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It is shown that the existence of an analytic invariant in addition to the natural ones (momentum, energy and, in some 
cases, "number  of particles") leads to the existence of infinitely many such invariants. Nevertheless, the existence of the 
additional motion invaxiant does not guarantee complete integrability. Complete integrability follows from the existence of an 
additional invariant only if the dispersion law is non-degenerative with respect to decays. If the dispersion law is degenerative, 
the "number  of" motion invariants is insufficient for complete integrability and the S-matrix is factorized via decay processes 
"one into two" with real intermediate particles. In this paper we present also our results concerning enumeration of 
degenerative dispersion laws. 

1. Introduction 

In theoretical physics, exactly solvable, integrable dynamical systems are very important because a 
considerable part of science consists in the study of systems close to exactly solvable ones. There has been 
growing a special interest in the exactly solvable systems after the discovery [1] of the inverse scattering 
transform (IST), allowing us to find the exact solutions of the Korteweg-de Vries equation and it was 
realized that this equation is the completely integrable Hamiltonian system in Liouville's sense [11]. In the 
process of the IST development the variety of essentially nonlinear systems, allowing in this or another 
sense the exact solution, has been found. To the present moment the one-dimensional exactly solvable 
solutions have been studied in detail. Among these, the Korteweg-de Vries equation [1, 13], the nonlinear 
Schr/Sgtinger equation [7, 8, 14], the sine-Gordon equation [15], the principal chiral field equation [16] and 
the e~uation of the resonance interaction of three wave packets [17, 18, 22] are the most famous ones. For 
details and a systematic account of the inverse scattering transform in its different variants see ref. [19]. To 
get to know the stages of the method development, see refs. [6-13]. 

For some of the systems found, the complete integrability was proved in Liouville's sense [11, 14, 15]; 
for these systems via the inverse scattering transform one is sure to construct the action-angle variables 
(see [2, 47], for example). 

In all such models, solitons interact trivially, i.e. the pair collisions result in a phase shift only and 
change neither the form nor the velocity, and collision effects involving three or more solitons are absent. 
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In other models the non-trivial interaction of solitons is possible i.e. their fusions and decays [16-18]. For 
such systems the complete integrability has not been proved and it does not seem to exist. This follows 
from the results of the present paper also. We show that such type of division takes place for 
two-dimensional systems too. Among these, the Kadomtzev-Petviashvilli equations [9, 20], the resonance 
interaction equation of the three wave packets [9, 21, 25] and the Davey-Stewartson equations [23, 24, 26] 
are the best known. It is important to note that all the systems mentioned above possess one remarkable 
p rope r ty - they  have infinite sets of motion invariants, not following from the natural symmetries. An 
infinite set of motion invariants is, of course, not enough for integrability (it is also necessary to prove that 
the set of invariants is complete), but the very existence of integrals testifies to the deep inner symmetry of 
the system. Moreover, the existence of just one additional integral is very important. Experience shows 
that, usually, the existence of an infinite number of integrals follows from the existence of one such 
integral. Historically, that was how the matters stood with the KdV equation [1, 4], the integrability proof 
of the concrete systems has begun more than once from finding in them one or several "unnecessary" 
motion invariants. The methods [3-6] of the explicit calculation of the equations, having additional 
integrals or symmetries of a certain form-usual ly  local ones -  have been developing for a long time 
(apropos of this see ref. [3] and references therein). 

The present paper differs strongly from the above-mentioned works in the sense of idea and is closest in 
its spirit to the works by Poincar6 [27, 28], who showed in the last century that the existence of just one 
additional motion integral in the Hamiltonian system is an exceptional fact. 

In a sense, our paper follows Poincar6's approach, applied to the infinite-dimensional case. We shall 
consider wave fields obeying the Hamiltonian system of equations in the homogeneous space of d 
dimensions of the form 

~H 
i6 k = 8~ k , k = (k 1 . . . . .  kd) , (1.1) 

with the Hamiltonian H analytic in the field variables: 

H =  Ho + HI + . . . ;  Ho= f ~,lakl2 dk, 

1 f . . . .  is: s S l a S : ~ [ - -  s 2 k 2 ) d k d k l d k 2 ,  Hint = "~. E JVT, klk:akak ~ k201, sK + slkl  + 
SS1S 2 

s , s  i= +_1, ak_ak,1 _ a ; l=hk .  

(1.2) 

The system with Hamiltonian H 0 is trivially completely integrable. We shall be interested in the 
problem of existence of an additional motion invariant of the system (1.1) which is analytic in the field 
variables a ~, s = _+ 1 and has the form 

F=Fo+ Fl + ""  ; Fo= f f ,  la,12dk, 

1 Fx = 3-f. ~-" f/7~i2a~a~',a~2: 8(sk + slk~ + s : k : )  dk  dk~ dk : ,  
$5"132 

(1.3) 

with continuous coefficients/7. F is the integral of the system with Hamiltonian H at any fk" AS we see 
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from (1.2)-(1.3), the smallness of the wave amplitude a k is a parameter, analogous to a small parameter in 

the Poincar6 theorem. 
The system considered possesses a continuous number of degrees of freedom which makes the direct use 

of PoincarEs results impossible. We show that the existence of integral (1.3) imposes rather strict 
limitations on the coefficients of the Hamiltonian H. These limitations prove to be formulated conven- 
tionly, introducing a new q u a n t i t y - a  classical scattering matrix, given by the set of amplitudes 
W/,':m., k,,, k,,+~ ..... k ..... , each of them is determined on the resonance surface: 

k l  + . . .  + k  =k,,+a + . . .  +kn+m, 

~ k  I + " " " + ~ k . =  OJk.+ 1 + ('Ok.+ m" 
(1.4) 

The main result may be formulated as follows. In order that 1 is an additional integral of the motion, it 
is necessary that for all possible integers n and m either the following identity is fulfilled on the surface 
(1.4): 

f , +  - - -  + L ° = f , ° .  + . . .  + f , . +  , (1.5) 

or the amplitude of the process W n'm is equal to zero on (1.4), with the manifold of measure zero 
excluded. 

Now it is clear that the problem of several variables function theory arises: under what conditions the 
system of equations (1.4)-(1.5) has a nontrivial solution. We did not suceed in finding a complete solution 
of that difficult problem, but we have obtained a lot of rather advanced results (see section 3 of the present 
paper). In section 2 we present the statement of the problem, the definition of the classical scattering 
matrix and the proof of the main result, formulated above. 

In the finite-dimensional case the Poincar6 methods represent a rather effective way of proving the 
non-integrability of the concrete systems. For systems with the continuous number of degrees of freedom 
the matter stands much simpler than in the finite-dimensional case. We hope to show that the procedure 
developed by us is well worthy of becoming a working apparatus in the cases when it is necessary to make 
an examination whether the given concrete wave system, found in the applications, may be exactly solvable 
or not. In section 4 we discuss a few examples of checking of the concrete nonlinear wave systems, 
representing a certain physical interest in the existence in them of the additional integrals of the form (1.3). 
Section 5 is devoted to a deeper study of the limitations on classical scattering matrix structure, following 
from the existence of an additional motion invariant. We show that under certain, very natural, 
assumptions the infinite series for the scattering matrix can be summed up explicitly and this summation 
results in a simple nonlinear integral equation. Finally, section 6 is devoted to the following problem: in 
what sense does the existence of an additional motion invariant of the form (1.3) result in the existence of 
an infinite set of such invariants and in what sense does it imply the complete integrability of the system 
(1.1)? The latter notion must be defined more precisely. In the case when a wave field in a physical space 
vanishes sufficiently rapidly at infinity (that corresponds to smooth functions ak) all the systems of form 
(1.1) are completely integrable. The only question of interest is the one about the complete integrability of 
systems at periodic in space boundary conditions when the amplitudes a k are represented as a set of 
8-functions. 

In conclusion, let us mention that some statements of the present paper were formulated by us in the 
past while using another language (applying the kinetic equations for waves) in ref. [26]. Some results of 
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the present paper were formulated, without full proofs, in paper [30] of one of the authors (V.E. 
Zakharov). A brief statement of the results of the present paper was given in ref. [33]. 

The diagram technique developed in the present paper is close to the one given in ref. [48]. 

2. The formal classical scattering matrix in the non-soliton sector 

Following [30], let us consider the homogeneous medium of d dimensions, where waves of only one type 
with the dispersion law ~k, k = (k 1 . . . . .  kd)  can propagate. The Hamiltonian of such a medium can be 
represented as follows: 

H [ a k ( t ) ]  = Ho + Hi,t, (2.1) 

where ak( t  ) is the complex wave amplitude with wave vector k, 

1" 
Ho = JO~klakl z d k  

and H i n  t is the interaction Hamihonian, representing a power expansion in a k, a k. The equation for a k 

has the form 

8Hi"t (2.2) 
iak  = Wkak + 8~--------k" 

Following a similar approach as used in quantum scattering theory, let us consider the system with 
interaction, adiabatically decreasing as t ~ +_ ~ ,  

H = Ho + Hi,t e -~1'1, e > 0 .  (2.3) 

For  the system (2.2) the global solvability theorem may not be fulfilled and asymptotic states as 
t ~ ___ oo may not exist. However, for the system with the Hamiltonian (2.3) at finite e and sufficiently 
small a k they exist, i.e. the solution of the equation (2.2) turns asymptotically into the solution of the 
linear equation: 

a k ( t  ) - - * a ~ ( t ) = c ~ e  -i~k'. (2.4) 

Besides, the asymptotic states may contain solitons, which certainly cannot exist at finite e. So our 
consideration should be restricted to the class of initial states without solitons and with smooth c~-. We 
shall call this class as the non-soliton sector. 

Though the consideration is restricted to a special class of initial states, the result will be very useful 
because the obtained structure of formal series for the S-matrix provides us with the structure of motion 
invariants (see section 6 of this paper) and normal form (if it exist) of the Hamiltonian (E.I. Schulman, to 
be published). 

