumingv = v~= rg, we obtainafter simple transformations

2 —t , 2(11—KU) = — ~ (gg~IA If (g )ggr). (2.39)

The applicability criterion of this formula is the condition

11 — KU 4

Let us consider the case of a medium with a nonlinearity relaxing in accordancewith the law

raPlat —P+f(ItPI2).

In this case A = 1 — ifir and eq. (2.39) in dimensionalvariablestakesthe form

2 ~~ 2

(fl—Ku) _ i_in~(A0)nt) c(A), (2.40)

c(A)= (g2g~f’(g2))INA4 >0 is a dimensionlessstructurefactor. For K = 0 eq. (2.40) hasa neutrally
stablesolution 12 = 0 generatingfor K ~ 0 an unstable branch of the spectrum. For 117-41 we have

11= KU + 2ir(Aw,,
1)

2 c(A)[\/1 + 1KU _i]. (2.41)
r(~w~

1)c(A)

Expanding the radical for small KU, we obtain

(2.42)

The positive sign of the imaginary part in (2.42) corresponds to instability.
The physical meaning of the instability is absolutely clear. During the waveguidebending the

nonlinearity cannot, due to inertia, compensate the diffraction divergence and prevent further bending.
When the inertia is large, 1~W,,1T~‘ 1, formula (2.42) is valid up to KU L~W,,1,where the instability
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growth rate attains the maximum value r
1. In this case only waveguides of a length L <A

0wI~w,,1are
stable (A0 is thewavelength).In the opposite limiting caseof smallrelaxationtimesiXw~41 one should
neglectunity underthe radical in formula (2.41). Then we have for the growth rate

y=-’
2(Ku’r c(A))”2 ~

Themaximum of it is reachedfor KU T1 and is of the orderof y— z~w,,
1,the sameas in the inertialess

medium.The maximum length of the stablewaveguidein this caseis of the orderof L A0wr.
Considerablephysical interestis attachedto self-focusingin a medium with striction nonlinearity,

wherethe connectionbetweenP and t/’ is given by the wave equation

- ~

To investigate the waveguide instability in a medium with striction we use the previous results.
Obviously, the operatorA’ takesthe form

A = 1 +

For sufficiently small ~2 ~2 < k~s
2~ we can put

A’ —1= — (2.43)

Substituting (2.43) into (2.39) we obtain in dimensionalvariables

(11_Ku)2=_~4~~cl(A),

(2.44)

c
1(A) = ~ (g~l-~I

1If’(g)g~).

Herec
1(A) is a dimensionlessstructurefactor, c1 ~iw,,1Iw.The equation (2.44) has an unstable root

11= Ku(1 + i ~ c~2)/(1 + ~ ci). (2.45)

Just as before,the applicability condition(2.45) is

11 — KU

Two limiting casescan be distinguished.For a low nonlinearitylevel (wlk0s)
2~w,,~Iw4 1

11 — KU 1KU ~ c~’2.
5
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The maximum instability growth rate is attainedfor K —~k11(s/u)(i~w,,1/w)”
2,y ~ As a resultof

instability the waveguide breaks up into elongated bunches l~ (u/s)!
1 > l~which areparticularlylong

in the caseof striction self-focusing I~ (c/s)!1. It is easy to see that the waveguideis stablewith
respect to shorter perturbations. In the case of a large nonlinearity (u/s)

2L~w,,~/w2’ 1 the instability
becomesaperiodic:

—1/2
£1 1K5(L~W,,

1IW)

The maximum growth rate is reachedfor K -~-k0 ~w~~/wand is equalto

Y~
0)k (s/u)(~w

5Iw)’/2

For larger K the growth rate remains approximately constant up to K A, then the instability
disappears.

In conclusion, we discuss two more examples in which the above-mentionedinstability is manifested.
Let us consider the waveguide instability in the case of thermal self-focusing of light. If the instability
growth rate is sufficiently small, the temperaturevariation due to plasmaheating by electromagnetic
radiation is describedby meansof the heat-transferequation[14]:

a1 aU/at + v
2o = 202 + Icl’I2.

The evolutionof the electric field is describedby eq. (1.25). Herethe samedimensionlessvariablesas
in the previous chapter are used,while the parametera

1 = n0uI2Kk0 V51C
2/WV~.. The nonlinearityis

of an inertial character. We have shown above that for thermal self-focusing, the nonlinearity is
effectively a nonlinearitywith saturation.Thereforeas above,we shall only considerinstability of the
mode with m = 1.

The equation for small perturbations against the background of the solution (1.59) f
0 takes the form

(L1 + SL)L0v= (w — KU)

2 V

wherethe operatorsL
0, L1, ~iL are the following:

L0=V
2—0

0—A
2 L

1=L0+2f0A~7’f0,

= 2f)[A~’ — A~’Jf0, A~= + 2 —ia1w, A0 = + 2

The spectrumul(K) is obtainedas a solubility condition to first order in K

2 [14]

2 (f
0If0) 2

12=1— ((a/ar) f~I(aIar)~I’f~) (Ku). (2.46)

We have stated above that thermal self-focusing is conditioned by pushing out plasma from the
waveguideregion dueto its local heating.ForgreaterK the growth ratesareso largethat it is necessary
to take into accountthe ion inertia. In so doing the evolution of the ion density is describedby eq.
(1.26)while the densityvariation dueto the temperaturemodulationcan be neglected.The instability
growth rate is given by the formula (2.45).
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Fig. 4. Schematicrepresentationof thewaveguide beforeand afterbending.The oscillationsare carried out from the dashedregions dueto the
mismatchof the groupvelocities.As a result, thenonlinearity can no longercompensatefor thediffraction expansionand thebendingincreases.

In the following examplewe considerthe stability of waveguidesconditionedby mutualfocusingof
three resonantlyinteractingwaves [34]. A bending mode also provesto be unstablehere. We will
restrictourselvesto a brief descriptionof its properties.For waveguidebending(seefig. 4) due to a
great difference in group velocities ~u> u(1Xw,,~Iw)~2oscillations are taken away from the shaded
regions. As a result, as in the inertial medium, the nonlinearitylevel decreasesin theseregionsand
cannotcompensatethe diffraction divergence.

2.5. Soliton instability in weaklydispersivemedia

To demonstratethe efficiencyof the above-mentionedmethodlet us considerthe problemof soliton
stabilitydescribedby the KP equationwith ~2 <0. We studythe stability of thetwo-dimensionalsoliton
(1.34) with respectto a variation along the z-axis

3u — exp(—iwt+ ikz)t/i(x — Vt, y).

Linearizationof the KP equationgives

Atj,=iwac!I/ax—3K2clJ,

wherethe operator

a2 ‘a2 “ a2As —i (—i +6u
0_V)_3—~.

ax \ax ay

As before we will investigatesolitonstability in the long-wave limit consideringneutrally stablemodes

= t/i0 + + t/i~+

as a first approximation. It is clear that the derivativeau0lax is a neutrally stablemode like au0lay.
These perturbationsare independentand can be discussedseparately.As follows from the equation
defining the soliton shape

a
2 / a2~ a2u

(2.47)
ax ax ay

a zerothorder eigenfunctionof the operatorconjugatedwith A takesthe form
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t/’0=w0, w0~u0.

As will be shownbelow, w is a quantity of first orderin K, andthereforeto the first approximationwe
have

~ iw ~— U05. (2.48)

Differentiating the stationaryequation(2.47) with respectto V andcomparingit with (2.48) weget

= i~au0/aV.

