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We give a detailed numerical simulation of the collapse of a separate Langmuir caviton in two- 
dimensional geometry. We propose and carry out a combined continuous calculation method in 
the framework of which the initial evolution of the caviton is described by averaged dynamical 
equations, and the results of these calculations are used as initial conditions for the simulation of 
the concluding stage of the collapse, using the particle method. We show that due to the specific 
properties of the two-dimensional geometry higher-order nonlinear effects (electron 
nonlinearities, change in the dispersion law, saturation of the nonlinearity, Landau damping, and 
so on)  can appreciably affect the qualitative nature of the process. Depending on how far we are 
above the threshold for collapse, three regimes of the final stage of the evolution of the caviton are 
established: collapse, a quasi-stationary caviton, and delayed collapse. 

1. INTRODUCTION \ / + I "  
hjj-c ' \ f i r ,  = - 

It has by now become clear that Langmuir collapse' l IixJl 

(the self-accelerated compression of cavitons filled with 
Langmuir oscillations) is one of the fundamental ideas of 
plasma physics. The collapse of a separate caviton has been 
recorded experimentally.' This phenomenon has been de- 
scribed rather completely in a number of papers (see the 
reviews of Refs. 3-6) and the analytical results have been 
confirmed and supplemented by numerical simulations. A 
number of effects (e.g., the appearance of accelerated elec- 
trons) of powerful electromagnetic radiation or electron 
beams interact with a plasma can be naturally interpreted as 
a consequence of Langmuir collapse. The collapse of a Lang- 
muir caviton is a basic structural element in the scenario of 
strong plasma turbulence and ensures an efficient mecha- 
nism for the dissipation of long-wavelength Langmuir oscil- 
lations. One should mention that collapse is not a phenome- 
non characteristic solely of Langmuir oscillations. Collapse 
in many respects physically similar to Langmuir collapse is 
also possible for electromagnetic waves,' lower-hybrid oscil- 
l a t i o n ~ , ~  and so on. 

The general scenario for collapse is now the following 
one. As the result of the development of the modulational 
instability cavitons are formed in a turbulent plasma which 
are filled with oscillations. The initial energy density Win 
the caviton is of the order of the average turbulent level W,, 
and a characteristic size of a caviton is I-r, (nT/W)"'. 
The process of the compression fo the caviton becomes rap- 
idly self-similar and the shape of the caviton becomes a uni- 
fersal one which is noticeably flattened. During the collapse, 
the energy of the oscillations trapped in the caviton is con- 
served. When the minimum dimension of the caviton be- 
comes comparable with the Debye radius, Landau damping 
becomes important and the oscillations which are trapped in 
the caviton "burn up" accelerating the plasma electrons. As 
a result the energy is transferred to a small group of acceler- 
ated particles. 

Up to the final stage, the evolution of the caviton is 
described by a set of dynamical equations obtained in Ref. 1 
in the framework of a hydrodynamical description of the 
plasma: 

( l a )  

Here $ is the averaged potential of the high-frequency elec- 
trical field 

and Sn is the quasi-neutral variation in the plasma density. 
Basically a numerical simulation of the collapse has been 
carried out in the framework of Eqs. ( 1 ) (see the literature 
in Ref. 3) .  However, in the concluding stage of the caviton 
compression effects become important which are not taken 
into account in ( 1 ) : electron nonlinearities, Landau damp- 
ing, saturation of the nonlinearity, change in the dispersion 
law, and so on. It is impossible to write down sufficiently 
simple, generalized dynamical equations which describe ad- 
equately the final stage of the collapse. The only way to sim- 
ulate it remains the particle method: simulation of a plasma 
from first principles by a large number of charged macro- 
particles. Only by using such a simulation can one find an 
answer to a number of problems of principal importance: 
what part of the energy is transferred to the electrons, after 
what length of time is the caviton burned up, what is the 
accelerated particle distribution, and so on. 