The functions c k are not independent and there exists a nonlinear operator S~[c-], transforming one 
into the other. To study this operator we use as usual the interaction representation: 

a t ( t  ) = b ~ ( t ) e  -is~kt. (2.5) 



V.E. Zakharov and E.L Schulman / On additional motion invariants 287 

Here s = + 1, a ~ ( t )  = ak(t  ), a ~ l ( t )  = [~k(t). The equations of motion now take the form 

~/'~int -e l t  I is/~ = 8 - ~ e  . (2.6) 

In (2.6) Hin t is the interaction Hamiltonian expressed in terms of the variables b~. Eq. (2.6) is equivalent to 
an integral equation: 

_ i s  [ ,  8IYli~t 
b~ ( t ) = Ck ~ -- --2 J-o~ dta 8bk---~l) e-tlql" (2.7) 

Eq. (2.7) gives a map c~ ~ ---, b~ ( t )  which can be written in the form 

ss( )[ ;,1 b],= - o o , t  c . (2.8) 

Letting, t ~ + oo, one finds 

+ S~[-~] ( 9 )  C k = C k , 2. 

where S~ = S~(-  oe, oo). 
At finite e and sufficiently small a k the operators S~(-oo,  t) and S, can be obtained in the form of 

convergent series by the iteration of eq. (2.7). Let e --, 0 in each term of the series. As we shall see the 
expression obtained is finite in a sense of generalized functions. We shall call the series obtained for the 
operator S~(-  oe, t) as e ---, 0 the classical transition matrix. The corresponding series for S~ will be called 
the formal classical scattering matrix. Let us designate 

S ( -  oo, t)  = lim S~(-  oo, t ) ,  
e~ '0  

S = lim S~( - m, ~c), 
~ 0  

(2.10) 

where the limits are to be understood in the above-mentioned sense. 
As t ~ 0 the series for S~(- oo, t) and S~ are generally divergent and formal. Consider the structure of 

the classical scattering matrix in the simplest case of cubic over the field variables interaction Hamiltonian 

Hin t  ~ 

1 Hint=' .l E fvss, 2 s, s 2 k 2 ) d k d k l d k 2 .  k k , k 2 a k a k l a k 2 0 ~ , S K  + S l k  1 + 
ss1s 2 

(2.11) 

From the fact that the Hamiltonian is real it follows that 

- s - s  I - s  2 s$1s 2 V k k, k: = V2klk2" (2.12) 

Besides, the coefficient functions V do possess an evident symmetry: 

s~ . . . . . .  2s, = (2.13) Vdk,k: -- Vd,kk :. V~.k2kl  $1ss2 
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In the interaction representation the integral equation (2.7) takes the form 

s --$$ s $1 S2 i S (bk ( t ) - -Ck$)  = ½ E f ]  d q f  d k l d k 2  V k~ : ( t l )bk~( t l )bk : ( t l )8 ( - - sk  +S lk l  q-s2/2), 
Sl S 2 

$$152 • s$ $ " k k lbr~klkz(t] -~  SSlS2 gkklk2exp(1Ak~2t eJt]), 

SSlS 2 __ 
A k k l k  2 - -  St, O k -~- S lO~kl  -]- $20~k 2 .  

(2.14) 

(2.15) 

(2.16) 

For example in the second order (2.14) gives for t < 0, 

( b k ) s e c  " 2  E S '  = I "  k k l k '  k ' k 2 k 3  ~,ar~-Slk 1 s ' k ' ) 8 ( s ' k ' - s 2 k  2 s3k3)c i qCk2  Ck3 
s i , s  r 

1 I ]  ×exp( i (A-~:~:~  - 2ie)t)(A_]$~:~:},3 _ 2,e)(A' -,'~2$k,k~Z~ -- ie) d k ' d k t d k 2 d k 3  " 

(For the definition of ASk'~.$~q , see (2.22).) Eq. (2.14) can be symbolically represented in the graphical form: 

i ~ f  (2.17) S - - - - - -  =S - 2 \ 

where - -  indicates the two-component unknown value b~, s -- + 1, ---- designates c;  s, .--  corresponds 
to the factor exp ( -iA-~,$~2t - e[tl}, © indicates V - f ~ ( - s k  + sakt + SEk2) and the summation over s~ 
and s 2 is assumed. Using (2.17) it may be possible to attribute certain graphical expression (diagram) to 
each term of the series arising when iterating eq. (2.14). These graphical expressions are connected graphs, 
having no loops or, in other words, "trees". Each graph consists of two types of elements: lines and 
vertices. Lines are divided further into inner and external ones. One of the external lines is distinguished 
(we shall call it a "root"),  the other ones can be called "leaves". Each tree, correspondent to the nth 
iteration, contains exactly n vertices and n + 2 leaves. Inner lines are usually called "branches". It 
corresponds to each of both the external and internal lines a certain value of the wave vector k~ and the 
index s i. The "external" values of k and s correspond to the root. The integration is over all k~ except 
k~ = k, the summation is over all s~ except s~ = s. To each leaf with the wave v e c t o r  kq and index Sq there 
corresponds a factor Ck-2q. 

The graph corresponding to the Nth iteration contains N integrations over the time variables t~ . . . . .  t N. 
Each time variable t~ in the diagrams for the transition matrix corresponds to its own branch. The external 
time t corresponds to the root. Distinguishing the root leads to the partial ordering of the graph elements. 
From each vertex in which three lines meet there is a unique way to go to the root. We shall call the line 
leading to the root as a going out one. Let the corresponding wave vector and index be k~ and s~. The two 
other lines are entering. Let the corresponding wave vectors be k#, kr and indices s~, sr. It is important 
that both entering lines are corresponded with one and the same time variable tq. The vertex factor 
corresponding to this is 

V-S"$'~,~;~, eia k,ka%tq--~ltqlg ( -s,,k,~ + sBk# + srkr) .  (2.18) 
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Let us cut the graph across the line going out of the vertex. Now the part of the graph which is cut off from 
the root is to be integrated over the variable tq in the limits - o¢ < tq <_ tp. In fact this way of ordering of 
time variables agrees with the chronologic ordering used in quantum field theory. To end the diagram 
technique description, let us notice that the set of diagrams which correspond to the nth iteration consists 
of all possible trees, containing n-vertices and root fixed. Before each diagram there is a numerical factor 
1/P. The number P is equal to the number of symmetry group elements for the diagram considered, i.e. it 
is equal to the number of rotations at different vertices which leave the diagram unchanged, the identity 
transformation included. At finite e > 0, the actual calculation of diagrams is a rather difficult task. 
However, it becomes much simpler when e tends to zero. We shall call the integration over the time 
v a r i a b l e  t 1 closest to the root the outer integration. All the other integrations will be called the inner 
integrations. A very important fact is that when integrating over any inner variable tq o n e  may replace 

e -m~l --+ e" , .  (2.19) 

We shall prove this statement here. The analogous statement is proved in quantum field theory (see [35], 
for example). What is important is to notice that, using (2.19), all the integrations over inner times can be 
carried out explicitly. After this, the diagram technique is greatly simplified. Consider an inner branch with 
the wave vector kp and the index sp such that when cutting it we can separate from the root a tree, having 
m leaves (m > 2). Let these leaves have wave vectors k i and indices si, i = 1 . . . . .  m. To the vertex from 
which this tree "grows" enters the other side fines (branches or leaves) with the wave vectors and indices 
kq, k, and Sq, s ,  say. Then the expression corresponding to this vertex is as follows (the fine with kq, Sq is 
the going out one): 

V-Skqf~Sj~ ~)( -- S qk  q -1"- Spkp n t- Srkr  ) , (2.20) 

while corresponding to the branch with the wave vector kp and the index sp the expression is 

exp {iAmt + met } 
Gm= ~-,olim i ( A  - ime) 

exp {ia , . t  } 

i ( a m  - i o )  ' 
(2.21) 

m 
A I, FI = A - - S p , S l ' " S m  _ _  ( 2 . 2 2 )  lip,k1 "'" km -- --SpOOkp + E SiOJk i" 

i=1 

Consider now the last (outer) integration over t 1. We have 

SN~ ( -  o0, t) = W u f  t e -'ml+iaNtt dq .  (2.23) 
--O0 

Here 

WN = W -s's'k, ~'"'~... kNSI-sk + + "'" +SNkN) (2.24) 

is some expression which tends to a constant in the limit e ~ 0. At finite t we have from (2.23) 

SN(--OO t )=  limSN,(--oO, t )=  WNeiANt  
' i(A N iO)" E_.+O 

(2.25) 
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As t ~  +oo  we have 

SN = ~ o S u ~ ( -  oc, oo ) = 2~rS( A u ) Wu • (2.26) 

So the expressions for the SN(-- OQ, t)  and S N have the singularity on a manifold defined by the equations 

P N  = - s k  + S l k  I + . . .  + S N k  N = 0, (2.27) 

A N =  --SO.~ k "~ S l W k l  --~ . . .  --~ SnOgkN = O.  

Eq. (2.27) depending on the choice of the s, s 1 . . . . .  s N splits into a set of relations 

k + k 1+ " "  + k ~ = k , +  l +  " "  + k , + m ,  

~ k  + O)k~ -~ "" " + ¢ O k . =  COk,,+~ + " ' "  + ~Ok.+~,  

m + n = N .  

(2.28) 

Eq. (2.28) determines a manifold which we shall call the resonant manifold F "+a,". We designate the 
corresponding entity W N via 

Wkn+l, m ~ w n + l ,  m .  
, k  I . . . . .  k n . k n + l , . . . , k n +  ~ 

It  is important  to notice that W "+1" " is regular on the manifold (2.28) in the points of a general position. 
However  W "÷ 1, ,~ has singularities on the submanifolds of lower dimension on which it turns into zero at 
least one of the entities A corresponding to the one of the inner lines of any diagram constituting the 
W "+1' ' .  As can be seen from (2.21) these singularities may be of two types in agreement with the two 

terms in (2.21). The first item in (2.21) is distributed over all F n+ 1, ,~ while the second one is localized on a 
manifold (to be more precise, on a set of manifolds) 

- -  S p(a~ k p -}- S l ¢O k l "b • • • -~- S rn~  k m ~ O, 

- -  S p k p  + Sl~Ok~ + "" " + S m ~ O k m ' ~ O .  

(2.29) 

Manifolds (2.29) can be called the youngest resonant manifolds in comparison with (2.28). Eqs. (2.29) 
together with (2.28) determine a set of submanifolds of F ~ + 1, m having the unity codimension. The division 
of two items in (2.21) has a certain physical meaning. One can say that the first item describes processes 
which go via virtual waves while the second item describes processes going via real intermediate particles. 
The elements of classical S-matrix with interactions going via real waves can be called as singular ones. 
They are decomposing on the singularity powers depending on the number of inner lines in which the 
Green function Gm denominator changes to zero and on the corresponding codimension of the younger 
resonant manifold. For any concrete dispersion law there is an element of the scattering matrix possessing 

the maximal singularity. 
Let us now set some additional symmetry property of the amplitudes of the classical scattering matrix, 

i.e. consider the equation 

~nint ,  
• s _ _  ( 2 . 3 0 )  lsa k=~oka  k +  8a~S , 
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where Hint, may be obtained from Hi~ t in (2.2) by the substitution of complex conjugated Hamiltonian 
coefficients for example, into (2.7), Vd],11~,22 ~ V-~,;;~ -s2. As before we shall call the interaction to be 
adiabatically set in and out. Then as t ~ + oo the solution of (2.30) and of (2.2) as well will degenerate 

* +  
into those of the linear equation. Let us consider the solution of eq. (2.30), turning into c k exp ( - i¢0kt } as 
t---* - -O0."  

a k --~ - - i o ~ k t _  *+ e- io~kt .  C.ke -- C k 

As in (2.2), eq. (2.30) possesses a classical scattering matrix, c2k = S,[c,k ]. One should note now that eq. 
(2.30) is derived from (2.2) by complex conjugation and the change of the time sign. So, on account of the 
simple solution of the Cauchy problem for (2.2) and also for (2.20), S,[c[]  = c ; .  