In the secondapproximationwe have

A~2+ 2 axaaV u0 = —3k

3

From this the spectrumw(k) is obtainedas the solubility condition. Multiplying this equationscalarly
by the zerotheigenfunctionof the operatorconjugatedto A, we obtain

21 a2 21 au
0

0) j w0 axavU0~~~_
3/~j w

0-~-—dxdy.

Integratingby partswe get the expression

~— ~- = —3k
2P. (2.49)

The dependenceof P on V can easilybe found. For this purposeit is sufficient to notethat eq. (2.47)
admitsscalingtransformations:

u
11—+ Vu0(x1../V,yV).

From this we have P — or ~2 = —12k
2V<0 [28]. Thus, the two-dimensionalsoliton is unstable.

The one-dimensionalsolitoninstability is establishedin a similarmanner.In thiscasetheexpressionfor
the growth rate follows directly from (2.49): ~2 = —4k2V(cf. ref. [12]).

The instability of both one- andtwo-dimensionalsolitonsin positivedispersionmediais explainedby
the decreasein the soliton velocity when its amplitude increases.It meansthat a local changein the
soliton amplitude resultsin its bendingand in waveself-focusing[64]. As a result, a self-focusedtype
instability is developed,the nonlinear stage of which leads as for the NSE to collapse [65]. This
instability is stabilized for k — \/V. The exactvalue of k can be found for the one-dimensionalsoliton
only. In this casewe have a spectralproblemfor the fourth order operator:

+ ~ (6u0_4K2)] ~= -3k~çli

dx dx

whereu
0 = 2K

2/cosh2K(x— 4K2t) is a one-solitonsolutionfor d = 1.
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If oneseeksthe solutionof this equationin the form t/i = a~plax, the equationfor t/ can be written as

[(L1 + K2)

2 — 4K4]4 = —3k~. (2.50)

Here L
1 = —d

2Idx2 — 6K2/cosh2Kx+ K2 is the well-known operator (2.7) with the known discrete
spectrumE

0 = 0, E1 = —3K
2. From this it is evident that eq. (2.50) hastwo solutionswith k

0 = 0 and
komax= K

2 (cf. [66]).The function

i9x cosh2~x

correspondsto the latter value.
If one considersthe one-dimensionalsolitonstability in a mediumwith negativedispersion(which

correspondsto the selectionof the oppositesign for the right-handside of the KP equation),similar
calculationsprovideneutral stability with respectto long-waveoscillations [12]:

2 = 4k2V2>0. (2.51)

Thus, the developedperturbationtheory permits us to drawa conclusionaboutsoliton instability. In
the case of stable solitons the analysis of long-wave perturbationsdoes not, of course, offer a
comprehensiveanswer.The problemof the convergenceof the perturbationtheoryseriesalsoremains
uncertain.It maybe solvedeither by meansof a numericalsolutionof the spectralproblemsor with the
helpof exactmethods,suchas the inversescatteringtransformmethod.Using this technique,belowwe
will give an exactsolutionof the one-dimensionalsoliton stabilityproblemfor the two-dimensionalKP
equationfollowing ref. [67],

(u, + 6uu
5+ u555) = 3/32 ~E?4 (2.52)

This problemwas first solvedin the paper[68].
Equation(2.52) representsthe compatibility condition for a linear overdeterminedsystem

(/3 a/ay— L(x))t/i=0, (alat—A(x))tp=0,

a
2 a3 a (2.53)

L(x)— —i—u; A=—u-—~-—6u——3u
5+3/3f; f5=u5.

ax ax ax

Along with (2.53) let us considerthe set of two equationsfor somefunctionF(x, y,z, t):

(p alay — L(x) + L~(z)) F(x, y, z, t) 0,
+ (2.54)(a/at— A(x)+ A (z))F(x, y,z, t)=0,

whereL ~, A
5 are the operatorswhich are the conjugatesof L and A. It is not difficult to seethat by

virtue of (2.53) this systemis also compatiblewhenu(x,y, t) obeysthe KP equation.
Let us show that the system(2.54)solvesthe stability problemwith respectto smallperturbationsfor
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any solution u(x, y, t) of the KP equation(2.52) when the perturbationau is definedas follows [67]:

~u(x, y, t) = (a/ax+ a/az) F(x, y, z, t)I5.~.

This is verified by direct calculations.For thispurposeit is necessaryto applythe operatora/ax+ a/az
to the first equation (2.54), while the operatora

2/ax2 — a2laz2 should be applied to the second
equation.The obtainedresultmust be consideredon the characteristicx = z.

An importantfeatureof equations(2.54) is that theyadmit separationof variables.As aresult, there
appearspectralproblemsfor operatorsof a lower order than thoseof the initial linearizedequation.
The advantageof the inversescatteringtransformmethodfor the solution of the stability problemlies
just in the reductionof the order of the differential operators.

The stability problemis most simply solved for a one-dimensionalsoliton

U
0 cosh

2K(:—4K2t)

At first it is necessaryin equations(2.53) to turn to the systemof a soliton at rest. As a result, the
operatora/at will be replaced by a/at— 4K2(a/ax + a/az). Then in equations(2.53) we makethe
separationof variables

F(x, y, z, t) = exp(Ft— iky) t/i(x) ~(z)

where4i(x), ~(z) are the eigenfunctionsof the known operatorL
0 (2.7):

(a
2/ax2 — 2K2/cosh2Kx+ i/3k)t/i = —Ecu,

2 2 2 2

(a /az —2K /cosh Kz)X=—EX.
From this we have

1/, = e~5[ii/, + tanhKx], x= e~2[fl/K — tanhKz], (2.55)

where ii and ij are connectedby the relation

(2.56)

An expressionfor the growth rate[‘is obtainedby the substitutionof (2.55) into the secondequationof
the set (2.54). As a resultwe obtain

3 3 2F=4[~ —n —K (ti—~)]. (2.57)

To determinethe spectrumof the linearizedproblemit is necessaryto requirethe boundednessof the
perturbation~u for all x:

~u(x, y, t) = exp(Tt— iky) ~- {exp[(v — n)x](~+ tanhKx)(~ — tanhKx)}. (258)
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When p � ±K and ~ ~ ±Kthe solution will be boundedif Imp = 0, p = i(v — ~). It is not difficult to
showthat in this caseindependentlyof the sign of p

2 (2.57)proves[‘to be a purely imaginary quantity

Fip[31~ _p2_4K2] (2.59)

which for K = 0 goesover into the dispersionlaw for smalloscillations.When n = K the solution (2.58)
decreasesexponentiallywhen Re v < K, IxI —* °~. This condition is in agreementwith eq. (2.56) for
positivedispersionp2 <0. In this casefrom (2.56), (2.57) we obtainthe instability growth rate in the
k-region [68, 67]: F = 41k1(K2 — IkI)’~2,which agreeswell with all the limiting casesobtainedearlier.

Unlike for the caseof positivedispersion,for the caseof negativedispersionthereareno localized
modesfor finite valuesof k; thereexist only solutionsfrom the continuousspectrumwith a frequency
definedby (2.59). In fact for p2 >0 from (2.56) for n = K therefollows an inequality

(Re )2 = K2 + (Im )2> K

which is incompatiblewith the boundednesscondition for solutions IRe ~I<K. As to the mode (2.51)
obtainedwith the helpof perturbationtheory,its exactsolutiongives an exponentialgrowthwith index
Re(VK2 + ipk — K)x which is small in the limit as k—i’ 0. A similar situationtakesplace for quantum-
mechanicalquasistationarystates,whenstationarysolutionsof the Schrödingerequationareconsidered
formally [69]. The physicalcausefor this increaseis connectedwith radiation.The given modescan be
interpretedanalogously;an exactanalysisof the Cauchyproblemof a linearizedequation[70] proves
this.