The first attempt to simulate two-dimensional collapse 
by the particle method was made in Ref. 9. The simulation 
was carried out on a grid of (45 ~ 4 5 ) r i  with periodic 
boundary conditions. The initial density distribution was 
uniform. It was shown in Refs. 10 and 11 that in that case the 
conditions for collapse of a caviton are not satisfied on the 
whole. The collapse is possible only after the initial distribu- 
tion is split into bunches with dimensions which turn out to 
be comparable to the Debye radius so that the collapse of 
these bunches is not observed. Because of this, in the calcula- 
tions the energy of the oscillations remained practically un- 
changed, notwithstanding the occurrence of local maxima. 
A similar picture of the evolution of Langmuir oscillations 
was obtained also in the calculations of Ref. 12 which were 
carried out for an initially uniform ion density on a large 
grid. In Refs. 10 and 11 an initial distribution was chosen 
with a spatially modulated plasma density ensuring the nec- 
essary conditions for collapse. The resultant scenario was a 
growth of the electrical field energy and subsequent rapid 
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burning out of the Langmuir oscillations trapped in the cavi- 
ton. However, in the calculations of Refs. 10 and l l only one 
kind of initial conditions was considered, and the generality 
of the results remained unclear. Moreover, in those calcula- 
tions the simplest periodic code was used in which the zeroth 
spatial harmonic of the electrical field vanished. In an isolat- 
ed caviton, however, the average field along its minor axis is 
non-vanishing.' Therefore, in the calculations of Refs. 10 
and 11 a rather complicated spatial picture was observed, 
with two peripheral cavitons close to a single central one 
and, thus, the collapse of a single caviton as a whole was not 
demonstrated. 

In the present paper we have attempted to study ex- 
haustively, in two-dimensional calculations, the collapse of a 
single Langmuir caviton. We performed a combination sim- 
ulation or, as we called it, an unintermitting calculation of 
the Langmuir collapse. A preliminary communication about 
the results was published in Ref. 13. As the initial condition 
we specified a large size caviton of hundreds of Debye radii. 
To  describe it we used the averaged dynamical Eqs. ( 1 ). The 
caviton reached the self-similar compression regime rather 
rapidly and took on the universal shape independent of the 
initial conditions. When the size of the caviton became of the 
order of 30rD the results of the calculation were used as the 
initial data for a further simulation by the particle method, 
with its aim the study of the final stage of the collapse and of 
the burning up of the caviton. In both stages of the simula- 
tion we used the symmetry properties of the caviton, which 
enabled us to introduce adequate boundary conditions and 
to broaden appreciably the possibilities for numerical simu- 
lation. 

It is well known that in the two-dimensional case even a 
slight restructuring of the model ( I ) ,  e.g., allowance for the 
saturation of the nonlinearity, leads to the possibility of the 
esixtence of stable cavitons (see, e.g., Ref. 13).  The problem 
of interruption of the collapse and formation of cavitons 
(specific for the two-dimensional geometry) is also dis- 
cussed in the present paper. We show that if the initial wave 
energy in the caviton E is much larger (by a large factor) 
than its threshold value E, collapse and a fast burning up of 
the caviton take place. When E - ~ ~ 4 . 5 ,  we observe the for- 
mation of quasi-cavitons-quasi-stationary formations 
which live tens of ion periods. 

2. COLLAPSE CHARACTERISTICS IN TWO-DIMENSIONAL 
GEOMETRY 

The behavior of the solutions of the set ( 1 ) differs con- 
siderably in the one-, two-, and three-dimensional geome- 
tries. Collapsing solutions occur only in two- and three-di- 
mensional problems. One can indicate for arbitrary initial 
conditions the necessary condition for collapse. The system 
( 1 ) conserves two integrals of motion, N = ~(V$l 'dr  and 
the Hamiltonian of the system 

novz MC +M - + 2 (6n)'] dr. 
2 Zn, 

( 2 )  

A sufficient condition for collapse is that the Hamiltonian is 
negative: H < 0. For quasi-stationary initial conditions this 
gives the estimate W/nT> (kr, )', the usual criterion for 
the modulational instability. 