Using the definition of the classical scattering matrix (2.9), we get 

(2.31) 

The identity (2.31) is analogous to the unitarity condition for the scattering matrix in quantum mechanics. 
The nonlinear operator S, can be easily calculated. It coincides with the operator S, where the 
Hamiltonian coefficient function V is substituted by its complex conjugate in each vertex of a diagram. It 
is convenient for us to introduce the operator R by the following formula: 

s =  1 + R .  (2.32) 

Then from (2.31) we obtain the following condition for R: 

+  [c;l + = 0  (2.33) 

One can also verify simply that 

I~V~ m W n + l  ' 
, n + l  = F / +  1 " "  

(2.34) 

It follows from (2.34) that in particular the amplitude is asymmetric relative to the permutation of 
m-indices, so that the diagram "root"  does not really prove to be a marked line. From physical 
considerations it is clear that the classical scattering matrix constructed by us coincides with the quantum 
scattering matrix, where radiation corrections are certainly not to be taken into account but only diagrams 
of the "tree type" are preserved. 

3. Degenerative dispersion laws and theorems about them 

In order to clarify the restrictions which the existence of the additional motion invariants imposes on the 
system, one can use the classical scattering matrix introduced in the previous section. Let the system of the 
form (2.2) have the additional integral 1, analytical over ak,  ak and containing the quadratic part, i.e. 

I = f fk lakl  2 d k  + . . . ,  (3.1) 
d 
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where the three dots mean terms of higher order in a k. We suppose, that I differs from the momentum and 
energy integrals, i.e f k  4= A~o k + (o,  k )  + const. It follows from the conservation of the integral (3.1) that in 
the non-soliton sector we get 

f L  • + + d k + ' - -  c d k  + . . . .  c k c k (3.2) 

Using (2.5) and (2.32) we get 

ffk[C;Rk[C-I+c;Rk[C ] ] d k +  f fkRk[C-]Rk[c-ldk+ . . . .  o. (3.3) 

The dots in (3.2), (3.3) mean terms of higher orders in C~ and also what we obtain from them after 
substitution of (2.5). As c k is an arbitrary function, then terms of each order must turn to zero, each taken 
separately. 

Theorem 3.1. Let the system (2.2) have an additional integral I of the form (3.1). Then for each scattering 
process of n + 1 waves into m waves on the corresponding resonance surface 

k + k l +  . . .  + k  = k , + l +  . . .  +k ,+m,  

O)k- -~  q.dkl ~-  . . .  q - - O ~ k , =  ~ k ~ + l  q-  . . .  q ' - ~ k n + ~  , 
(3.4) 

one of the following two conditions is fulfilled: either (1) kernels of the corresponding term in the 
scattering matrix are equal to zero in the points of a general position on F "÷x' m; or (2) the function f ( k )  

satisfies on (3.4) the following condition: 

L Jl- f k |  -~ - . ° .  " ~ - L n ~ -  f k n ~ l  Ji - " ' "  "71-Ln+m . (3.5) 

Proo f .  Associated with the surface (3.4) the terms in (3.3) contain a combination of fields 

* *  * 
c k Ck~ . . .  CkCk,,+ ' . . .  Ck°+m. (3.6) 

In this case only the terms generated from the first one in (3.3) are distributed on the whole surface (3.4). 
Indeed, the terms of order n + m + 1 generated from the second one and the terms of the highest orders in 
(3.3) are sure to contain at least one additional 8-function; e.g. at second order, the second integral in (3.3) 

AL- f A I . r T P S S l S 2  lZ - - s s3s4  8[ok  gives !• f d k x d k 2 d k 3 u ' ~ 4 J u r q "  kklk2" kk3k, t~ + s l k l + s 2 k 2 ) g ( S W k + S a W k ~ + S z ~ k 2 ) 8 ( s k - -  4 SS 1 "'" S 4 

s 3 k  3 - s 4 k a ) g ( s 0 9  k - -  S3(.dk3 - -  $46~k4)].  After integration over k this term gets a g-functional factor contain- 
ing one vector and two scalar g-functions (of k and of ~), that is one g-function more than the 
g-functional factor g ( s x k  1 + s2k  z + s3k  3 + sak4)g(sao~kl + s2o~ M + S3Wk3 + S4Wk, ) which arises in the sec- 
ond order term generated by the first integral in (3.3). Besides, terms designated by • • • in (3.3) arise from 
expressions sl . "  Sq q q +sl +se _ s l  _~q . f l - lk l  ... k q g ( ~ l S i k i ) g ( ~ l S i t ~ k , ) [ C k l  " ' "  Ckq -- Ck~ "'" Ckq ]dk  I "" d k  q. From (2.26) and (2.32) 
it is seen that the expression in square brackets contains at least one additional g-function. Thus, in the 
points of common position it is necessary to take into account the first integral in (3.3) only. 
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After symmetrization over k, k l , . . . ,  k n and kn+ 1 . . . . .  k~+,, with the help of (2.34) we obtain for terms 

of order (3.6), 

f [ i , +i , ,+ "" +i,.-i,.+, . . . . .  i,.+.]w kk  I ... knkn+ l ... kn+ m 

~k ~k, " '"  ~k.Ck,+, " '"  Ck,+.8( k + kl + " '"  + k ,  - k ,÷  1 . . . . .  k,+m) (3.7) 

On account of arbitrariness of c~- the theorem statement follows immediately from (3.7). • 

The analysis of submanifolds of less dimensionality distinguished by more singular parts of the S-matrix 
is more complicated and will be performed in section 5. Condition (3.5) may be considered as an equation 
of the function f (k ) .  We are only interested in the nontrivial solution of this equation, when f ( k )@ 
ao~(k) + (v, k), m ~ n and i s flto(k) + (v, k) + const, m = n. Here a, fl are any constants and v is any 
constant vector. 

Let P be a point of the manifold F n÷ l ' ' .  The dispersion law to(k) is called degenerative at the point P 
relative to the process n + 1 --+ m if there exists a finite domain around P where eq. (3.5) has nontrivial 
solutions. If eq. (3.5) can be solved nontrivially in the domain 12 of manifold F "÷1, m, the dispersion law is 
called degenerative in this region. According to theorem (3.1) in the domain F" ÷ 1. m\  ~2 the less singular 
elements of the scattering amplitude turn into zero. If the domain ~2 coincides with all F "÷1'", the 
dispersion law is called completely degenerate. If a domain 12 exists, but it does not coincide with F" ~ 1, ,,, 
the dispersion law is called partially degenerative relative to the process "n into m".  Degenerative and 
even partially degenerative dispersion laws represent an exceptional phenomenon. Let us consider the 
simplest possible nonlinear process of decaying of the one wave into two. The corresponding manifold F 1"2 
is determined in the space (kl,  k2) by the equation 

to(k,  + k2) = to(kl)  + to(k2). (3.8) 

If there exists such a manifold, the dispersion law is called decaying (the case to = to(Ikl), to(0) = 0, to" > 0 
may serve as an example). For most points in kl, k 2 space, the manifold (3.8) has dimension 2 d -  1. Eq. 
(3.5), which now has the form 

f ( k ,  + k2) = f ( k , )  + f ( k 2 ) ,  (3.9) 

defines a function of d variables. Generally speaking, at d>_ 2 (3.8) and (3.9) are incompatible. 
Nevertheless, at d = 2 there do exist the degenerative dispersion laws relative to process (3.8). Let us write 
the components of vector k as (p ,  q) and let to(p, q) be defined parametrically according to the formulae 

P ----- ~1 -- ~2, q = a(~l )  -- a(~2),  60 = b(~l)  - b(~2) , (3.10) 

where a(~) and b(~) are any functions of one variable. Let us consider a three-dimensional manifold/~x.2 
determined parametrically according to the formulae 

qx = a(~x) - a(~3), q2 = a(~3) - a(~2)- (3.11) 
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Now p = P l  +P2 = ~1 - ~2, q = ql + q2 = a(~l) - a(~2)- Besides, we have 

~o(k) = co(k, + k2) = b ( ~ , ) -  b(~3) + b ( ~ 3 ) -  b(~2) = o~(kx) + o~(k2). 

Thus, the manifold/~1,2 belongs to F 1'2. Let us now consider the function f ( p ,  q), parametrizing by the 
formulae 

P = f l  - ~2, q = a(~1) - -  0(~2), f =  c ( f l )  - c(~2), (3.12) 

where c(~) is an arbitrary function. It is evident that f ( p ,  q) satisfies eq. (3.9) on/~1,2, and the dispersion 
law (3.10) is at least partially degenerative. The question of its complete degenerability must be considered 
separately. Let a ( f )  = f2, b ( f )  = 4~ 3 in (3.10). Then 

o~(p, q) =p3 + 3q___.~ 2 (3.13) 
P 

This is the well-known dispersion law for the decaying Kadomtzev-Petviashvili equation often denoted 
K P - I ,  

~----~(u, + 6uu x + U~xx) = 3Uyy. (3.14) 

Eq. (3.8) is now reduced to the form 

(P l  + p 2 ) 2 =  (Plql P2q2) 2 

from which it is clear that F 1'2 consists of two parts F 1'2 Simple analysis shows that /~1,2 coincides with +. 
F~: 2 given by the formula 

ql q2 (3.15) 
P~ q-P2 Pl P2 " 

The parametrization a(~) = -~2,  b(~) = 4~ 3 results also in the dispersion law (3.13). Now/~1,2 coincides 
with FI_ '2, when 

Pl +P2 = - q_i + q__~2. (3.16) 
Pl P2 

Thus, the dispersion law (3.13) is completely degenerative. Now, in (3.10)-(3.12), let ~ 1 -  ~2 = ~ << 1. 
Then, up to the first order in 8, the identities (the prime means the derivative) 

q / p  = a '(~2),  ~ / p  = b'(~2) (3.17) 

determine the dispersion law as well. Formulae (3.15) determines parametrically the homogeneous function 
of the first degree, 

~o = P ~ (  O / P  ). (3.18) 
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Let us note, however, that the function (3.18), and the function (3.10) together with it, are not analytical at 
p = 0. Thus, the first degree homogeneous dispersion law with any dependence on angles is degenerative. 
For the dispersion law (3.18) the manifold F 1'2 is determined by the following conditions: 

q l ~ l = q 2 ~ 2 = q ~ ,  

which means that the vectors k 1 and k 2 a r e  parallel and in the same direction. 
Examples of dispersion laws, degenerative with respect to the process (3.8) and different from the one 

just discussed, are not known at present. We can say only some quite probable statements about them. It 
follows from the degenerability of the dispersion law to(k) that the manifolds given by eqs. (3.8) and (3.9) 
possess a common three-dimensional region. In the points of common position in this region one of the 
coordinates Pl, P2, ql, q2 is the function of the other ones. Let q2 = q2(Pl, P2, qt). Let us differentiate eqs. 
(3.8) and (3.9) with respect to independent variables in all possible ways, so that the summarized order of 
derivatives would not exceed N. It is easy to calculate that a general number of such differentiations equals 
~ U  = ( N3 "~ 6N2 + 11N)/6. We shall obtain 29~N linear algebraic equations on a number of derivatives 
form the function q2(Pl, P2, ql)- Their consistency conditions represent ~U of nonlinear differential-func- 
tional equations, containing derivatives of functions of two variables, to(p, q) and f ( p ,  q), taken in "three 
positions" Pa, ql; P2, q2 and Pl + P2, ql + qz. The total number of derivatives of order not exceeding N of 
functions of two variables equals QN = N(N+ 3)/2. At N =  9, 9~N= 21, Qu = 54, 4QN= 216. Thus, 
~ U  > 4QN at N > 9. This inequality means that at N = 9 from the 219 equations we possess one can 
exclude 216 derivatives of functions to and f in some two positions (for example in P2, q2 and Pl +P2, 
ql + q2) in a pure algebraic way. As a result, the functions f(Pl, ql) and to(Px, ql) prove to satisfy the 
system of three differential equations of the ninth order, consisting of polynomials in the derivatives of 
these functions. If these three equations do not prove to coincide with each other, then their solution may 
depend only on the finite number of functions of one variable. Analogous results hold for dispersion laws, 
degenerative relative to other nonlinear processess, if any. All that allows us to propose a statement, that at 
d = 2, degenerative dispersion laws are defined by a finite number of functions of one variable. Let us note 
that the dispersion law (3.10) is defined by two functions, and the dispersion law (3.18) by one function. 