3. Stability of plasmasolitons

In the presentchapterwe consider the problem of plasma soliton stability which is of great
importancefor plasmaphysics.Both for laboratoryandspaceplasmasthe situationis typical whenthe
plasmaturbulencelevel is so high that nonlinear effects are comparablewith or exceeddispersion
effects. In this casemodulation instabilitiesusually develop in the plasma, giving rise to localized
bunchesof the electric field. Solitons are supposedto be formed from thesebunches.Therefore
turbulencecan be representedas a solitongas[71]. Sucha turbulencepicturecan berealizedwhenthe
main structuralunit of it, a plasmasoliton, is a stableformation. In thecaseof an alternativeturbulence
picture [30], the cavity formed due to the developmentof an instability doesnot reacha stationary
state;it collapsesin a finite time. In the final stageof the collapsethe energy“trapped” in the cavity is
transferredto the particles.Plasmaturbulenceis thereforean ensembleof cavitiescreatedby the pump
andcollapsing.It is important to emphasizethat the differencebetweentheseturbulencepicturesleads
to absolutely different macroscopicmanifestations.There is a great difference in absorptionrates,
absorptionmechanisms,and, consequently,in the distribution functionsof the heatedparticles.The
problemof soliton stability is thereforeof primary importancefrom the practicalpoint of view.

By now the problemof plasmasolitonstability seemsto be ratherclear— plasmasolitons arealmost
alwaysunstable.In a well-definedsensetheseinstabilitiesarethe continuationof the well-known first
or secondorderdecayinstabilities (see the review [72]) or their modifications[73].*

* For stationarywavesin the KP equationthis correspondenceis exactly determined[671in termsof the inverse scatteringtransformmethod.
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In the presentchapterwe discussmainly the stability of high-frequencywave solitonsin a plasma
which are describedwith the help of equationsgeneralizingthe NSE. Theseequationsare obtained
after averagingthe initial equationsover a high frequency;theycontain information aboutthe vector
structureof the plasma oscillations.Only one section is devotedto the stability of low-frequency
solitons.

To study the solition stability we use all the earlier discussedmethodswith small modifications.
When consideringconcreteplasmaproblemsmuch attentionis focusedon the descriptionmethodsas
well as on the applicability boundariesof the obtainedequations.Significantattentionis alsopaidto the
discussionof the physical meaningof the results.

3.1. High-frequencysolitonsin an isotropicplasmaand their stability

We will startthe descriptionwith high-frequency(HF) Langmuirwavesin an isotropicplasma.The
dispersionlaw for Langmuir oscillationsis of the form

322
= w~(l + ,k rd)

Here is the electronplasmafrequencyand rd the Debyeradius.Langmuir oscillationsexist in the
region krd 4 1, wherecollisionlessLandaudampingis small. The criterion krd 4 1 denotealsothat the
electronsmove as a whole and, therefore,can be describedfrom a hydrodynamicpoint of view. The
principal nonlinear mechanismin the region E2/8ir = w 4 nT is the Langmuir wave scatteringby
low-frequencydensityfluctuations~n< n

0. This implies that the frequencyof the nonlinearLangmuir
waves is close to the plasma frequency w~(n0). Due to this, by averaging the dynamic equations
(hydrodynamicequationsfor the electronsplus the Maxwell equations)over the fast time 1 it is
possibleto get shortenedequationssimilar to (1.25), (1.26). For this purposea complex envelope
E = ~(E exp(—iw0t) + c.c.)of the electric field is introduced,for which from the Maxwell equationswe
get [74]:

iE1+4wr~VdivE+—~-—curlcurlE=w~E. (3.1)

This equationdescribesbesidesplasmawaveslong-waveelectromagneticoscillationswith frequencies
closeto and their mutualtransformationdue to inhomogeneities.In this equationthe ratio of the
potentialandthe non-potentialtermscontainsa largeparameterc

2lv~.This meansthat the electricfield
is approximatelypotential,E = —Vp, with the exceptionof small krd vT/c [74]. To distinguishthe
potentialterm in (3.1) let us takethe divergencefrom (3.1) andthenassumeE —Vp. As a resultwe
get [30]:

~°
V2(i~,+ ~w

0r~ V
2p) = -~div— V~. (3.2)

We shouldemphasizethat it is impossibleto substituteE = —V~directly into (3.1) becausedueto the
large coefficient clv~the nonpotentialpart appearsto be of the order of the potential term. In
particularfor this reasonthe equation
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~

maybe consideredonly as a model one.
Under the action of ponderomotiveforces the densityvariation ~n is describedby an equation

similar to (1.26):

(~ — c~V~)~n= 161M V2IV~I2. (3.3)

Finally, introducingdimensionlessvariables

r— ~r~\’(Mlm)r , t

~nln
0= ~(mlM)n, ~‘ = (Tie)VT~~“

we obtain

V
2(i~

1+ V
2~)— div(nV~)=0,

(a2Iat2 —V2)n =v2Iv~I2. (3.4)

In the one-dimensionalcaseequations(3.3) areidenticallythe sameas (1.25), (1.26) for u = 0 andhave
a four-parametricfamily of soliton solutions

= \12(1 — ~2) AsechA(x — f3t — x
0) expi[(A

2 — p2/4)~+ f3x12+ ao].

The characterof thesesolutionsdependssignificantlyon the velocity /3 which in dimensionalvariablesis
equalto 3VTkOrd wherek

0 is awavenumbercorrespondingto the packetmaximum.The electricfield in
the solitonfor variousvaluesof kOrd is shownin fig. 5. Fora solitonat restkOrd 4 wlnT the electricfield
varies monotonically. When (kOrd)

2 ~- winT this soliton is an envelopesoliton with a quasimono-
chromaticfilling. In this caseone can make the additional simplification (3.4) and, passing to the
envelope,obtain the equations(1.19). The propertiesof solitons andtheir stability in this limit have

(a) (b) (C)

Fig. 5. Electric field in a Langmuirsoliton. a, b, ccorrespondto the different values of the solitonvelocities/3/A, a, 0; b, 4; c, 20. /3 -* 1.
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beenstudiedabove. In the presentchapterwe shall mainly restrictourselvesto considerationof solitons
at rest.

In the static limit when n~,4L~n,the system(3.4) is reducedto one equation

~ (3.5)

This equationdescribesall stationarysolutionsexceptsolitonswhichmove with velocitiesof the order
of the acousticvelocity or close to it.

Let us first considermulti-dimensionalsolitons.It is not difficult to find stationarycentral-symmetric
solutions.In this case(3.5) is reducedto a secondorderequationsimilar to (1.50)

2 d2E d—1 dE d—1
2 E+E=0

dr r dr r (3.6)

E = dq/dr, ~ = q~(r)exp(iA2t).

The structureof solutions(3.6) is alsoinvestigatedqualitatively as hasbeendonefor (1.50). However,
in contrastto (1.50), eq. (3.6) containsan additional centrifugalterm ((d — 1)/r2)E correspondingto
the orbital quantumnumberI = 1. Thereforethe “wavefunction”E as r—i’ 0 behavesasr’ = r. Thus,for
centrallysymmetricsolutionsthe electricfield in thecentreis equalto zero.Thus,field distributionsare
energeticallymorepreferablewhen the field is different from zero for r = 0 (see [75, 80]).