In the three-dimensional case, when W / n T >  m/M we 
can neglect in the equation for the plasma density perturba- 
tion the fact that the sound velocity is finite (supersound 
regime) : 

0 
A (2i++3mprDzA$) = 2 V (GnV*), 

no 

Equations ( 3 )  have a self-similar solution which conserves 
the number of quanta in the caviton: 

$=/(E), 6n=V(E), E=rl(to-t)s'. ( 4 )  

The properties of these equations have been studied in a 
number of papers and the reaching of a self-similar regime by 
the collapse has been shown. We note that for such solutions 
the supersound approximation becomes better with time and 
the kinetic energy of the ions, n0u2/2, increases faster than 
the potential energy c~no(Sn/no)'.  This means that in the 
final stage the caviton shape is determined by the ion inertia. 
Therefore, even if the physical processes neglected in ( 1 ) 
must lead in the final stage to a stopping of the collapse, the 
inertia of the motion of the heavy ions leads to a compression 
of the caviton and to burning up of the energy trapped in it. 

It is well known that the two-dimensional case is a bor- 
derline one: taking into account in Eqs. ( 1 ) small terms of a 
different physical nature (change in the dispersion law, satu- 
ration of the nonlinearity, and so on)  can already stop the 
collapse. I t  has been shown in a number of papers (see, e.g., 
Ref. 3 )  that in the inertial range the compression of a caviton 
in the two-dimensional case also has a self-similar character: 

One shows easily that in that case the ratio of the kinetic and 
potential energies remains constant, that the role of the ion 
inertia is small, and that for cavitons only just above the 
critical size the effect of its inertial compression, described 
above, is unimportant. 

We now describe in more detail the properties of quasi- 
stationary cavitons which can be formed when the collapse is 
stopped. We consider only the effect of the saturation of the 
nonlinearity. Close to the stationary state, low-frequency 
motions can be considered to be adiabatic and the electron 
distribution to be a Boltzmann one. Assuming for the sake of 
simplicity that the ion temperature is zero, we have 

6n=n0 [exp (-@/I") - I ] .  ( 6 )  

Here @ is the ponderomotive force potential: @ = e2lEl2/ 
4mwi. Expanding the exponential and substituting ( 6 )  into 
( l a )  we get in dimensionless variables 

The time is here normalized by w; ', the spatial dimensions 
by (3"" ) r, ,  and the electrical field by ( 3 2 ~ n , , T )  I". 

Equation (7 )  is a Hamiltonian one: 

Its stationary solution of the form 
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is described by the equation 

where R is the nonlinear frequency shift in the caviton, and 
il has the meaning of its reciprocal size. These solutions rea- 
lize a minimum of H for a fixed number of waves in the 
caviton, N = J 1 Vp I2dr. Multiplying (9)  by q, * and integrat- 
ing we get 

We consider a scale transformation that conserves N in the 
two-dimensional case, p -p(Rr) .  In that case 

In the caviton, N(R) must reach a minimum, whence ( d H /  
dA 2 ) A  = , = 0 for localized stationary solutions. This gives 

It is well known that if we neglect the saturation of the non- 
linearity in the two-dimensional case the size of the caviton 
R - ' is arbitrary. This is clear, e.g., from the fact that after the 
substitution r -Rr the stationary equation describing the ca- 
viton, neglecting the saturation of the nonlinearity, is inde- 
pendent of A: 

It is clear from ( 12) that H i s  zero for such solutions, while 
the caviton energy 

is also independent of its size. If the initial caviton energy is 
larger than the critical value w, No, the caviton collapses. 

When we take the saturation of the nonlinearity into 
account the degeneracy is lifted and the equilibrium size of 
the caviton is uniquely determined by its energy. We deter- 
mine this connection assuming that the saturation of the 
nonlinearity is small and proceeding as in Ref. 14. We look 
for a solution in the form 

where p,,(r) is a solution of (13).  We may assume that the 
function q, is real. We introduce 