Let us now state the problem of degenerative dispersion laws, which are close to those given by the 
parametrization (3.10). Let us search for the dispersion laws to(p, q) and f ( p ,  q), determined parametri- 
cally by the formulae 

P = ~1 - lJ2, q = a ( ~ l )  - a ( ~ J 2 ) ,  

t o = b ( ~ a ) - b ( ~ 2 ) +  ~ ento.(~l ,~2), 
n=l 

f =  C(~I) -- ¢(~2) "l- ~.d ~n/n(~l,  ~2), 

(3.19) 

here e is a small parameter. It is convenient to set the three-dimensional resonance manifold parametri- 
cally in the form 

P1 = ~1 - ~3' ql = a(~l + 7/) -- a(~3 + "q), 

p2 = ~3--~2, q2=a(~3+.)--a(~2+P), 
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requiring additionally 

q =  ql + q2= a ( 4 1 ) -  a(42) 

= ~(41 + ,1) - ~(4~ + 7) + a(43 + ~) - ~(4~ + ~). 

Now the conditions (3.8), (3.9) together with (3.20) will yield three equations in 
41, 42, 43, 71, v. This system of equations must define ~/ and v in the form of series in e: 

oo oo 
n = E ~"n.(41, 42, 43), , = E ~""n(41, 42, 43). 

n=l  n=l  

We have a linear overdetermined system in the first order in e: 

[a '(41) - a'(43)] 71 + [a ' ( 43 ) -a ' ( 42 ) ]v l=O,  

[b'(41) - b'(43)] 71 + [b'(43)-b '(42)]v1=I21,  

[ c ' ( 4 1 ) -  c'(43)] 71 + [ c ' ( 4 3 ) - c ' ( 4 2 ) ] u l = r l  . 

Here 

~1 = ~,1(41, 42) - ~ ( 4 1 ,  43) - ,~1(43, 42), 

rl  =/1(41,  42) - f~(41,  43) - f~(43 ,  42). 

Consistency condition of the system (3.26) has the form 

~21B = F1A, 

where 

a ( 4 1 ,  42, ~3) = °t(41, ~2) "q- ~ (42 ,  43) + °~(43, 41) = Aab, 

B(41, 45, 43) = #(41, 42) + t~(42, 43) + #(43, 41) = noc, 

a(41, 45) = b'(41) a '(4z) - b'(42) a'(41), 

f l ( ~ l ,  42 )  = c ' ( 4 1 )  a ' ( 4 2 )  -- c ' ( 4 2 ) a ' ( 4 1 )  • 

The functions 
Interchanging 
~1(41, 4z) and 

0~1(41, 45) = -0~1(42, 41); f,(4~, 42) = - f1(42,  41). 

Thus, we may put  

~1 = ,~1(41, 42) + ,~1(42, 43) + ,~1(43, 41), 

F1 =f1(41, 42) +f1(42, 43) +f1(43, 41). 

(3.20) 

five parameters 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

A(4x, 42, 43) and B(41, 42, 43) are antisymmetric relative to all argument permutations. 
42 and 43 in (3.23) and summing up the results, we are convinced that the functions 
fl(41, 42) are antisymmetric: 

(3.26) 
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So, the problem is to solve the functional equation (3.23). It is easy to check, that eq. (3.23) has the 
following solution: 

b'(~l) - b'(~2) 
~ , ( ~ ,  ~2) = a,(~t) _ a,(~2) (/(~1) -- 1(~2)), 

~,(~ , )  - ~ , ( ~ )  
f l (~l ,  ~2) -----  a,(~l) a,(~2) (1(~1) - l(~2)).  

(3.27) 

(3.28) 

Here l(~) is any function. This solution does not result in a new dispersion law, but represents a result of 
function reparametrization in (3.10)-(3.12). Let us put 

~1--~2=711--712; a ( ~ l ) - - a ( ~ 2 ) = a ( ~ h ) - - a ( 7 ] 2 )  +e[1(7 /1) - l (712)] ,  

b(~l)  - b(~2) = b (n l )  - b(712) + Eta)(711, 7]2)- 

(3.29) 

60(711 , 7]2 ) represents a series in powers of e, the first term of this series is given by the formulae (3.27), 
(3.28). 

One more trivial solution of eq. (3.29) is 

t01 = P ( ~ I )  - -P(~2),  fl  = q(~l)  -- q(~2) 

(p (~ )  and q(~) are any functions, representing the variations of b(~) and c(~)). 
It is important to note that eq. (3.23) possesses still one more trivial solution. Let us assume 

0~1(~1, ~2) ~--- 0/(~1, ~2)S(~1, ~2), 

f l ( ~ l ,  ~2) = ~(~1,  ~2)5(~1,  ~2)" (3.30) 

After substitution of (3.30) into (3.23) we shall be convinced that S(~ 1, ~2) satisfies the unlooked-for 
simple equation 

S(~l,~2)[a'(~l)-a'(~2)] + S(~2,~3)[a'(~2)-a'(~3)] + S(~3,~1)[a'(~3)-a'(~1) ] = 0 ,  (3.31) 

r (~l)  - r(~2) (3.32) 
S(~1, ~2) = a ' (~ , )  - a '(~2) " 

Here r(~) is an arbitrary function again. The solution (3.32) is also a trivial one and results from the 
reparametrization of dispersion law of the form 

p = ~ l - ~ 2 + e [ ~ ' ( ~ l ) - r ( ~ 2 ) ] ,  q=a(~l)-a(~2), oa=b(~l)-b(~2), 

which is to the first order in e equivalent to (3.10) with a modified function a(~). To obtain the given a(~), 
one needs to make a change of variables of the form 

, ,  , ~(711) - ~ ( 7 ] ~ )  ~ ( 7 ] , )  - ~(712)  
~1 = 7], ~- ~a  t712) a - ; ~  - a - 3 ~ )  ' ~2 = 7]2 + ~a'(711)  a'(711)  a ' (712)  " 
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Substituting new variables into the expression for ~0 and expanding in e we arrive at expression (3.19) with 
the linear term being of the form (3.30), (3.32). 

We shall consider (3.23) as a system of linear algebraic equations relative to the unknown functions 
~°(~1, ~2) and f(~l ,  ~2) Let the variable ~3 take two arbitrary values ~3 = al and ~3 = a2- Let us note that 

AI.z=At,2(~x,~2)=A{~3=~I,2; Ba,z=BL2(~1,~z)=BI~3=~I.2, (3.33) 

f ( ~ , a i ) = g , ( ~  ), 60(~ ,a , )=h~(~) ,  i = 1 , 2 .  (3.34) 

We can see from (3.34) that in the most general case the solution of eq. (3.23) may depend on not more 
than four functions of one variable gl,2(~) and hl,2(~ ). 

The solution constructed by us depends upon the very four functions l(~), p(~), q(~) and ~'(~). Solving 
evidently eq. (3.23) a t  ~3 ~-- Otl,2 and making elementary analysis of the solution, we are convinced that we 
have constructed a general solution of the functional equation (3.23). The result obtained can be 
considered as local uniqueness theorem for degenerative dispersion laws of the form (3.10). This theorem 
was presented in [30] without full proof. Unfortunately, we have not yet a global uniqueness theorem and 
it is possible for degenerative dispersion laws to exist not close to (3.10). 

Let ~0 (p ,  q) be a differentiable function and ~o(0, 0) = 0. Let ~0(p, q) satisfy one more condition 

I~0(p,q) l  , 0 ,  R = [p2+q211 /2 .  (3.35) 
R R--,0 

Then the dispersion law o~(p,q) is decaying. There exists a manifold F 1'2, because it contains a 
two-dimensional plane P2 = q2 = 0 and some vicinity of this plane given by the following equation: 

260 ~¢0 
a-~ (P l ,  ql)"P2 + -~ - (P l ,  ql)'q2 = O. (3.36) 

Putting P2 = q2 = 0 in (3.9), we get f(0,  0) = 0 and, moreover, 

lim [ f (R ,  v~)/R] =fo(O)  < oo at all ~. 
R~0 

Here ~ = arctg(q2/P2 ). 
Thus, in the vicinity of zero f (p ,  q) may tend asymptotically to the homogeneous function of the first 

order. But then at p, q ---, 0, ~o(p, q) must also tend to the homogeneous function of the first order, which 
is excluded by the condition (3.35). Thus, f0(O) and the function f also submit to the condition (3.35). 
Now in the vicinity of P2 = q2 = 0 we have from (3.9) the following: 

Of Of 
8---~ (P~, ql)"P2 + ~-~(P,,  q,)'q2 = O. 

From here it follows that the Jacobian between the functions f and ~o is equal to zero, and that there exists 
functional dependence between them: 

f ( p , q )  = F[~o(p,q)]. 
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Now we have from eqs. (3.8) and (3.9), 

F [ W( Pl, ql) + to( P2, q2)] = F [w( Pt, ql)] + F[ w( p2, q2)], 

from where we get F(~) = )~, 2~ is a constant. The important consequence of the result obtained is the 
following: 

Theorem 3.2. A dispersion law to(p, q) satisfying the condition to(0,0)---0 and analytic in the vicinity of 
p = q = 0 is nondegenerative on F L2 in the vicinity of the plane P2 = q2 = 0. 

In fact, the proof of this theorem is given above. Only, one should notice that linear terms in the 
expansion to(p, q) in the vicinity of point p = q  = 0 may be excluded. After that the analytical function 
satisfies the condition (3.35). 

Theorem 3.2 is rather important from the viewpoint of applications of the theory developed here to the 
nonintegrability proof of the concrete wave systems. Two-dimensionality of the coordinate space is 
essential for degenerability. Suppose d = 3. Now in common position, the manifold F 1,2 has dimensional- 
ity 5. Let us designate the wave number, corresponding to a new space via " r "  and consider the dispersion 
law, transforming into (3.10) at r = 0. Then theorem 3.3 holds. 

Theorem 3.3. Let the degenerative dispersion law to(p, q, r) be parametrized in the vicinity of r = 0 as 
follows: 

P - - ~ 1 - ~ 2 ;  q - - a ( ~ l ) - a ( ~ 2 ) ,  
o0 

to(p,q,  r) =b(~t)- b(~21 + r E r"ton(~l,~2) 
n = O  

(3.37) 

and the manifold F 1,2 has dimensionality 5. Then too = const, to n = 0, n > 0. 