Considernow the solitonstability.
Equation(3.5) is like the NSE, a Hamiltonian one

iV2~= ~H/Fcc,*.

Besidesthe Hamiltonian

H=J[IV2~I2_ ~IV~I4]dV

eq. (3.5) conservesalso the total numberof plasmawaves:

N=fIV~I2dV.

As for the NSE, the solitonsolutionç = ~ exp(iA2t) representsa stationarypoint H for a fixed number
of waves

~(H+A2N)=0

or

+ V2) ~ + divl V~
0I

2V~
0= 0.

By analogywith (1.46) it is easyto check that for the soliton solution
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H=—A2N(d—2)i(4—d)

i.e., the Hamiltonianis positivefor d = 3 andnegativefor one-dimensionalsolitons.If oneperformsthe

N-conservingscalingtransformations,
p

0(r) = a~
2~2~

0(rla)

thenthe Hamiltonian H as a function of the parametera

H(a) 11ia
2 — I

2lad (i~= J IV
2~

0I
2dV, 12 = ~ I IV~oI~dV) (3.7)

hasa maximum for d = 3, which correspondsto a three-dimensionalsolitonandit is not boundedfrom
below as a—i’ 0. It is not difficult to seethat the HamiltonianH will be unboundedfrom abovebecause
H containshigher derivativesof c~thanN. This meansthat a three-dimensionalsoliton is unstableat
least with respectto finite perturbations.As to a rigorous proof of the three-dimensionalsoliton
instability againstsmall perturbations,this questionremainsstill open.The samemaybe said about
two-dimensionalsolitons. Here a situation similar to the one for the NSE is likely to take place.
Solitons must be unstableagainst perturbationsof a non-exponentialcharacter. As far as one-
dimensional solitions are concerned,they are obviously stable with respect to one-dimensional
perturbations.

As has been shown above, stable solitons may exist in a medium with a slowly increasing
nonlinearity. If one assumesthe characteristictimesof the nonlinearprocessesto exceedsignificantly
the time of an ion passingthrough the cavity, then both electronsin slow movementsandions canbe
consideredto havea Boltzmanndistribution [30]

( / 2 ~ / —
-— llI_ E ~ — ~‘ eçt’
neno~plTk\~Pl

6ITn)J, n1—n0exp~—-~

Fromthis and usingthe condition of quasi-neutralitywe obtain

= n0 exp(—E
2i32irnT).

Substitutingthis expressioninto (3.4) we get the equation

+ V2p) +div Vq(exp(—IVp~2)—1) =0. (3.8)

It is not difficult to verify that this equation has solutions which are stable due to nonlinearity
saturation.In particular,suchsolutionshavebeendiscussedin the paper[76] (seealso [77]). It should,
however,be notedthatnonlinearitysaturationoccurswhen winT — 1; a typical solitonamplitudemust
be just of the samevalue. Consequentlythe soliton size must be comparablewith the Debyeradius.
Undertheseconditionseq. (3.8) cannotbe applied. As hasbeenmentionedabove,eq. (3.4) is valid to
first order in (krd )2 andwinT. In the nextapproximationtogetherwith the non-linearitysaturationit is
necessaryto take into account the variation of the dispersionlaw for Langmuir waves, electron
nonlinearities[78], and Landaudamping. In the region k — w~icrelativistic nonlinearitiesmaybe of
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importance. Thus, an analytical description of strong plasma turbulence is rather complicated.
However,whenthe averagelevel of turbulenceis low, collapsingcavity evolutiondoesnot leadto the
formationof multi-dimensionalplasmasolitons.Due to the ion inertia the cavity is compresseduntil its
energyis absorbedowing to Landaudamping. In ref. [79]theseproblemsarediscussedin moredetail.

Recently a numerical simulation (3.16) has been carried out intensively in two- and three-
dimensionalgeometries(see, e.g. the reviews [80, 81]) in connectionwith the Langmuir collapse
problem. All theseexperimentsconfirm the instability of multi-dimensionalplasmasolitons. Plasma
soliton instability has been also demonstratedin - laboratory experiments(see, e.g. [82]). Localized
bunchesof the field may, however,be observedat high energydensitiesw nT in narrowcavities (of
the order of the Debyeradius)when a largefraction of the electronsis trappedin the cavity [79].

Now we turn to the one-dimensionalsolitonstability with respectto transverseperturbations.
The solitonsolutionfor the potentialq~hasthe form

= ~ exp(iA2t) arctansinh Ax.

As before we seeka solution in the form

= + ~ exp(iA2t + ik
1r1), ~, 4

Separatingthereal andimaginarypartsof ~up5andtaking into accountonly thefirst termsessentialwith
respectto k1, we obtain

v,=—(L1+L’)u, u1+(L0+L’)V.

Herethe operatorsL0 andL1 areof the form (2.7) where Ia~0/axI
2is put insteadof g2, andthe action

of the operatorL’ on the function is definedas follows:

L’u = k~±(_A2+ I~~I2+ 2 u dx = k~(_L
0 + u dx.

Assumingu, v exp(—iIlt) we find

12
2u=(L

0+L’)(L1+L’)u—(L0L1+L0L’+L’L1)u. (3.9)

Assumingk1 to be rathersmallandapplyingthe resultsof section2.2, let us considerthe stabilitywith
respectto both symmetricand antisymmetricmodes.It is not difficult to verify that an odd mode is
stable. For symmetricperturbationswe get the following dispersionequation

11
2=2k2 (~

05IL’I~05)
I

Performinga rathercumbersomeintegrationwe obtain [58]

= —A
2k~(12— 7 ~(3))— —3.6A2k~
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Here

~(x)= ~ -~nt n

is Riemann’szetafunction.
As before the maximum growth rate is reachedat the limit of the given perturbationtheory.First,

thesmallnessof the instability growthrate in comparisonwith the nonlinearfrequencyshift 11 < A2 is
necessaryfor its applicability. Second,it is necessaryto fulfill thestaticapproximationcondition11 < A.
The former condition is more important for small amplitudesA < 1 or winT < mIM, and, therefore,

)‘max A2, while the latter is more important for large onesA> 1 or wInT> m/M and Ymax A. In

dimensionalvariables

Ymax w~,winT for winT< miM, (3.10)

Ymax~’w
01(wlnT)”

2 for wlnT>mlM. (3.11)

For small amplitudeswinT the growth rate maximum is reachedfor (klrd)2 w/nT and thenfor krd
valuesof the sameorder the growth rategoesto zero.Thus,the given instability is similar to thesoliton
instability describedby a NSEwith a positivedispersion.For largewInT the growth rate reachesthe
value(3.11) for krd \1miM. It is clear that for largek

1 up to klrd \‘wlnT the solitonis unstableas
before.In fact, if the growth ratebeginsto decreasein comparisonwith (3.11), the staticapproximation
is valid againand the instability takesplace.On the otherhand, if we neglectthe term c~V

2nin eq.
(3.3), it is not difficult to seethat the instability growth ratesdo not exceed(3.11). This implies that in
the interval VmiM< k

1r~<\/wlnT the growth rate is approximately constant. As to order of
magnitudethe maximum growth rate is the same as that for an unstablemonochromaticwave with
k= 0. This is natural, sincethe wavelengthof the perturbationscorrespondingto the maximumgrowth
rate is of the order of a soliton size. Note that the fact of soliton instability itself is nontrivial here.

