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The Poisson bracket defining a hamiltonian formulation of the Rossby wave equation is transformed to the Gardner bracket 
via a special functional change. The diagonal form of the bracket enables us to introduce the normal canonical variables in the 
considered hamiltonian system. The first terms of the hamiltonian expansion in powers of the canonical variables are calculated. 
The proposed method of the Poisson bracket diagonalization is relevant for other physically significant problems: barotropic 
waves above an uneven bottom, waves in the presence of a scalar nonlinearity and quasigeostrophic flow of a vertically stratified 
fluid, including the baroclinic effects of topography as dynamical boundary conditions. 

The equation for the stream function Y(x, y) of barotropic Rossby waves, 

a(Aul--k:,YI) 

at +@$=J(Alu, Y), (1) 

where A is the Laplace operator, J is the jacobian, /3, k,, are constants, can be written in the hamiltonian form 

I1921 

where Q= A !P - ki Y is the vortex density, the hamiltonian 

H=4 ( ]Vp]2+k;Y2) tidy 
f (3) 

represents a kinetic energy and the Poisson bracket for the functionals F= F(B), G= G( Q) is defined by 

(4) 

where Q,,=Q+/?y is the total vortex of the Rossby waves. 
Eq. (1) is also used to describe drift waves in a plasma [ 31. In order to apply the methods of perturbation 

theory [ 1 ] to study the hamiltonian system it is expedient to introduce into the system normal canonical vari- 
ables, having the sense of wave amplitudes (k is a wave vector) where eq. (2) is equivalent to 

aa, 6H 
at =-la. (5) 

From the mathematical point of view the introduction of the canonical variables is reduced to the problem of 
diagonalization of the Poisson bracket. For the finite-dimensional case this problem has a relatively complete 
solution [ 4,5]. At the same time there do not exist any general recipes of diagonalization of the Poisson bracket 
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of the continuum hamiltonian systems; in each special case of solution of this problem some artificial tricks 
[ 6,7] are used. 

We introduce the Gardner bracket known in the theory of integrable systems, 

Let the function r=t(x, Y) be determined by one of the two equivalent relationships, 

Q(X, Y) =C(x, y+P-‘Q(x, Y)) , 

T(x, Y) =Q(x, Y-P-‘<(x, Y)) . (6) 

Each of them can be fulfilled for all Y (at fixed x) only in the case of open lines of the vortex. The solution 
of the diagonalization problem of the Poisson bracket (4) giving the continuum hamiltonian system (2) is 

defined by the following proposition: 
Theorem 1. If (4) is fulfilled then the following identity holds, 

{F, G}, = {F, G} ,,< for all F, G . (7) 

We emphasize that relationships (6) imply that the functions 

W(Y) =P-‘Q(x, Y) +Y (8) 

and y(w) =p- ’ <(x, w) - w are mutually invertible. Relationship (7) is immediately obtained if in the integral 
(4) one makes the substitution w=p- ‘Sz,,, and takes into account the relation 

r(x, w) =Q(x, Y) . (9) 

In terms of the new variable < eq. (2) is equivalent to the equation at/at= (d/dx)6H/65, and henceforth, can- 
onical variables can be introduced by supposing ak=&\/-2PP, where k= (p, q) and & is the Fourier trans- 
formation of the function <. Using an expansion sequence in degrees of nonlinearity, 

Q(X,Y)= .o(n+:),8”~5”+1(X,y)’ (10) 

following from (6) and truncating after the first three terms of this sequence gives the expansion for the ham- 
iltonian in terms of the canonical variables 

+ [ ~:ikzkz(aillaklakzak,+c.c.)6k-k,-k2-k, 

+ W::jkzk,(aj$k*,ak2ak3 +C.C.)dk+k, -kz--kx] dk dk, dkz dkx. 

are the integration demains, ok= -/?p( k*+ kg) -’ is the Rossby wave frequency and 

V 
i 4 -- 

kklk?- 2x kZ+k; 
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WA; k*k3 = - 
JPpp,p,P, (41 +&I2 