Proof. The resonance manifold F 1,2 for the dispersion law (3.37) may be given in the form 

a(~l)  - a(~2) = a(~l + ~) - a(~ 3 + ~/) + a(~ 3 + v) - a(~2 + v), 
oo 

k + l  

E (rl + re) wk(~l, ~2) = - b ( ~ l )  + b(~2) + b(~a + 7/) - b(~ 3 + 7/) + b(~ 3 + v) - b(~ 2 + v) 
k=O 

oo 

+ E [rln+lton(~l + ~/, ~3 "[- 17) + r~+lto,(~3 + v, ~2 + v)]. (3.38) 
h=0 

Let us choose ~1, ~2, ~3, rl, and r 2 as independent variables and then consider v and 7/as their functions, 
analytical in r I and r 2. 

The degenerability condition can be written in its usual form: 

f ( P '  q' rl +/'2) = f ( P l ,  ql, rl) + f (P2,  q2, rE). (3.39) 
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Its solut ion may  be found in the form 

o ~  

f (  p ,  q, r )  = C(~l) - -  ¢ ( ~ 2 )  -4- rY' .r"f , (~l ,  ~z), 
0 

ran. ~ mn 
~ ~ m n r l  r;) , 1; = Pmnrl  I" 2 . 

m + n = l  m + n = l  

(3.40) 

Consider ing the terms linear in r x and r 2 in (3.38) and (3.39) and noticing 71o = ~horx + rlolr2, ~'0 = v l o r l  + 

%1r2 we obta in  

r/o [ a ' ( ~ )  - a ' (~3) ] + uo[a'(~3) - a ' (~2)  ] = O, 

(r~ + r2) 0~0(~ + ~2) = "i'l°)O(~l, ~3) "~- r2°~0(~3, ~2) + r/o [b'(~x) - b'(~3)] + vo[b'(~3) - b ' (~2)] ,  
(3.41) 

(r~ + r 2 ) f o ( ~ ,  ~ )  = r l fo (~ t ,  ~3) + rzfo(~3, ~z) + r/o [ c ' ( ~ )  -- c '(~3)] + ~0 [c ' (~3) - c ' (~2)]  • 

Setting equal  the coefficients in (3.41) at r~, r 2 separately, we obtain an overdetermined system of 
equat ions  for ~ o ,  v~0 and */0~, ~'ov Their  consistency condit ions are 

[~'dO(~l, ~2) -- 0~0(~1, ~3)]O = [fo(~l,  ~2) - f o ( ~ l ,  ~3)]A, 

[ ~ 0 ( ~ ,  ~2) - =0(~3, ~2)] ~ = [ / 0 ( ~ ,  ~:) - fo (~3 ,  ~2)] A. 

(3.42) 

(3.43) 

Here  A and B are given by the formulae (3.29) and (3.30). 
In contras t  to eq. (3.28), eqs. (3.42) and (3.43) do not  possess nontrivial  sore . . . .  ,s. To  be convinced 

about  it, let us differentiate (3.42) with respect to ~3 and then apply the operator  ~ 3 / ~ 3  _ 0 3 / ~ 3  z ~ 2  for 
the same equat ion and further put  ~3 = ~2- We obtain the system of the two homogeneous  equations for 
0~Oo/a~ 2, Ofo/~}~2, having nonzero determinant.  So, ~0o/0~ 2 = 0, Ofo/a~2 = 0. Similarly, we get ~ o / ~ 1  = 
O, ~fo/O~l = 0 from (3.43). Thus, the only solution of eqs. (3.42) is % = const, fo = const, vo = To = 0. We 
shall show fur ther  proof  via induction. Let  Vk, ~lk be the sums of the sequence terms in (3.40), for which 
m + n = k. Let  Vq = ~lq = 0 at q < k. Collecting in (3.38) and (3.39) terms of degree k, we have 

k 
( r l  + r2) ~ k - l ( ~ l ,  ~2) = r(c°k-~(~a, ~3) + r ~ k - l ( ~ 3 ,  ~2) 

+[b' (~ l ) -b ' (53) ln  k + [b '(~3) - b '(~2)] vk = 0, 

[a'(~l) - a ' ( ~ ) ]  ~ + [ ~ ' ( ~ )  - a ' ( ~ ) ]  v~ = o, 

together  with an analogous equation for f .  Taking mixed derivative in q ,  r 2 of the k th order  ~ k/~rlk-1 Or 2 
we get 

kk°k (~ l ,  ~2) = [b'(~x) - b'(~3)] O~lk OVk ~@-=~Or2 + [ b ' ( ~ 3 ) -  b'(~2)] Or~_ 1 Or 2 , 

OTlk + [b '(~3) - b'(~z)] ark 
k! fk(  ~ ,  ~2) = [c'(~1) - c '(~3)] art_  t Or z Or?_ 1 Or z • 
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Consistency of these equations with (3.44) results in an equation of the form (3.23): 

tok(~l, ~2) Aac = f k (  ~X, ~2) Aba, 

which is not fulfilled, as Aac//Aba is a function of ~1, ~2' ~3" 
Really, A ~, and A~a are totally antisymmetric functions, so their ratio is a totally symmetric function of 

~ ,  ~2 and ~3 and is not equal to a constant, as b and c are different functions. Thus theorem 3.3 is proven. 

On the grounds of theorem 3.3 one may suggest the hypothesis that d > 2 and under a condition of 
maximal  dimensionality for F a'z, there do not exist dispersion laws, degenerative with respect to processes 

1 ~ 2. The requirement of maximum dimensionality of F 1'2 is essential. For example, at any d > 2, the 
linear dispersion law to = I k l cp (k / l kD  is degenerative. However, the manifold F 2'2 is given by the 

parallelism condition on kl, k 2 and k and so has dimensionality 4, less than the maximum. 
Let us consider the process of scattering of two waves upon each other. The manifold F 2'2 is given by 

the following equations: 

k + k 1 = k 2 + k 3, (3.44) 

to(k) -6 to(kl) = to(k2) -6 o)(k3). 

The dispersion law t0(k) is nondegenerative relative to this process, if in some region of the manifold F z'2 

the functional equation 

f ( k )  + f ( k l )  = f ( k 2 )  - r f ( k 3 )  (3.45) 

has nontrivial solution. Apparently, the manifold F 2'2 includes two hypersurfaces, set by the conditions 

k = k 2, k 1 = k 3 or k = k 3, k 1 = k 2 

crossing in a straight line k - k 1 = k 2 = k 3. On this submanifold/~2.2 eq. (3.45) is fulfilled at any f ( k ) .  At 
d = 1, F 2"2 = p2.2 and any dispersion law is degenerative. At d > 2, the following holds: 

Theorem 3.4. If  in the vicinity of point k 0 the dispersion law to(k) may be expanded in a Taylor series 

to(k  o + x)  = to(ko) + (a,  x)  + ]~.,Ai/ciK j + " . ,  (3.46) 

then in the vicinity of k = k 1 = k 2 = k 3 = k 0 the dispersion law tok is nondegenerative with respect to the 
process (3.44). Theorem 3.4 is the evident consequence of the following lemma. 

Lemma 1. The quadratic dispersion law with any signature is nondegenerative with respect to (3.44) at 

d > 2 .  

Proof. Let us reduce the quadratic form (3.46) to a diagonal form via coordinate system rotation, then 
(k  = (k 0) . . . . .  k~d))). 

to (k )  = k ~1)2 -6 a2k ~2)2 + " "  +oak ~a)2, (3.47) 

o i=  + 1 ,  i = 2  . . . . .  d. 
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All signs in (3.47) are independent. For the dispersion 
parametrization: 

k (~ = P~ + ~ ( 1  - Q) ,  

k~ ~ = e ,  - ½.(1 + Q) ,  

kU) = P, + ½1~( ri + s,), 

k(2 ' '=  Pi + ½t~('% - si), 

i = 2  . . . . .  d, 

where 

d 

Q =  ~ G%s, 
n = 2  
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law (3.47) the manifold 

k[ x)= P 1 -  ½~t(1- Q), 

k~ 1)= P1 + ½#(1 + Q), 

k~')  = P, - ~ , (~ ,  + ~,), 

k~')  = P ,  - ½1~(,r i - s i )  , 

/-2,2 has rational 

(3.48) 

and P1 . . . . .  Pa, I ~, ~,, si are independent coordinates on the resonance surface (3.44). Let us put the 
parameterization (3.48) into the functional equation (3.45): 

f ( P I +  ~t~(1-  Q ) , P : +  ½ ~ ( ~ 2 + s 2 ) , ' " )  + f ( P 1 -  ½ ~ ( 1 -  O ) , P 2 -  ½ t ~ ( r 2 + s 2 ) , ' " )  

= f ( P l  - ½/~(1 + Q),  P2 + ½~('/'2 - -  $ 2 ) ,  " " " ) + f ( P 1  + ½/~(1 + Q),  P2 - ½/~ ('r2 - s2), " " " ). 
(3.45a) 

Differentiating (3.45a) in z,, s~, supposing "rg = s~, subtracting one from another, differentiating in % and 
supposing/~ = 0, we find 

32f(P,  . . . .  ,Pd) /OP,  OP,=O, i = 2  . . . . .  d, 

from where 

f =  F, ( k (1) ) + ff(k (2) . . . . .  k(a) ). (3.49) 

Substituting (3.49) into (3.45a), putting down the equations obtained via differentiation in T~, %, si, sj and 
supposing all ~-, s to be equal to zero, after simple transformations we obtain 32~/3P~ 3Pj = 0 or 

f =  r l ( k  0)) + . . .  + ra(k(d)) .  (3.50) 

Let us substitute (3.50) into (3.45a) and differentiate in Pa. We obtain 

F, '(P,  + ½#(1 - Q))  + F[(P ,  - ½#(1 - Q))  = F [ ( P  1 - ½/~(1 + Q)) + F{(P ,  + ½#(1 + Q)) ,  

differentiating in Q and/~ we get two equations on FI", for which the consistency condition is written in 
the form (at Q = 0) 
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On account of arbitrariness of Px a n d / ,  we get that F[" -- const. Exactly in the same way, differentiating 
(3.45a) in Pi and then in r i, s~, subtracting one from another and supposing ~-~ = -si ,  we obtain 

= 

From where on account of arbitrariness of P,,/~, ~-~ we get F," = const. Thus, F, = Cik (o~ + B~k ~ + D,. It 
is easy to get C~ = %c from (3.45a) and that proves nondegenerability. • 

It follows from what has been proved that there do not exist dispersion laws completely degenerative 
relative to the process (3.44). It is rather doubtful that there exist dispersion laws degenerative relative to 
this process even partially. Besides theorem 3.4, the statement following below gives grounds for this doubt 
as well. Let us suppose that the dispersion law ~(k)  is decaying. Then the manifold F 2'2 possesses a 
submanifold F~ 2 of dimensionality one, given by the system of equations 

k + k 1 = k 2 + k 3 = q ,  

0.~ ( k )  ÷ o~(ka)  m_ o ) ( k 2 )  ÷ ( ,d(k3) _~. ~(q) .  
( 3 . 5 1 )  

If the dispersion law is degenerative relative to the process "one into two" then on manifold F~  2, the 
function f ( k )  is sure to satisfy the following equation: 

f ( k )  + f ( k , )  = f ( k 2 )  + f ( k 3 )  = f ( q ) ,  (3.52) 

which, of course, does not mean even partial degenerability of the dispersion law ~(k) .  For degenerability 
to occur, it is necessary to fulfill eq. (3.45) on F 2'2 in the vicinity of just one point of the manifold (3.51). 