We haveconsideredabove the instability of a soliton at rest. The somewhatmore complicated
problemof the stability of a solitonmoving with an arbitraryvelocity hasbeensolvedby Benilov [36]
with the helpof the samemethod.It is shownthat the magnitudeof thegrowth ratedependsweaklyon
the motion of the soliton. We shall only note that for a moving soliton the unstablemodedoesnot
possessa definite parity.

As hasbeenmentionedabovetheproblemof plasmasolitonstability was consideredin manypapers
the resultsof which wereoften contradictory.A critical discussionof theseworkshasbeencarriedout
in the review [83] andthe paper[36]. The drawbacksareconnectedeitherwith the considerationof a
narrowclassof perturbationsor with inaccuraciesof approximatemethodsused in them.

3.2. Effectof a weakmagneticfield on the Langmuir soliton stability

Considernowthe problemof the effectof a weakmagneticfield on theLangmuirsolitonstability. It
is well-knownthat a plasmabecomesanisotropicin the presenceof a magneticfield. In sucha situation
the investigationof multi-dimensionalsolitonspresentsa complicatedproblemsensitiveto the plasma
geometryand parameters.
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We shalllimit ourselvesto a discussionof the stability of one-dimensionalsolitonspropagatingalong
the magneticfield.

First we determine the effect of a weak magnetic field on the Langmuir soliton stability. A
modification of the Langmuir oscillation dispersionlaw is observedin very moderatefields:

wk=wP(1+2krd+~ ~ ~). (3.12)

Here k1 is the wavevectorcomponentperpendicularto the magneticfield H0, eH0/mc=
0)H is the

electron cyclotron frequency. From the dispersion law (3.12) it is obvious that the transverse
perturbationfrequencyis higher than that in anisotropicplasmaandhence,the magneticfield mustbe
a stabilizingfactor for solitons. It shouldalsobe noted that the magneticfield is importantfor solitons
with a smallamplitudefor whichthe nonlinearfrequencyshift w/nTdoesnot exceedo~/w~.Here in
the static limit all changesof the averagedequationwill refer only to the linear terms

2 / 2
2. 2 2 Vip

V (i~ + ~wPrdz~ip)— —~ V
1ip + w~div(32 T Vip = 0

or in dimensionlessvariables

V
2(iip, + V2ip) — oV~ip+ divl VipI2 Vip =0, o~= ~ (3.13)

Considerfirst a solitonmoving with a sufficiently largegroupvelocity 3vT(kOrd)> VT(Wln T)’ / 2 As
hasbeenmentionedabove,in this caseonecan turn to envelopesandobtaina NSEof the type (2.15)

i~
1+~55+(1+ 22)v+I~I2~=o.30)PkOrd

Hence it immediately follows that a one-dimensionalenvelope soliton is unstablewith respectto
transversesymmetricperturbations(seesection2.2). Thereforefor fastsolitonsthe magneticfield does
not stabilize the instability. It is also obvious that the maximum value of the growth rate remains
unchanged.The inclusion of the magneticfield leadsonly to an increasein the unstableperturbation
wavelengths[84] by a factor WH/a)PkOrd.

Now we shallinvestigatethe stability of a solitonat rest.Linearizingeq. (3.13)on the backgroundof
the solution (3.9) (the x-axis is takenalong the magneticfield) one comesto the spectralproblem
(3.10) in which the operatorL’ acquiresan extratermdependingon the magneticfield

—L’u=k~(—L
0+~—~I udx’.

dx ax /J

For an antisymmetricmodecalculationsfor smallk1 give marginalstability:
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At k1 —*0 for symmetricperturbationsthesquareof the frequencyis given by the expression

= —k~[(12—7~(3))A
2—~f- ~ ~(3)]

It is seen from this that in the long-wavelimit a magneticfield stabilizesthe instability when

w~iw~,>A2 ~ (12— 7~(3))/~(3) 0.86A2

or in dimensionalvariables

w~lw>1.7w/nT.

It shouldbe emphasizedthat this resultdoesnot prove the soliton stability. Instabilitymay appearwhen
we takeinto accountthe next termsof the expansionin k

1. In a weak magneticfield the fact of the
Langmuirsoliton instability hasbeenshownin calculations[85];however,thegrowthratestructurehas
not beenstudiedin detail.

3.3. HF solitons in a strongmagneticfield

It is well-known that thereexist two branchesof potentialelectronHF oscillationsin a plasmain a
magneticfield: the upperand lower hybrid wave oscillations.Upper hybrid oscillationsare as H—i’ 0
transformedinto Langmuir waves, the dispersion law (3.12) just correspondsto the upperhybrid
oscillationsin a weak (w~< w~)magneticfield. The upper-hybridwave dispersionlaw for arbitrary
magneticfields with neglectof thermaladditionsis of the form

wk—2(VWH+a)P+2wHwPcosO+VWH+wP2wHwPcosO) (3.14)

where 0 is the anglebetweenthepropagationdirection and themagneticfield. The dispersionlaw for
lower-hybridwavesw~differs from (3.14)only in thesignsof thesquareratio. Both in weakandstrong
magneticfields w~ hasthe sameangulardependence

1w ,

wk—wOIcosOI, ~o=~ ~‘ “ . (3.15)1~H’ ~

This expressionis valid up to anglescos0—VmIM. For quasitransversepropagationin (3.15) it is
necessaryto take into accountthe ion motion. As U —i’ lTl2 the oscillationfrequencytendsto the low-
hybrid frequency

2 2 1/2
0)LH = ~H~pI”(~H+ co~)

Near the lower hybrid frequency(w — 0)LH ~ ~LH) in the dispersionlaw it is necessaryto considerthe
following thermalcorrections:
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= ~LH(1+ ~k2R2+ ~cos2UM/m)

R2_f 3(Ti/Te)T~, ~H~’~p (3.16)
— ~ +3T./T)r~, ~p>~H

whererH = VTeIWH is theelectronLarmorradius.
Note that (3.16) is similar to the dispersionlaw for Langmuirwaves(3.12).
Considernow the upper-hybridbranchof the spectrum.The equationsdescribingthe evolution of

the oscillationscan be noticeablysimplified as in an isotropicplasmaby averagingthemwith respectto
the high frequency.The structureof the low-frequency equationsis analogousto (3.1) (see,e.g.
[86—88])with the differencethat now it is necessaryto take into accountlocal frequencyoscillation
variationsresulting from slow fluctuationsof the magneticfield. The structureof the high-frequency
equation is noticeably complicated due to the fact that even in the hydrodynamic limit of a
magneto-activeplasmathereexist threebranchesof low-frequencyoscillations.A high-frequencyforce
which generatesslow motions remains potential F=V4~however, in 4, besidesthe usual term
proportionalto El2 therebecomesessentiala term with a vector nonlinearity 4 —‘- [Vt/i,Vt/,*]

2 whose
appearanceresultsfrom the particledrift in the field of the electricoscillations.The generalform of the
closed system of equationsdescribingthe evolution of upper-hybridoscillations can be found in the
papers[10, 86—88]. The systemof equationsarisingherehasa wide rangeof soliton solutions(see,e.g.
[86, 87]).