6x2 (k, +k2)2+k20 

_ (9*+4d2 (41 +4d2 
> (k2+kj)2 +k; - (k, +k3)2+k; ’ 

JPGZ w&k,=- &2 

1 (9-93)2 1 (41 -cd2 1 (4, +4)2 1 (42+9d2 

-2 (k+k3)2 +k; -2 (k, -k3)’ +kz -2 (k, -k)2 +k; -2 (k2 -k3)2 +k; 
_’ (92--9J2 

2 (k2 -k)2+k; 

are the interaction coefficients. We point out that if <(x, Y) is analytical in the band 1 Imyl < l//3, then the 
sequence (10) can be summed and as a result we obtain a direct formula for the substitution of the variable 

(6) 

WX,Y>=- & + ( In 1_ aY+B-'z) dz 

z 
lz/ = I 

> * 

The above-mentioned method of diagonalization of the Poisson bracket can be also applied for other ham- 
iltonian systems of two-dimensional hydrodynamics. 

The equation for the barotropic Rossby waves above an uneven bottom can be written in the form (2) with 
the same hamiltonian of the form (4) where one should put L&,,=SZ+f,h’lti, where Land h’(x, y) are the mean 
depth of the ocean and its variation respectively, andfo is the Coriolis parameter. In this case the function < 
should be defined by eq. (9) with 

w=P-‘Q&x, Y) * 

When a scalar nonlinearity (8) is present [ 81, i.e. while adding a term of the form cuY a Y/ax into the left- 
hand side of eq. (1)) where cx is a constant parameter, the hamiltonian form of the equation and the hamil- 
tonian appearance are conserved and the Poisson bracket should be determined by eq. (4), with 

Q~,=O+pY+ayY. (12) 

In this case the substitution of the functional variable by eq. (9) where w is determined by eq. (11) with 
Q,, given by ( 12) also results in the relationship (7). 

Finally, consider the nondimensional baroclinic quasigeostrophic flow equations, including the baroclinic 
effects of topography as dynamical boundary conditions [ 9 1. The hamiltonian formulation of these equations 
is, following ref. [ lo], 

where the hamiltonian H is given by 

H=i j-p[ IV!J’[2++-‘(JY/az)2] dxdydz 

(13) 

and the Poisson bracket { ) appearing in (13) is defined as 
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{F,G}=- j,-‘Q,.,,J(~,~)dxdydz- jq+-‘J(g 

+ j CPI [WJ($>$)];=, tidy 

for functionals F=<(Q, &, @,), G=G(Q, &,, @,). Here p=p(z) is the vertically stratified mass density, 
S(z) =N’(z)/f& N* is the Brunt-VhPlaa frequency, Q=V ‘Y + (~?/dz)(S-‘aY/az), .Q,,,=Q+py. The stream- 
function Y(x, y, z) depends on the vertical coordinate z as parameter, @,= [a YlazS 311 Z=O, $, = a Yylaz ( ;=, 
are the boundary values, and the quantity q(x, y) represents the effect of bottom topography (we preserve the 
main notation of ref. [ lo]). 

FG ->I 6@0 ;=o dxdy 
(14) 

Further, it is easy to show that the change of variables 

w=P- ’ Qmt, wo=@o > 

ax, w, z) =Q(x, Y, z), 
ay 

50(x, wo) = z (X>Y) > 
Z=O 

which is analogous to (6)) transforms the Poisson bracket (14) into the sum of the Gardner brackets for func- 
tionals depending on the variables 52 and go only. 

Conclusion. The results of this paper set two-dimensional hydrodynamics into the fruitful context explored 
earlier by the first author [ 11. In particular, this approach enables one to derive the energy transform equation 
(ETE) for weakly interacting waves. As a result, Kolmogorov and Rayleigh-Jeans spectra may be found as 
solutions of stationary ETE. Note that derivation of ETE in the baroclinic case by other methods is unlikely 
to be possible for the present. The mentioned results have been published in Russian [ 11,121. 

Dr. D.D. Holm has attracted our attention to the applicability of the transformation (6) to the baroclinic 
wave equation with dynamical boundary conditions. 
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