Let us study this possibility in the simplest case of d = 2 when the dispersion law is referred to class 
(3.10) considered by us. Now the manifold F~ 2 (3.51) is parametrized as follows (at d = 2 its dimensional- 
ity is equal to four): 

P = ~1 - ~2, P l  = ~2 - ~3, P2 = ~1 - ~4, 

q = a ( ~ , ) - a ( ~ 2 ) ,  q~=a(~2)-a(~3),  

P3 = ~4 - -  ~3'  
(3.53) 

q2 = a(~x) - a(~4), q3 = a(~4) - -  a(~3)- 

Let us consider o n  F 2 '2 the vicinity of point given by the coordinates fl ,  f2, ~3' ~4" We may fix it, having 
preserved the expression (3.53) for pi and defined 

q = a (~ l )  - a(~2), ql = a(~l ÷ P l )  -- a(~3 +/)1), 

q2 = a ( ~ l  ÷ P2) -- a(~ ,  + Ya), q3 = a ( ~ 4  + / ) 3 )  --  a ( ~ 3  + / )3 ) "  

Similarly we can define Wr Resonance conditions impose two conditions upon PF 

[ a '(~2) - a '(~3)] u 1 = [ a ' ( ~ l )  - a'(~3)] p2 ÷ [a'(~4) - a'(~3)] t%, 

[b'(~2) - bV(~3)]/Pl = [b'(~l) - b'(~3)]/)2 ÷ [b'(~4) - b'(~3)]/)3- 

Degenerability condition yields one more equation: 

- - -  - c ' ( t 3 ) ]  ÷ - 
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If the functions a, b, c are linearly independent, these three equations possess zero solutions only. It 
follows from here, that the submanifold F~i 2 cannot be locally dilated, while preserving degenerability. 

Let us now consider any process of "m waves into n waves" described by resonance conditions (3.4), 
and let the dispersion law ~0(k) be decaying and degenerative relative to the process "one into two". In the 
corresponding manifold F"' m we can distinguish a set of "minimal" manifolds F~/". To describe these 
manifolds, let us remember that a set of diagrams of the tree type, possessing a finite number of vertices 
and internal lines, corresponds to the scattering amplitude W " " .  Let us mark via qi, s, the wave vectors 
and their directions corresponding to these and also to the external lines. 

Let us suppose that at some vertex the lines with vectors and directions q~, s,; q j, s j; qk, Sk are crossed. 
Then the following identity is fulfilled in it: 

siq ~ + sjqj + Skq k = O. (3.54) 

Let us also demand the fulfillment of the condition 

s,co(q,) + sj,o( qj) + Sk~O( qk) = O. (3.55) 

Conditions (3.4) are sure to follow from formulae (3.54) and (3.55) but they define a manifold of less 
dimensionality (one of the minimal manifolds Y~/m). If the dispersion law is degenerative relative to the 
process "one  into two", then for each vertex the following condition will be satisfied: 

s i f ( q i )  4- s j f ( q j )  + s k f ( q k )  = 0 

and, hence, also eq. (3.5). Analogously to the above it may be shown that for degenerative dispersion laws 
of the form (3.10), it is impossible to enlarge dimensionality of the manifold /~/~m while preserving 
condition (3.5). 

Let us now refer to linear dispersion laws, when ,0(k) is a homogeneous function of the first degree. We 
have already mentioned that such dispersion laws are degenerative relative to the process "one into two" at 
any d. In this case the resonance manifold describes three collinear vectors. It is apparent that the minimal 
manifold F~/m also describes sets of collinear vectors ki. Linear dispersion laws possess one more curious 
peculiarity with respect to the processes "one into n "  with the following resonance equations: 

k = k  1+ " . .  + k , ,  

~o(k) = o~(kx)+ . - .  +o~(k . ) .  
(3.56) 

These equations are satisfied now for collinear vectors only, so for linear dispersion laws the resonance 
manifold F 1' n coincides with the set F~i" and has dimensionality less than in a general decaying case 
(degenerative included). 

The notion of degenerative dispersion law may be generalized for the case when there are several types 
of waves. Thus, a set of three dispersion laws o~i(k ), i = 1, 2, 3 is degenerative with respect to the following 
process: 

k = k 1 + k2, 

,01(k) = ~°2(kl) + ~03(k2), (3.57) 
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if there exist functions f ,(k),  i = 1, 2, 3 satisfying the following equation on (3.57): 

f l ( k )  = / 2 ( k l )  + /3(k2) .  (3.58) 

At d = 2 degenerative sets of three dispersion laws exist. They can be defined via parametrization: 

P = ~1 - ~2 ,  Pa = ~1 - ~3, P2 = ~3 - ~z, 

q = a~(~l) - a~(~2), q~ = a1(~1) - -  a3(~3), q2 = a3(~3) -- a2(~2), (3.59) 

¢,0 = b l ( ~ l  ) - b 2 ( ~ 2 ) ,  001 = b l ( ~ l )  - b 3 ( ~ 3 ) ,  002 = b 3 ( ~ 3 )  - b 2 ( ~ 2 ) .  

4. The examples of checking of the concrete Hamiltonian systems for integrability 

The results obtained in sections 2 and 3 about the requirements which the amplitudes of the classical 
scattering matrix in the points of a general position of the resonance surfaces must satisfy, allow us to 
check the Hamiltonian systems for the existence of additional integrals with quadratic main parts. In many 
cases the proof of the nonexistence of such integrals is almost a trivial procedure. Let the dispersion law be 
decaying and nondegenerative in the vicinity of point k °, k ° being on surface (3.8). For the proof of 
nonexistence of the additional integral it is enough to check the following conditions for the first term of 
the expansion of Hamiltonian: 

Vko+k~,koko =~ O. (4.1) 

The situation is especially simplified if the problem considered is isotropic. In that case the dispersion law 
00(k) is a function of the modulus of the wave vector only and, as a rule, satisfies the condition (3.35). On 
account of condition k = k 1 + k z the matrix element Vkk~k 2 is also a function of the moduli Ikl, [k~l, [k21. 
On the resonance surface (3.8) we get 

Vk°+k° ,k° . k  ° =  V(°91 '[- ~ 2 , 0 0 1 ,  00")2) = q ) ( °~ l ,  0)2) .  

For the nonexistence of the additional integral with quadratic main part it is enough to satisfy the 
condition ~P(001,002) at 002 << °~1- Let us consider, for example, the problem of capillary waves on the fluid 
surface. The dispersion law 00(k) = I kl 3/2 satisfies the condition (3.35). The expression for Vkk~k 2 is bulky 
enough (for example, it is presented in [37]), but at 002<< 001 it is simplified and has the form 

,.~9/8,.~9/4 ¢P(001, o~a) = - :  ~x at 002 << 001, so cp(00 1, 002) ~ 0. Thus, the additional integrals of motion are absent in 
the problem of capillary waves. 

As the next simple example let us consider the nondimensional nonlinear Schrrdinger equation 

i~p, + A~p - ql~lZff. (4.2) 

It has nondegenerative (with respect to the process 2 ~ 2) dispersion law k 2 (see theorem 3.6). The other 
way round the amplitude of such a process over all k-space is identically equal to a constant. Therefore, 
eq. (4.2) cannot possess any additional integral of motion with quadratic main part. 
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Let us now consider the equation arising in the theory of the gravitation waves on the surface of deep 
fluid [37]. In dimensionless coordinates it takes the form 

i 4 , ,  - ~flx:, + ~yy  = IlP12~ d" (4.3) 

As it follows from theorem 3.6 (see also [31]) it also has a nondegenerative dispersion law ~ ( k )  = _p2 + q2, 
and the process 2 ~ 2 amplitude W~kl~[31 is also constant in all k-space as in (4.1). Hence, (4.3) cannot 
possess additional integrals of motion with the quadratic main part. However the numerical computations, 
made in [38], did not show thermalization, and recurrency was observed for some class of initial 
conditions, computations were made at boundary conditions periodic in x and y. Let us also notice that if 
we consider real stationary solutions of (4.3), we get the following equation: 

Uxx -- Uyy + U 3 = O. 

This equation was studied numerically in [39] and in those numerical experiments the thermalization was 
not observed either. Thus, though eq. (4.3) does not possess any additional integral with quadratic main 
part, it does possess a number of properties characteristic of systems with a great number of integrals. We 
have not been able to account for the behaviour of eq. (4.3) so far. 

Let us enumerate some results of checking of the concrete systems for the integrability. 
Let us consider the following system of equations: 

i ~ , +  Llq,+ u~ = 0, 

t z u  = t3 l~ l  2, (4.4) 

where u(x ,  t)  is a real function; +(x,  t) is a complex function, x = (x 1 . . . . .  Xd), d = 2, 3 and 

02 
L,, = ci~ 3x i 3x k , n = 1,2, 3 (4.5) 

i , k = l  

are differential operators of the second order with constant coefficients cir. Equations of such types occur 
naturally from multiscale expansions particularly in the theory of long waves on the fluid surface of a finite 
depth at d =  2 (the Davey-Stewartson equations [23]), while describing spectrally narrow packets of 
internal waves in an unbounded stratified fluid with d = 3 [40], and in the problem of interaction of 
high-frequency and low-frequency waves at d = 2 [41] as well. Eqs. (4.4) were studied for the existence 
of the additional integrals in ref. [31]. To study the system (4.4) it is convenient to rewrite it in explicitly 
Hamiltonian form 

i ~ k  + L l (  k )qJk q- b iTkk ,k2k j~k ,+k2qJk~(  k -b k 1 - k 2 - k3) dk~ dk  2 dk3, (4.6) 

where L i(k), i = 1, 2, 3 are symbols of the operators (4.5) and the vertex 

L 3 ( k  - k2) L 3 ( k  - ka) (4.7) 
2Vkk, 2k,- L2(k- k2) + L2(k-k,) 
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is determined at k + k t = k 2 + k 3. The Hamiltonian of eq. (4.6) has the form 

H =  f L l ( k  ) I~k,I z dk  + ½ f k + k I - k 2 - k 3 ) d k  d k  I d k 2 d k  3. (4.8) 

We may reduce the quadratic form L t ( k )  to the diagonal form (3.47) via the nondegenerate transforma- 
tion. In this case we shall designate the new coefficients ?2k, 73 as a~k, fl, k respectively. The dispersion law 
of eq. (4.5) is degenerative only in the case to---k21, k = (k~ . . . .  , kd). We shall not investigate this case 
because of the complicated expunions involved. However, eq. (4.6) with any other dispersion law will 
possess additional integrals only in the case if the vertex T turns into zero on the resonance surface (3.44). 
Let us ask if the vertex T turns into zero on the resonance surface (3.44). Observe that if the vertex T 
equals zero on (3.44) at some L z, L 3 then on account of its structure it is equal to zero at the substitution 
L2, L 3 by places too. At d = 2 the existence of the additional integrals at o = 1 is possible in the following 

cases: 
a) 

/3lt = /3= = 13, a n  = a =  = a, 412 = 0, 
(4.9) 

i~,  + A~ + u~ = O, a Au = [ /3( Ox 2,-0L)+2/3,20.~3~=]1~12; 

b) 