Now we shall discussin detail solitonsof upper-hybridwavespropagatingacrossthemagneticfield.
First it shouldbe notedthat in this-casesoliton solutionsexist underthe condition w~> 3w~.In the
oppositecasethethermaldispersionchangesits sign [87]and localizedsolutionsareabsent.In this case
equationsin dimensionlessvariableswhich describethe upper-hybridoscillationpropagationareof the
form [87, 89]:

—i~ar/i/at+ a
2t/i/ax2 — nt/i = 0 (3.17)

a2n/at2 — a2n/ax2+ n = a2l~I2/ax2— /3It/’12 (3.18)

where~ = ~~pi’~H’ /3 = 8irnTlH24 1. The propertiesof solitions of this systemdependsignificantly
on the characteristicscaleof the electric field variations. For simplicity we shall restrictourselvesto a
considerationof quasistationarymotionswhen the term a2n/at2 in (3.18) maybe neglected.Thenfor
smoothdistributions with a scalelength L > ~ 1/2 (in dimensionalvariables1> c/wv) n = — /31 t/ 12 and
the set (3.17), (3.18) is reducedto the NSE. Similarly for narrow distributionsL <1 (in dimensional
variables1< VTe/WH) we obtain a NSE with a stronger nonlinearity n = —It/’12. In the intermediate
region I < L </3-1/2 the equationwith a nonlocalnonlinearity

(3.19)

takesplace. For this equationthe Hamiltonian H is equalto H = S {It/i
51

2 — ~(It/’I2)2}dx. Equation
(3.19) can be easily studied with the help of the above-describedmethods. Its soliton solutions
representstationarypoints of H for a fixed numberof wavesN = S It/il2 dx:

~(H+A2N)=0.
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The simplestscalingtransformationsshow that the Hamiltonianis unboundedandthereforeoneshould
expectunstablesolitonsolutions.A rigorousproofof the solitoninstability is not difficult to obtainwith
the help of the analogueof the Kolokolov—Vakhitov criterion (2.13). As was shown in ref. [87] the
solitoncollapsetakesplacedueto instability evenin the frameworkof the one-dimensionalequations.
As a result, the characteristicsize of the soliton decreasesrapidly down to the limits of applicability
(3.19).

In a mediumwith dissipationand pumpingan auto-oscillatingsolitoncan be constructed[89]. As a
rule,excitationof oscillationsby an electromagneticwave or a beamoccursin the long-wavepart of the
spectrum.Sincethe electric field hereis describedby a NSE, solitonsarean essentialstructuralunit of
one-dimensionalturbulence.When the pumping is rathersmall it leadsto a slow growth only and,
accordingly,to contractionof the soliton. When the soliton reachesL p_1/2 (3.19) becomesvalid.
The soliton collapsesand its size decreasesrapidly. In the short-wavepart of the spectrumLandau
dampingbecomesimportant.Thefield energyis absorbedin thesolitonandit expandsup to L ~ p_1/2,

and so on. This auto-oscillatingmodehasbeen demonstratedin paper[89].
Considernow the problemof upper-hybridsoliton stability with respectto non- one-dimensional

perturbationsresulting from decayprocessinto upper-and lower hybrid oscillations

= + acO~K. (3.20)

In a strongmagneticfield w ~H(
1 + (w~i2w~)sin2 0) andtheminimumfrequencyw~is about

for_propagationperpendicularto the magneticfield. So the process(3.20) is allowedfor 1 < w~lw~<
~‘J(Mlm). The growth rate of this processfor a monochromaticwave can be simply estimatedas to
orderof the magnitude(seee.g., ref. [10])

7’-~(w/nn
0)’’

2iç~

Also the processof inducedscatteringon ions is possible

= ~ + 1k — KI VTI (T
1 = Te) (3.21)

with a growth rate (seee.g., ref. [10])

y—w~wiw~nT.

The decayconditions(3.20), (3.21) do not imposerestrictionson the value of the wavevectorK, the
growth rate is approximately constant for K> I(~ and as a result. a growth of the short-wave
perturbationstakesplace.The solitoncan be consideredas a monochromaticwave with k = 0 for them
and the above-mentionedinstabilitiescan be developed.Let usemphasizethat dueto the finite size of
the solitons,the perturbationscarriedout can stabilize the instability.

Therefore,the solitonspropagatingalong the weak magneticfield are the main subjectof interest.
The modulationalinstability of such solitons was studiedin the previoussection.

Now let us turn to the lower hybrid branchof the spectrum.First we notethat for waveswith the
dispersionlaw (3.15) for any ratio of

0)H to w~the decayprocesses

= + ~: (3.22)
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arepermittedinsidethe branch.The growth rateof this processfor a monochromaticwaveaswell as
for the process(3.20) tendsto a constantwith increasingperturbationwavenumber.Due to the finite
size of the soliton the instability can be suppressedby the perturbationscarriedout.

It should be noted that the decay instability may stabilizedue to the finite plasmasize. Just this
situationprobablytook place in somewell-known experiments[90].Oscillationsexcitedin them had a
wavelengthcomparablewith plasmaradiusa. The dispersionlaw for suchwavesmay be written in the
form

= w~k2al\/1 +

that is, they representa resonatormodewith a fixed value of k1 — 1/a. In this casefor smallk2a, waves
with a smallamplitude aredescribedby the KdV equationfor which, as we haveseen,the solitonsare
stable. It is probably just this fact that can explain the observationof solitons in theseexperiments.

In the caseof a homogeneousplasmathe process(3.22) will be forbiddenonly for quasitransverse
propagationwhenthe oscillation frequencyis closeto

0)LH~ Let us considerthis problemin somemore
detail.

Theequationsdescribingoscillationswith frequenciescloseto the lower-hybridonecanbe obtained
in the usual way by averagingover the “fast” frequency LH~ The equationfor the electric field
potentialis of the form [91] (seealso ref. [10]):

V~(i~- + ~wLHR2V~)t/i— ~ t/i~ = i -~-~ [V~n,Vt/i]
2. (3.23)

In the static limit

7 < (kzVTe, kVT) (3.24)

the densityvariation under theaction of ponderomotiveforces is given by the equation

= — mwHwLH(TI + Te) [V~,V~*]2.

As a result, turning to dimensionlessvariables,we obtain

V~(i~ + v~)~ — = div([V~Vcl,*]2, [h Vt/i]); h = H01H0. (3.25)

Note a numberof characteristicfeaturesof this equation. The nonlinear term in it vanishesfor
one-dimensionaland axially symmetricsolutions.In this caseit is necessaryto takeinto accountweaker
nonlineareffects. A similar considerationhasbeen given in ref. [92] where it was shown that the
propagationof one-dimensionalpacketsof lower-hybrid waves is describedby a modified KdV
equation.It is howeverclear that thesesolutionsareunstablewith respectto transversemodulations
due to strongernonlinearmechanisms.

Inducedscatteringby particles [93]can be given as an exampleof a concreteinstability mechanism.
Equation(3.25) describesonly three-dimensionalproblems.In fact, as hasbeenmentionedabove,

for axially-symmetricsolution the nonlinearterm vanishes.Strictly speaking,a considerationof the
planarsolutionsat/ilaz= 0 contradictsthe criterion (3.24). Theanalysisshows,however,that upon the
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developmentof the modulation instability the condition (Mim) t/1
25 R

2V~t
1ls must be satisfied.There-

fore, insteadof (3.25), the equation

V~(i~1+V~)_div([V~,V~*]5,[h,V~])=0 (3.26)

can be consideredas a modelone. Equation(3.26) has soliton solutionsof the form

= exp(iA
2t)exp(imip)f(r)

wheref(r) is determinedby the equation

! ~f2o

- a a m2
k= —r—

8r ar r

Both equations(3.25) and (3.26) areHamiltonian with

H=f(IV2~I2+~[V~,V~*]~)dr
1.