Linearizing Eqs. ( 10) and ( 12) we get then 

We see that if the energy enclosed in the caviton is consider- 
ably larger than the critical one, NR N,,, the equilibrium size 
R -' of the caviton in dimensional variables is of the order of 
a Debye radius. It is clear that such cavitons cannot exist, 
owing toLandau demping. If we are just above criticality, the 
size of the caviton increases, 

and the role of the Landau damping decreases rapidly. 
We have already noted that as the size of the caviton 

decreases many effects, neglected in ( 1 ), become important. 
We mention only electron nonlinearities with characteristic 
times r-I - (kr, )'up E */8rnT, corrections to the disper- 
sion law with 7-I - ( kr, I4wp, and the saturation of the non- 
linearity with T- -up (E 2/8n-nT)2. Since (kr, ) 2  - E  2/ 

8n-n T for a caviton, all these effects must be considered at the 
same time. Therefore, the calculations given above are only 
qualitative and show that the formation of caviton structures 
can be expected only in a regime just above criticality. We 
note that in that case the aforementioned effect of the inertial 
compression of a caviton is also anomalously small. How- 
ever, in final reckoning the problem of the existence of cavi- 
tons can be solved only through numerical simulation. 

3. ORGANIZATION OF THE NUMERICAL SIMULATION 

In the initial stage the compression of the caviton is well 
described by Eqs. ( 1 ) . It is well known that the caviton has 
an asymmetric flattened shape. One usually speaks of a di- 
pole charge distribution. The structure of the potential satis- 
fies then the following symmetry conditions: 

(we have assumed that the caviton is flattened along they- 
axis). Conditions ( 16) allow us to consider only one-quarter 
of the caviton in the numerical simulation. The following 
boundary conditions for the potential follow then from ( 16) : 

On the two other boundaries (x = L, , y = Ly ) we shall also 
use the condition a$/& = 0." 

We must note that a jump in the potential along the 
dipole axis y takes place in the caviton, so that the boundary 
conditions for $in an individual caviton cannot be periodic, 
as was assumed in Refs. 9-12. 

We chose as the initial condition for the set ( 1 ) a func- 
tion $ such that 

n n 
A$=po sin k,y  ( I +  cos k x x ) ,  k ,  = --- k,=-, (17) 

2f'!, ' Lx 

and for the low-frequency plasma density variation 

The threshold value p, determined by the condition H = 0 
was in the most interesting case k, = ky = k equal to 

pi = 384 k ', and the number of waves was 
181 

We have here introduced dimensionless variables for the set 
( 1  1: 

A (i$+A$) =F ( n V $ ) ,  ii-iln=A( V$12, 

1-rDINo/(N-No) I"', ( 15) The Hamiltonian of the system takes the form 
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where @ is the hydrodynamic potential of the low-frequency 
motions, a d a t  = - A@. 

Calculations show that the collapsed caviton rapidly 
enters into a self-similar compression regime and its shape 
does no longer depend on the details of the initial distribu- 
tion. To increase the inertial range we used the following 
method which we called an excision. When the size of the 
caviton became small compared with the calculated region 
we separated its central part 0 < x < L, /2,O < y < L, /2 and 
stretched it over the whole of the calculational grid. The first 
stage of the simulation was finished when the size of the 
caviton had diminished to (20-30)rD or the energy density 
of the field in the center has increased to W,,,/nT-0.2. 

In the final stage of the calculations we used the particle 
method. The method of the calculations is similar to the one 
described in Ref. 16 and used in Refs. 10 and 11, but with 
modifications for the boundary conditions applied here. The 
distinctive features connected with the modification of the 
boundary conditions, and the method of organizing the un- 
intermitting calculations and the architecture of the compu- 
tational system will be described elsewhere. We note here 
that we used the computing center of the Institute for Space 
Research of the Academy of Sciences of the USSR, consist- 
ing of an ES-1037 control computer and an ES-2706 peri- 
pheral vector processor. 

As initial data for the calculations by the particle meth- 
od we used the results of the calculations in the framework of 
the averaged dynamical equations. As in the particle method 
the initial data are the ion and electron distribution func- 
tionsf; (r,v) and f, (r,v) in phase space, it is necessary to 
reconstruct them from the complex envelope of the high- 
frequency potential $(r,t) and the low-frequency plasma 
density variation Sn (r,t).  In agreement with the applicabili- 
ty of the set (1)  at the moment of transition to the kinetic 
description the particle distribution was assumed to be local- 
ly Maxwellian: 

Because of their large mass, the ions participate only in the 
low-frequency motions: n, = no + Sn, where Sn is deter- 
mined from Eq. ( lb) .  The macroscopic ion velocity v is 
found from the linearized continuity equation no div- 
v, + dSn/dt = 0. 