/312~---0, /311- '~' /312~-- ' /~,  OCll = - - ~ 2 2 = 0 ( ,  
(4.10) 

 .xa 
N o w  l e t  a = - 1. Then, e i t h e r / 3 1 1  = fl22 = f l ,  ° i l l  = - 422  = a ,  a12 = 0 a n d  

(4.11) 

or 2fll 2 = +_ (i l l  + f12). In this case the following cases are possible: 
a )  

(NOx +Ox:)[(Ox,+Ox:)U+(Ox,-YOx:) lq ']2]=O, i L k t + ( 0 x : , - ~ % ) ~ k + u f f = 0 ;  

N ¢  +1 ;  

b) 

- - x : )  14~l i~bt+(ax z, a 2 ) ~ k + u ~ = 0 ,  [ a A + 2 a x 2 0 ~ O x : ] u = f l ( ~ ,  a2 2 

(4.12) 

(4.13) 

and the solution (4.11) as well. Let us note that the solutions (4.9) and (4.10), (4.11) and (4.13) are changed 
by the substitution of L 2 and L 3 by places, and (4.12) is reduced to the operators of the first order in 
3x,, 3x2, and the corresponding system in variables x I - x 2 = ~, x 1 + x 2 = ~/takes the form 

i~k, + ~k~n + u~k = 0, u~ = I,Pl 2. (4.14) 

System (4.14) and the L - A  pair for it are contained in [42]. Systems (4.4) with operators L 2 and Z 3 of the 
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second order, integrable via the inverse scattering transform, are also enumerated there. Also the systems 
(4.12) and (4.13) are among them. In the cases (4.9) and (4.11) the calculation of the second order vertex of 
the perturbation theory allows us to prove the nonexistence of the additional integrals in these cases. 
However, the corresponding calculations are very tedious and we do not reproduce them here (see [31] for 
a more detailed information). At d--  3, an analogous but more tedious analysis shows that the system (4.4) 
does not possess additional integrals at any values of the coefficients ai~, flik" We may apply the developed 
approach for the one-dimensional case as well. However, in this case one should bear in mind that in the 
one-dimensional case any dispersion law to(k) may be considered as degenerative relative to the process 
"one  into two". In the one-dimensional case, eq. (3.8) must describe a curve in the two-dimensional space 
with coordinates px, P2. Irrespective of the form of the function to(k) this curve includes two straight lines, 
Pl  = 0 and P2 = 0. This is also referred to the process " two into two", described by eq. (3.44). In a general 
position these equations have solutions k = k2, k~ = k 3 and k = k3, ka = k 2 not depending on the form of 
the function to(k). So, to solve the problem of the existence of the highest integrals with the quadratic 
major part in the one-dimensional case for the systems with one type of waves it is necessary to refer to the 
processes of higher order. As in the previous case we may use the first processes "one into two" and " two 
into two" for the systems with several types of waves. Here we present the results for the system of two 
joint  nonlinear Schr/Sdinger equations [29], the system of equations describing the interaction of the long 
acoustic and short waves [32]. We shall also give the results of ref. [34], where in comparison with [32] 
eigennonlinearity and dispersion of long waves were taken into account. The system of joint nonlinear 
Schr~Sdinger equations occurs in nonlinear optics [43] and has the form 

iq~l, = cpklxx + 2al~bal2~kx + 2flbk212~kx, 

id/2t = c2q~2~ + 2~/l~bel2~ba + 2B[~112ff2. 
(4.15) 

System (4.15) is Hamiltonian. Its Hamiltonian has the form 

H = f{ cxl+~xl ~ + c21+2xl 2 + ~l+xl 4 + 2/31~1121q~21 z + 71~b214 ) dx.  (4.16) 

At cl = c2, a ~ -  f l  = "~, the integrability of system (4.15) via the inverse scattering transform was shown in 
[44]. In order to study the system (4.15) in a general case, in accordance with the results of sections 2 and 
3, from the first it is necessary to study a set of dispersion laws: 

to l (k)  = C1 k2, to2(k) = c2 k2, (4.17) 

for degenerability relative to the first nonlinear process, which resonance manifold is not trivial. In our 
case it is the process 

k + k 1 = k 2 + k 3, 

tol(k)  + ,.,2(kl) = ,o1(1,2) + ,o2(h:3). 
(4.18) 

As it was mentioned above we are interested in the cases p = c l / c  ? ¢ + 1. The manifold F described by 
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eqs. (4.18) is easily parametrized by the following formulae: 

P + l z ~  
k = P - ~ 2  1 k~ + ~ - - - ~ 2 ,  

p + 1 . ~ P - l k 2 "  k 3 = - - - ~ k  1 + 

(4.19) 

Substituting (4.19) into the equation 

f l ( k )  -~- f 2 ( k l )  = f l ( k 2 )  --{-f2(k3), (4.20) 

differentiating twice in k t and supposing k I = k z = ~/p ,  we get 

(p2 _ 1)(p - 1)fl"' (~) = (p2 _ 1)(p + 1)f{" (~). (4.21) 

At p 4= + 1, it follows from (4.21) that f { "  (l~) = O, 

= + + c ,  (4.22) 

Substituting (4.22) into (4.20), we are convinced that 

= pA : + + c ,  

which means that at p 4: _+ 1, the dispersion laws (4.18) are nondegenerative relative to the process (4.18). 
As the amplitude of this process is constant in the whole k-space and equal to 2fl 4: 0, the system (4.14) 

does not possess additional integrals at P 4= _+ 1. At P = + 1 it is necessary to calculate the second order 
amplitude corresponding to the next nonlinear process. For example, we may calculate the amplitude 
corresponding to the following process: 

091(k ) At- 091(kl) n t- 0.12(k2) = 0)2(k3) --1- O~l(k4) -4- 091(k5) , 

k + k t + k 2= k 3 + k 4+ k 5. 
(4.23) 

The corresponding manifold in the space (k l , . . . ,  ks, k) being quadratic, allows rational parametrization 
(see [29]), using which it is easy to show that the quadratic dispersion laws are nondegenerative with 
respect to the process (4.23). 

The amplitude corresponding to the process (4.23) is rather bulky and we shall not reproduce it here. It 
is important that the amplitude (4.23) turns into zero only in two cases: 

p = l ,  a = f l  and p = - l ,  a = - f l .  

Similarly, we may obtain that at p = 1, fl = y, and at P = - 1, fl = - 7. Thus, besides the case p = 1, "a  
candidate" for integrability is the case 

t o - - - - l ,  a = - f l = y .  (4.24) 

The system with coefficients (4.24) is really integrable via the inverse scattering transform. Indeed, it was 
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shown in [9] that we may apply the inverse scattering transform for the system 

iftt = f t ~  + ftXft,  

--  i x t  = X x x  + XftX, 
(4.25) 

where f t  and X are matrices. Let 

f t  = (4,1 . . . . .  ¢ . ) ,  x = x b .  

and consider the reduction X = Aft'+, where A is a Hermitian matrix. Then (4.26) is equivalent to the 
system 

iqJ,,, = ~k,,,xx + uff,,,, m = l  . . . .  , n ,  (4.26) 

where u = f tAft  + is a real function. Matrix A may be reduced to the diagonal form A --* ai~ik  via the 
unitary transformation, So at n = 2 after scale transformations we obtain that besides ' vector' case [44], 
system (4.15) with coefficients (4.24) is also integrable. This case of exact solution of system (4.16) was 
discovered in ref. [46] independent of ref. [29]. 

Analogously in ref. [32] the nonintegrability of equations of the resonance interaction of long acoustic 
and short waves [45], 

i f f , + f f , ~ -  u ~ = 0 ,  

u , -  c 2 u ~  = 21ffl~, 
(4.27) 

and also of the system [34] 

Ut-'IV (U2"3V Ol[l~12"{" U x x ) x = O ,  

iq, ,+ ~kx~ +m k  = 0 
(4 •28) 

has been proved• 

5. About the singular elements of the scattering matrix 

Let us consider the singular elements of the classical scattering matrix. We consider the process "n in 
m" ,  but  we shall use some other notations for the wave vectors. We shall designate the nonlinear part of 
the amplitude of this process via S . . . .  k I ... kn, kl ... ~m • 

This value is nonvanishing on the resonance manifold, which satisfies the following equations: 

kl+ "--+k.=/~l+-.. +~,,, 
~ k ~  + " " " + ~ ° k .  = ~ + " " " + ° ; , ~  . 

(5 .1)  

Let us consider some diagram describing the process (5.1), the Green function corresponding to some 
internal diagram line with the wave vector q is substituted for the 8-function. Let the vector q be directed 
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from the "root" of the diagram and to the right of it (i.e. further from the root) there are external lines 
with wave vectors k 1 . . . . .  k,1, kl  . . . . .  k,n~, nl < 17, m 1 < m. Now the following equations are added to eqs. 
(sA): 

k l  + . . .  + k n  = f ( l  q- . . .  +k-m +q ,  

¢ d ( k l )  + " ' "  +°~(kn  l) = t o ( ] ~ l )  + " ' "  + t o ( / ~ m l )  + to(q). 
(5.2) 

Moreover, the following relations obviously take place: 

knl+l q -  • " • + k ~  = k , ~ + l  + " " " + k , ~  - q ,  

to(k~÷l  ) + . . - + t o ( k ~ ) =  t o ( k , , l + l ) + . . -  + to(~c , , ) - to(q) .  

(5.3) 

Let us mark via An'kx "... k., ~, --. 7,. the singular part of the scattering amplitude "n in rn ", corresponding to 
eqs. (5.1)-(5.3). We obtain the expression for S~' ", as a result of summing of all the diagrams of the form 

k o c h 1  lko k, l lko 
I I ° I I 

I l l 
so that the representation takes place 

","1  - . ~ i / ' c . l , m , + l  C n - . l + l , m - - , 1  . ,k d q -  Ski . . .k , ,k ,  "..kin-- J " k l  ""k , rk t  ""k,,,fl"k,n÷l ..... k,,,q;k,,,x+~,.. (5.4) 

This formula shows that the singular amplitude S "  " is factorized through the composition of the two 
nonsingular amplitudes of lower order. It is clear that an analogous statement holds for the amplitude of 
any degree of singularity, when there are several additional equations of the form (5.2). All of them are 
factorized in the form of the composition of the finite number of the nonsingular amplitudes of lower 
orders. In particular, the maximum singular elements of the scattering matrix, defined by the diagrams, 
where all Green's functions of the internal lines are substituted for the 8-functions, are factorized in the 
form of the composition of the simplest scattering amplitudes "one into two". These facts have a simple 
physical meaning. The substitution of one of the internal Green's functions for the 8-function means, that 
the corresponding wave is the eigenoscillation of the system (a "real particle"), and the process with such a 
wave occurs stage by stage, combined out of the processes of the lowest order. 