Its grouppropertiesare closeto the propertiesof the two-dimensionalNSE. Thereforein thissituation,
as well as for other similar examples,one can expectinstability of the solitons. In actual fact, the
nonstationarynatureof the evolutionof aninitial local perturbationandits collapsehasbeenconfirmed
by numericalcalculations[94].

3.4. Stability of low-frequencysolitons

As we haveseenabove, one of the main reasonsof HF soliton instability can be associatedwith
processesof decayof high-frequencyoscillationsinto high- and low-frequencyones.If low-frequency
ion acoustic wavesare consideredin an isotropic plasma,decay processesare forbidden which is
essentiallythe main reasonof the stability of theone-dimensionalsmall-amplitudesolitonsdescribedby
the Kadomtsev—Petviashviliequation.A concreteproof of this fact is givenin chapter2 of thisreview.
The caseis quite different for low-frequencywavesin a magnetizedplasma.It is well-knownthat in the
region of frequenciesless than the cyclotron ion frequency

0)Hi’ there exist three branchesof
low-frequencywaves of the acoustic type: Alivén waves (A), fast (M) and slow (S) magneto-acoustic
waves. Betweenthesethreewave types variousdecayprocessesare possible,the matrix elementsof
which can becalculated,e.g.,with the helpof astandardHamiltonianapproach[5,95] or directly from
the equationsof motion [96]. All thesemethodsprovide an immediateopportunity to determine
without concretecalculationswhich solitonscan be unstable.For example,for a low-pressureplasma
/3 = 8nnTiH2 4 1 onecan statethat theAlfén wavesandfastmagneto-acousticsolitonswill beunstable
dueto decaysinto A- andM-wavesand an S-wave.When /3 4 1 the S-wavesplay a role similar to that
of ion-acousticwavesin the decayprocessesfor Langmuirwaves.

Thereforeamongthe threetypesof wavesstablesolitonscan be expectedonly for S-waves.Let us
considerthis situationin somemore detail. If the plasmais collisionless,for frequenciesw 4 HI slow



158 E.A. Kuzncisovci a!., Soliton siabi!iiy in plasmasand hydrodynamics

magneto-acousticwaves exist only in a non-isothermalplasmawhen Te ~ T1, that is, they represent
magnetizedion-acousticoscillations. In the long-wave rangethe dispersionlaw for theseoscillations
takesthe form

—, 11 i~22 1,2 2
— ~ 2~rd 2I~IrH

whererd = VTeI~ is the Debye_radius,TH = Cs/a)Hi is the ion Larmorradiuscalculatedwith respectto
the ion sound velocity c~= \/Te/M. Here, the first dispersion term describesa deviation from
quasineutralitywhile the secondone describesthe dispersionof the ion-cyclotronfrequency.Sincethe
oscillationfrequencyis lessthanthe ion-cyclotronone,one canconsiderthe ions in theseoscillationsto
movealongthe magneticfield. Thereforethe nonlinearequationscan in thiscasebewritten as follows
[4, 97]:

an a 2 2 a
+ — (1 + r11V1)v2+ — n~’2= 0,az az (3.28)

av av a 2 22
~ +rdVn].

Here n = ~iplp0,6p is the density fluctuation. According to (3.27) the group velocity in the long-
wavelengthregion of magnetizedion-acousticoscillations is directedalong the magnetic~field;in this
case a weak interaction of waves propagatingin opposite directions is observed.This gives an
opportunityfor usingthe proceduredescribedin section1.1 to reducethesystem(3.28) to oneequation
[4]

~+c~{1+1(r2H+r2)V2+~r~+1 ~ (3.29)

which describesion-acousticwaves propagatingin one direction along the magneticfield. Equation
(3.29) is a generalizedKdV equation.Passingto a coordinatesystemmoving with the soundvelocity
alongthe magneticfield and introducingthe variables

r~
1(z— c~t)—*z (r~+ r~)t~2r

1—*

~wpjt—*t v2/6c~—*u

we write eq. (3.29) in the dimensionlessform:

u~+~- (V
2+3u)u=0. (3.30)

Equation(3.30) can be written in Hamiltonian form

au — a ~H
at — az ~u

where the Hamiltonian
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H=J[~(Vu)2_u3]dV. (3.31)

BesidesH eq. (3.30) hassomemorevery simple integrals:

M(r1)=fUdz; Pz~fu2dV

I=frudV_tnfU2dV.

The first integralhasthe meaningof the law of conservationof “mass”along the line r1 = const.The
secondintegralis the law of conservationof momentum,and thethird oneis the law of conservationof
centre-of-mass.From the latter it follows in particular that the centre-of-massvelocity is equal to
2Plf M dr1 anddirectedalong the magneticfield.

Furtherlet us considerstationarysolutionsof eq. (3.30)of the form u = u(z — Vt, r1) whichobey the
equation

V
2u=(v—3u)u. (3.32)

For V >0 it hasa solutiondecreasingexponentiallyas r—+ ~. In theone-dimensionalcasethesearethe
well-known solutionsof the KdV equation

2 2 2=2K /coshK(x — 4K t).

In the three-dimensionalcasethe simplest soliton is a sphericalsymmetric soliton without nodes.
According to our classificationit correspondsto the ground-statesoliton. By analogywith (1.46) one
can find the connectionbetweenH andP for thesoliton. For this purposewe noticethat eq. (3.32)can
be representedin the form

6(H+ PV)=0

so that all its solutions are stationarypoints of the functional H for fixed P. From this it is easyto
determinethat for the solitonsolution

H~=VP~(d—4)l(6—d)

is negativefor any dimensionsd = 1, 2, 3. Usingintegralestimates(1.48) it is not difficult to verify that
centralsymmetricsolutionsof the solitontype without nodesfor d = 1, 2, 3 arerealizing the minimum
of H for fixed P. Thus in the classof finite solutionssolitonswill be stablefor eachdimensionof those
mentionedabove.

As to the three-dimensionalcase,it remainsto considerthe stability of one- and two-dimensional
solitons with respectto three-dimensionalperturbations.For the sakeof simplicity let usconsideronly
the stability of a one-dimensionalsoliton u

0 with respectto perturbations~iu= t/i(x — Vt) exp(—iwt+
ik1r1). For t/’ we have the following spectralproblem:
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—iwçb— V~+ t/i~ + 6 ~- (ut/i) — k~t/i~= 0.

Let the perturbationsbe long-wavelengthonesk1 --*0; we expandcu in a series

+ clii +.

We choosethe translationalmodeau0lax as t/i0. To first order as for the KP equation(see (2.48))we

obtain

= iw 3u~l9V.

To a secondapproximationwe have

—iwtfJ1 — kjt/i05 = At/i, (3.33)

where the operator

a a
3 a

A = v — — —i —6—u
0.

ax ax ax

It is easy to see that the conjugatedoperatorA has a zeroth eigenfunction u0. Therefore the
dependenceof the frequencyw on k is definedas the solubility condition (3.33). Multiplying (3.33)
scalarlyby u0 we get [113]

w
2—~k2V2<0.

Thus a one-dimensionalsolitonis unstablewith respectto bendingperturbations.The two-dimensional
soliton instability is determinedin a similar way.

The results of this section show that a three-dimensionalion-acousticsoliton with a ratio of
longitudinal andtransversedimensions(1 + r~lr~)~2is the only stablesoliton. Usually rd 4 rH, that
is, the solitons areof a pancakeform. All othersolitons are unstablewhen /3 4 1.