The electrons participate in both the low- and the high- 
frequency motions: 

To determine 6fi and v, we used the Poisson equation and 
the electron equation of motion: 

In the simulation by the particle method in a finite region we 
must supply boundary conditions not only for the Maxwell 
equations, but also for the particles, the ions and the elec- 
trons. Because the electrons move in the field of the Lang- 

muir oscillations we cannot restrict ourselves to simulating 
one fourth of the caviton. We performed the simulation of 
half of the caviton in the region O<x<L,, - L, <y(L, with 
reflection boundary conditions for the particles and with the 
condition a@/& = 0 on the boundary for the potential. The 
adequacy of the simulation was verified by running a test 
variant with completely periodic boundary conditions in a 
region containing two complete cavitons in which the elec- 
trical fields where in counterphase. 

The statement of the problem described here, which 
uses the symmetry of the caviton, leads to a lowering of the 
computer time for the solution of the dynamical equations 
by a factor 8 and for the simulation of the kinetic stage by a 
factor 4 as compared with the equivalently stated problem 
with periodic boundary conditions. 

In the unintermitting computation of the collapse, cal- 
culations in the framework of the set ( 1 ) started in the re- 
gion L, = 5 12r,, L, = 256rD. Different sizes in x and y 
were chosen because of the flattened shape of the caviton. In 
the kinetic calculations, a typical size of the grid was 
( l28X 1 2 8 ) r .  The number of particles of each kind in a 
Debye cell ranged from 16 to 64 for different variants and the 
total number of particles was - 8.1@. 

As already mentioned, when the initial energy of the 
caviton is not too far above its critical value caviton struc- 
tures can occur. To study them we performed additionally 
two sets of calcualtions in other, simpler models. In the first 
of them the calculations were performed in the framework of 
Eq. (7 ) .  In the second one we considered a mixed descrip- 
tion. " The high-frequency motions were described by the 
equation 

and the motion of the ions in the field of the low-frequency 
potential g, was described by the kinetic equation 

and solved by the particle method. The electron distribution, 
on the other hand, was assumed to be Boltzmannian: 

and the charge separation in the 1.f. motions was neglected. 
In the static limit this hybrid semi-kinetic description re- 
duces to Eq. ( 7 )  but, beside the effect of the saturation of the 
nonlinearity, it describes the ion nonlinearities and the Lan- 
dau damping of the ions. 

4. DISCUSSION OFTHE RESULTS 

We have already noted that one of the features of the 
unintermitting calculation of the Langmuir collapse is the 
presence of a large inertial range. This enables us to assume 
that the nature of the final stage of the collapse is indepen- 
dent of the details of the initial electrical field distribution 
and of the density in the caviton, but is determined solely by 
the number N (or energy E )  of the plasmons trapped in it. 
The critical value is determined in the two-dimen- 
sional geometry from the condition that the Hamiltonian of 
the set of Eqs. ( 1 ) vanish. 
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FIG. 1. ~ i m e  dependence of the maximum energy density of the field in FIG. 2 .  ~ i ~ ~ - d ~ ~ ~ ~ d ~ ~ ~ ~  of the average energy density of the field in the 
thecaviton: 1: results of the solution of thedynamical equations; 2: results caviton: E/Eo = 6.6; 2: 1.25; 3: 2,7, 
of the combined continuous calculation. 

We now turn to an exposition of the results obtained in 
the numerical experiments and their analysis. First of all we 
note that in the framework of the averaged dynamical equa- 
tions the cavitons reached rather rapidly the self-similar 
compression regime of (5) .  This fact was checked against 
the rate of change of the depth of the caviton and of the 
amplitude of the electrical field. The largest length of the 
inertial range was reached for variants with two excisions of 
the central part of the caviton. The size of the caviton up to 
the instant of transition to the kinetic stage of simulation had 
decreased by a factor of 10 to 15 as compared to its original 
size. 

After changing to the kinetic description we performed 
parallel calculations by the particle method and using the 
dynamic equations. We show in Fig. 1 the evolution with 
time of the energy density of the oscillations for the variant 
E / E ~  = 6.6. I t  is clear that the dynamical equations satisfac- 
torily describe the collapse up to a level of oscillations 
W,,, -0.4n0T, 

The calculations showed that, as expected, the evolu- 
tion of the caviton depends significantly on the initial energy 
E of the caviton. The calculations were performed for various 
values of the electron to ion mass ratio, 1 OO<M /m < 1836. I t  
was found that for all E the evolution of the caviton depends 
on the ion mass ina self-similar way, while all characteristic 
times depend only on the product w,, t = 7. 

When we exceed E / E , ) ) ~  we observe a clear collapse 
picture (see Figs. 1-3). We show in Fig. 2 the evolution of 
the oscillation energy for some typical variants. It is clear 
that for E / E ~  = 6.6 there occurs a fast (after a time T - 7 )  
burnup of an appreciable (65%) energy which was trapped 

in the caviton. We show in Fig. 3 the spatial distribution of 
the energy of the electrical field and of the plasma density at 
several successive times. The maximum energy density in 
this variant was W,,, /n T = 0.98 and the depth of the ion 
well Sn,/n,, = - 0.38. I t  is then clear from Fig. 3 that, 
owing to the inertia of the ions, the caviton continues to 
deepen also after the burnup of the energy of the Langmuir 
oscillations. The size of the caviton at the time of the maxi- 
mum compression is rather large: - ( 10 x 25 ) r i  . The elec- 
tron velocity distribution is also anisotropic (see Fig. 4). It is 
very clear that as a result of the collapse the energy of the h.f. 
field is transferred to a relatively small number of fast elec- 
trons and the latter are mainly accelerated in the direction of 
the average field in the caviton (along they axis). 

At a small excess above threshold, there was formed a 
long-lived ( r -40)  caviton structure (Fig. 5 ) .  We note first 
of all its nonstationary nature. Such a behavior is completely 
natural in the framework of Eq. (7 ) .  Indeed, for a caviton 
the Hamiltonian has a completely well defined value which 
is, in general, different from the Hamiltonian of the initial 
distribution. Therefore, because of the conservation of the 
Hamiltonian, the caviton solution can be reached only if ac- 
count is taken of small dissipative processes or of energy 
emission beyond the limits of the simulation region. 

We performed additional calculations of caviton struc- 
tures in the framework of ( 7 )  and of the hybrid semi-kinetic 
approach of (19)-(21). The calculations in those models 
gave a similar result. However, in this case the size of the 
caviton turned out to be one-and-a-half to two times smaller 
than in the unintermitting calculation. This indicates that 
effects such as electron nonlinearities, changes in the disper- 

FIG. 3. Spatial distribution of the energy ofthe high-frequen- 
cy field E 2 / 1 6 r n , , T  and of the plasma density n, /n,, for the 
variant with E/E,, = 6.6: a: initial condition; b: time when the 
field in the caviton is a maximum ( t  = 10.8(0; ' ) ;  c: time 
when the depth of the caviton is a maximum ( 1  = 17.2~0,  ' ); 
d: distribution after the burnup ( t  = 35.1(0,, ' ). 
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FIG. 4. The electron distribution function for the variant E/.E,, = 6.6, inte- 
grated over space and the velocities u, ( 1 )  and u, ( 2 )  at time 
t = 35.10; I .  

sion law of the Langmuir waves, and Landau damping make 
an appreciable contribution to the formation of the caviton. 