4. On wave collapse

As we haveseen,in manycasessolitonsareunstable,especiallysolitonsin aplasma.In the present
review we haveoften pointed out that this instability should most commonly lead to wave collapse.
Mathematicallyit meansan increasingof the wave field amplitudetill infinity occurs in somespace
pointafter a finite time. Fromthe physicalpoint of view the collapseis a spontaneousconcentrationof
waveenergyin a small areaof spacewith its consequentdissipation.We think that the wavecollapse
conceptpossessesa greatdegreeof universalityand collapsesare as widely distributed in nature as
solitons.This conceptis ratheradvancednowadaysandis supportedby many numericalexperiments
andfor its detaileddescriptionone shouldneedan article of the samevolume as the presentone.

Herewe shall presentthe simplestfacts.
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The nonlinear Schrödingerequation(1.43) is the most important mathematicalmodel of wave
collapsein the caseof spacedimensionsd � 2. As hasbeenstatedabovefor the two-dimensionalcase
(d= 2) this equationdescribesa stationaryself-focusing(if we takethe longitudinal coordinatez as a
variable t). In connectionwith its physicalapplicationsthe two-dimensionalequation(1.43) (usuallyan
axial-symmetricone) hasbeenstudiednumerically since the middle of the 1960’s. In the pioneering
experiments[99] it has been shown that for a sufficiently large initial laserbeamintensity the field
amplitude t/i increaseswithout limits when approachinga certaintime t = t0. This phenomenonbeing
interpretedas the formation of “point focuses”was usedas the basis of the self-focusingtheory by
Lugovoi andProkhorov[100]which helpedto explainthe majority of experimentallyobserveddata.In
fact, this washowthe first exampleof wavecollapsewas discovered.Let us show the way to it from the
analysisof eq. (1.43).

We begin with considerationsinsufficiently rigorousmathematicallybut possessinga considerable
physical generality.We shall first notice that the Hamiltonian of (1.43)

H=f(IV~I2_~I~I

4)dV

is not positiveandcan takenegativevalues.Furthermore,as wehaveshownin section1.3,for d � 2 its
valuefor a fixed integral N= S It/’I~dV can be infinitely large in absolutevalue. Formula (1.45) is the
confirmation of this fact; it shows that for d � 2 the functional H takes nonnegativevalues at its
stationarypoints (which exist only for d <4). On the otherhand, for wavesof a small amplitude the
Hamiltonian H is positive. Let usconsiderthe evolution of a localized initial pulse for which H <0.
This pulse due to the conservationof the integralsof motion can neitherbe radiatedto infinity in the
form of waves of a small amplitude nor passinto one of the stationarystates.The formation of a
quasistationaryoscillating state should be also excluded since it must be accompaniedby energy
radiationto infinity (with the exceptionof the extremelydegeneratecaseof the “breather”type in the
sine-Gordonequation).

The only possibility remainingis the formation of a singularity in the vicinity of which H—i’ —

Theseheuristicconsiderationsfor eq. (1.43)can besupportedby a mathematicalproofbasedon the
virial theorem(1.54). In our casen = 1 it representsthe relation

~I ~ dV= 8H - (d-2)f ~ dV (4.1)

from which for d � 2 therefollows the inequality

fr2I~I2dV~4Ht2+cit+c
2 (4.2)

(c1, c2 are someconstants)which becomesan exactequality for d = 2. Let H <0. Then for arbitrary
valuesc1, c2 the equality (4.2) for sufficiently larget becomescontradictory;it signifiesthe existenceof
a singularity of the solution of eq. (1.43). That the field t~1,increasesto infinity for this singularity has
beenprovedby Zhiber [101].

Unfortunately such an elegantproof of the existenceof collapseis not known for all caseswhen
collapsetakesplace.In a numberof casesfor equationsintegratedby the inversescatteringtransform
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method the existenceof collapsecan be determineddirectly by explicit calculationsof exactsolutions
which contain the collapse[6, 102].

In other cases the above considerationsbased on conservation laws should be supported by
numericalexperiments.

The questionaboutthe natureof the field nearthe collapsepoint is a matterof greatimportance.In
the majority of the investigatedsituationsthis dependenceis self-similar so that

I ~I2 - t) R(f(~r t))’ (4.3)

Heref(fl is somefunction with f(0) = 0. From the conservationof the integral5 It/il dV it follows that
the constante is nonnegative.Two radically differentcasesare possible.

When r = 0 a finite fraction of the integral N (the numberof quasiparticles)is incident upon the
point of collapse.Sucha collapseis calleda strongone. If r > 0 the numberof quasiparticlestrappedin
the collapseprocessis formally equalto zero. In this case,at the moment of collapse an integrable
singularity is formedat the point r = 0. Such a collapseis usually called a weak collapse.

Evenfor the simplestmodelof the nonlinearSchrödingerequation(1.43) the problemof the nature
of the collapse has not been completely solved. The collapse is undoubtedly strong in the two-
dimensionalcase.The form of the function f(~) is not definitively determinedbut thereexist rather
convincingargumentsin favour of the fact that as ~—i’ 0 it possessesthe asymptoticform ,f( ~ I / 2 In
the three-dimensionalcasethe exact self-similar solution r = 1, f( ~ 1 / 2 correspondingto a weak
collapsehasbeen constructed.An integrablesingularity It/il2 = dr2 is formed in the caseof such a
collapse.However, recently anotherapproximatesolution of the quasiclassicaltype f(~) ~2/5 [114]
has been constructedfor which the collapse is strong. The detailedpicture of the collapse for the
nonlinearSchrödingerequationcan ultimately be solvedby meansof numericalexperiments.

Physically the Langmuirwave collapsein a plasmais of the greatestinterest;it arises,in particular,
as a result of the developmentof the plasma soliton instability describedabove in great detail. The
Langmuircollapsehasrecentlybeeninvestigatedextensivelyboth analytically andnumerically (seethe
review[80,81] andpapers[103—105]).The natureof the Langmuircollapsedependssignificantly on the
oscillation energylevel. For a small energy level w/nT< m/M (the subsoniccase) the natureof the
collapseis roughly the sameas for the three-dimensionalnonlinearSchrödingerequation.

In the most interesting,so-calledsupersonic,casew/nT> m/M the natureof the collapsehasbeen
determinedwith a high degreeof certainty. Herethe collapseis strong,with f( ~ ~ ~2/3 This result is
supportedby a greatnumberof numericalexperiments(see,e.g., refs. [104, 105]).

According to our conceptsthe Langmuir collapseplays a greatrole in plasmaturbulencephysics.
Multiple collapsesare presentin the majority of experimentaland astrophysicalsituations in which
Langmuir oscillationsare excitedby an electronbeam,by variable electromagneticfield or by other
techniques.They are difficult to observebecauseof the small size of the collapsing cavities andtheir
short lifetime (though the fact of the existenceof Langmuir collapse has recently been proved
experimentallyin the papersby Wongand his group [106]).However,they havea greateffect on the
wholepictureof the turbulence.The maindissipationof the energyof Langmuiroscillationstakesplace
in collapsing cavitieswith this energybeingtransferredto fastelectronswhich arefrequentlyobserved,
e.g., in experimentson the laserheatingof a plasma.

Collapsingcavities also generateintenseacousticoscillations(see ref. [107]).
Since the characterof the instability of various plasma solitons, such as acoustic, lower- and
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upper-hybridones,is very similar to the Langmuiroscillation instability we can expectthe existenceof
different kinds of collapse whose contribution to plasma turbulencephysics must also be fairly
important.The first resultsin this direction areby now available [108].
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