We now discuss the cause of the damping of the caviton 
after a time r-40. Passing through a caviton of size I, an 
electron gains an energy A$ = eJEvdt. The electrical field E 
changes in proportion to cos wpt. If the time for passing 
through the caviton is less than ?r/w, the electrical field does 
not change sign and the electron gains an energy eEl- T. 
Assuming that the characteristic electron velocities are of 
the order of 3v, we find that the caviton starts to be strongly 
damped when I = I()-3?rvT/wP - lor, which corresponds 
to the minimum size of the caviton obtained in the calcula- 
tions. When I >  1, the quantity A g  is exponentially small: 
A f? - T exp( - 1 /lo), but for our calculations completely 
finite. Ultimately this nonadiabatic interaction with the elec- 
trons leads to the damping of the caviton. 

To check this assumption we performed a one-dimen- 
sional calculation by the particle method in which we gave as 
the initial condition the soliton solution of the averaged dy- 
namical equations. It turned out that a soliton with dimen- 
sions close to the caviton dimensions obtained in the uninter- 
mitting calculation also burns up after a time of the order 
r - 40. 

We have described two opposite situations: pure col- 
lapse and the formation of quasistationary structures. Cal- 

culations for moderate supercriticality, 2 < &/so < 6, showed 
that, as one should expect, in that case an intermediate re- 
gime is realized wh'ich can naturally be called a delayed col- 
lapse (Fig. 6).  We note that in all cases the minimum size of 
the caviton was - ( 10 x 25) r i .  

5. CONCLUSION 

We have studied in the present paper the collapse of an 
individual Langmuir caviton. As initial conditions for the 
calculation by the particle method ww used the self-similar 
solution obtained as the result of the numerical simulation of 
the averaged dynamical Eqs. ( 1 ) . We can thus assume that 
we have described the evolution of an elementary cell of 
strong turbulence-a collapsing caviton in a situation when 
the inertial range is rather long. 

We have shown that if the initial energy s of the oscilla- 
tions in the caviton is appreciably larger than the critical so, 
there occurs in the final stage of the collapse a burn-up of 
almost all the energy trapped in the caviton, and its mini- 
mum size is rather large and ofthe order of lor,. In that case 
we may expect that two-dimensional calculations simulate 
adequately three-dimensional turbulence. I f s  is close to E, in 
the final stage, a long-lived quasi-stationary state is formed. 
Its formation is connected with the two-dimensional nature 
of the calculations and one can, in general, not extrapolate 
these results to the three-dimensional situation. The results 
indicate additional difficulties arising in the interpretation 
of numerical calculations of two-dimensional strong turbu- 
lence." In particular, it is interesting to elucidate the prob- 
lem of the amount of energy trapped in the caviton when it is 
formed as the result of the modulational instability. 

We note yet another fact. The results of the calculations 
of Refs. 17 and 18 show that fluctuations in the density excit- 
ed by ponderomotive forces when the caviton collapses af- 
fect the turbulence properties strongly. We have shown in 
our calculations that the maximum amplitude of the density 
fluctuations which is reached already after the burn-up of 
the caviton in the stage of inertial compression is large, an/ 
no-0.3-0.4. Kinetic effects are already very important for 
such fluctuations and the problem of the level and the spec- 
trum of the fluctuations remaining after the burnup of the 
caviton must be studied by means of the particle method. It 
is convenient to do this by the semi-classical model ( 19)- 
(21 ) described in the present paper. 

The implementation of a three~dimensional simulation, 
by the particle method, of the final stage of the caviton evolu- 

8% /no 
- 0 

FIG. 5. The time-dependence of the caviton characteristics for the 
caviton variant E/E,, = 1.25: 1 :  average energy density of the h.f. 
field W/n, ,T , ;  2: maximum energy density W,,,,,/n,,T,; 3: density 
variation 6n/n,,. 
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FIG. 6. Time dependences of the average ( 1 ) and the maximum (2 )  of the 
high-frequency field in the caviton for E / E ~  = 2.7, corresponding to a de- 
layed collapse. 

tion is extremely important, as is also a three-dimensional 
unintermitting calculation. These problems are at the limit 
of the possibilities of present-day computational techniques. 
The authors, nevertheless, hope that progress in the field of 
the development of many-processor assemblies'9320 will en- 
able us to realize the above program. The first steps in this 
direction have already been made.20 
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