Now let the considered dynamical system possess the additional motion integral and let the dispersion 
law be nondegenerative relative to all nonlinear processes. Then all nonsingular elements of the scattering 
matrix on the resonance surfaces are vanishing. Singular amplitudes are vanishing too, except 'billiards 
type' scattering [33], at smooth c~- the classical scattering matrix is trivial and the asymptotic states 
coincide, i.e. 

c; -- c ; .  (5.5) 

In particular, this fact holds for the Kadomtsev-Petviashvilli equation KP-II. This circumstance was first 
mentioned in ref. [30]. 
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We have seen in section 3 that in the two-dimensional case the situation, when the dispersion law is 
degenerative relative to the lowest-order process "one into two" and nondegenerative relative to all 
higher-order processes, is typical. All degenerative dispersion laws constructed in section 3 possess this 
property. In such a situation the classical scattering matrix S is nontrivial, but only its most singular part 
is nonvanishing, factorizing into the composition of the three wave processes. So the things are with the 
KP-I equation. 

It  is very important that in this case one can find the scattering matrix in the explicit form in some sense. 
Let us note that for the most singular part of the S-matrix one can cancel all inner Green's functions but 
replace in every vertex 

V-~k~'~j~ ~(--s,k,  + Sqkq + s~k~)~riV-'k~:'kS(-spk, + sqkq + Srkr)~(--SptOkpnt- Sq~kq-}- Srt.dk~ ) . 

(5.6) 

This modified vertex will be denoted symbolically as I7. 
Now we must remember that the whole set of diagrams has the factor 2~i. So one can write symbolically 

+ . . .  } (5.7) 

The estimation in the brackets { } is the whole set of diagrams. Formula (5.7) can be rewritten in the form 

C + + C  - 
2 = c - +  l ? [ c - , c - ]  + . . . .  (5.8) 

The set in (5.8) is the result of solution of an integral equation 

- c + + c -  V[ c++c- c++c-] (5.9) 
c = 2 2 ' ~ "  

Finally, we have 

c+-c-2 =l?'[ c÷+c- c + + c - ] 2  ' 2 

or more explicitly 

+s Ck • ~i 
Sl$ 2 

"~( C + sl --Sl + s 2  --s2 

(5.10) 

Formula (5.10) gives a direct connection between asymptotic states in the case of degenerative dispersion 
law. It was first obtained in ref. [50]. 

An equation similar to (5.10) occurs in the one-dimensional case if it is one type of waves. In the 
one-dimensional case any dispersion law is degenerative to the process of two particles scattering. For 
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simplicity consider the Hamiltonian (2.8a). Then we have 

+ + c ~  C k 

)< Ckl Ckl Ck2 Jr Ck2 Ck3 Ck3 
2 2 2 dkl dk2 dk3" (5.11) 

It follows from (5.11) that the squared modulus of the classical S-matrix is equal to unity: 

IcZ l 2 = Ic ;  IL 

+ =~ arg c~-. Really, it is well-known that in such one-dimensional systems interaction but, in general, arg c k 

is reduced to phase shift only. 
Now let us return to the two-dimensional case with the decaying degenerative dispersion law and 

consider the amplitude of the "two into two" process with the resonant conditions 

kl + k2 = k3 + k4' (5.12) 

O,)kl ~ ~k2 ~ ~,~k3 -~- 0)k4. 

This amplitude is described by the following three diagrams: 

1) - ~ k k  4 

q = k 1 +k 2 

q = / k 2  

2) - . ~ k  4 q= k3 -k  1 

~ k2 

3) ., q q = k 4 - k 2 

k 4 

As we have stated above, the nonsingular part of the amplitude localized on the whole manifold (5.9) must 
be zero identically. On the other hand, this amplitude turns into infinity near resonant manifolds 
corresponding to interaction via real waves. (The singular part of the amplitude is localized on these 
manifolds.) These manifolds are different for the above three diagrams. They are defined by the following 
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formulae: 

O ) k l + k  2 = (,dkl "~ O)k2 ~--- ~0k3 ~1- O)k4 (5.13) 

for diagram l, 

O'~kl-k3 ~ 0)kt  - -  O9k3 ~ 0)k4 - -  O)k2 (5.14) 

for diagram 2 and 

0 3 k 3 _ k  I ~-  03k  ~ - -  ¢.0kl ~-  03k2 - -  O~k4 (5.15) 

for diagram 3. On account of turning the amplitude of the process (5.9) into zero the singularities localized 
near manifolds (5.13)-(5.15) must cancel each other. For this cancellation to be true these manifolds must 
coincide at least partially. 

Resonant surface "one into two" for the KP-I equation consists of two connected pieces (see formulae 
(3.15) and (3.16)). A simple analysis shows that each of the two pieces described by any of the equations 
(5.13)-(5.15) coincides with the piece described by some other of these three equations. This results in the 
number of connected manifolds, defined by (5.13)-(5.15), to be equal to three and not six. The statement 
about the pair compartibility of eqs. (5.13)-(5.15) is a general one for the degenerative dispersion laws and 
could be used for their enumeration. It is worth noticing that the coincidence of manifolds (5.13)-(5.15) 
(in the above-mentioned sense) is only necessary but not a sufficient condition for the singularities in (5.9) 
to cancel each other. Rather strong conditions imposed on the coefficient functions of the three-wave 
Hamiltonian (2.8) should be satisfied. We check these conditions for the KP-I equation. It is also worth 
noticing that the checking of cancellation of singularities is a useful and simple way for practical analysis 
of the existence of additional motion invariants for the concrete systems. 

6. About the integrals of motion 

One of the important results of the present paper is the statement that the existence of the one 
additional integral of system (2.2) implies the existence of an infinite set of motion integrals. Let us give 
the proof of this fact and search for the integral of motion in the form of a formal integropower series, 

G= fgkiak[2dk + ~_, Y'~ fG~'...~ask "'" a ~ g ( P q ) d k d k l  . . .dkq. (6.1) 
q S , . . . , S q  

Here 

Pq = sk  + s~k~ + • • • + s q k q  

and gk is some function of the wave numbers. Substituting (6.2) into (2.2), we shall be convinced that the 
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S ' "  Sq functions Gk... k~ are expressed from the recurrent formulae 

s g  k + Slgkl  + S2gk2 VSSlS2 
kk~k2~ 

SSlS __ 
G kkt~ 2 -- ssls 

Akkl},~ 

F ~ " "  Sq 
" ' k q  s ' " S q  Gk ..kq s... s • a~ g 

(6.2) 

(6.3) 

In these formulae, 

A S  " ' "  $ k ... ]% -~- St°Ok "+" S l~k l  + " " " "t-Sq~kq 

and the function F'k ""'" kq Sq is linearly expressed via G], "... Sq-lkq_l. It is not necessary for us to write out this 
dependence. 

It follows from formulae (6.2) and (6.3) that the coefficient functions in the integrals possess singularities 
on all-possible resonance manifolds of the form 

_ s " ' "  $ n  A n - A k . . . k  = 0 ,  P n = 0 .  (6.4) 

Further one might think in the following way. Let the wave field a ( r )  in a physical space be a rapidly 
decreasing function. Then its Fourier transform, the field ak, is a smooth function. That makes it possible 
to make the regularization in the integrals in the definition of the expression (6.1). That can be achieved in 
a not unique way. For example, in all denominators one can perform the substitution 

AS ... s,, + s """ sa - A s •"" $a ~,...I ~ A  k. . .~q-  k . .ko+iO (6.5) 

or the substitution 

. . . . .  ~ -" . . . . .  i0. (6.6) A k . . . ~ q  A k " ' ~ q  - A S k  . . . .  ... k q q -  

Generally speaking, in this case we obtain different integrals of motion - let us designate them as G ±. Any 
linear combination of them may be the integral of motion; particularly, the difference (1/2~ri)G ° = G ÷ - 
G-.  The integral G O not does not have a quadratic p a r t -  its expansion in powers of a], starts from the 
term 

E f(sgk + s l g k t  + s 2 g k z ) ~ ( s o ~ k  + SltOk t + s2~ok 2) 
SS1S 2 

$ $ 1 $  2 $ B 1 $ 2  × 8 ( s k  + s~k 1 + s2k2)V~,kl~2aka~lak2 d k d k  I dk  2. (6.7) 

The integral G O can be called as an essentially nonlinear one. It is one of the large number of such 
integrals. The linear equation 

d'k + " " 0 1SO~ka k = 
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allows an essentially nonlinear integral of the form 

f s.. .s ( s . . . s ) ( p q ) s  . . . a % d k . . . d k q .  I = ~k ... "k~ ~ Ak ... ~q 8 a k k, (6.8) 

Here q is an arbitrary integer, ~ . . ~  is an arbitrary function. In the nonlinear system (2.2) one can 
search for the integral in the form of an integropower sequence in a],, the first term of which is the 
expression (6.8). In this case again there occurs the regularization problem of the denominators of the form 
A ~ : '  L, r > q, which again cannot be done uniquely. The different essentially nonlinear integrals obtained 
will differ from the essentially nonlinear integrals of higher orders. One can attach a simple physical sense 
to the integrals G +- occurring as a result of the regularizations (6.5) and (6.6). It is easy to see that 

G+~= fgkla~12dk. (6.9) 

Here a [  are the t ~ + o¢ asymptotic states of the wave field. Formulae (6.9) show that an arbitrary 
system (2.2) in the rapidly decreasing case is completely integrable. Really, as it is known, the change a~(t)  

S ±  in time is a canonical transformation, so the variables a k ( t )  = c [  exp ( -iSo~kt } are canonical ones. It is 
evident now that the variables 

I ~ = l a ~ ]  2 and ~0~=a rga~  

are the action-angle variables for the system (2.2), irrespective of the form of its Hamiltonian. This rather 
impressive statement is sufficiently based on a rapid decrease of the function a ( r )  and, respectively, on the 
smoothness of the function a(k ) .  In the periodic case, when the function a ( k )  represents a set of 
8-functions, 

a(  k ) = Y'~a.8( k - nko) ,  (6.10) 

where k 0 is the vector of the reverse lattice, n is a multiindex, integrals (6.1) in a general position loose 
sense (become infinite) and, as a rule, the integrability vanishes. In the periodic case only the integrals do 
preserve sense, the coefficient functions of which remain finite on all resonance manifolds, i.e. where a 
reduction of singularities occurs. 

To observe the singularities, let us introduce the operators R-+, reverse with respect to the operator of 
the transition (2,16), taken for simplicity at t < 0: 

a :  = R { [ a k ] ,  

+ ~ ' _ _  S 

a,- - a  k + E E 
q s . . . S q  

++_-- $ s  I . . .  s s 1 . . s f R, kki ..qk ak " a-k~qS( Pq) d k  , . . . d k  o. 

(6.11) 

The coefficients R ~ ' k  s~ at e--, 0 do not depend on time. They have singularities on all possible 
" ' "  q 

resonance surfaces A q = O. Let us put 

R + SS1  . . ,  s 

- kg, ..-~q ( 6 . 1 2 )  • + s s  1 • , .  s ~_. 

~l~moRF kkl ."qk, Aq+_i0 
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The expression l,D-+S$1kk 1'''...~°~ is regular on the resonance m a n i f o l d  A q = O, Pq = 0, but it can possess 
singularities on various " junior"  resonance manifolds. 

s 
Let us consider the operator R ± and let t ~ - oo in (6.11). In this case a], --* a k , and the operator R + 

is to be transformed into a classical scattering matrix. That  means that on the resonance surface A q = 0, 
Pq = 0 the numerator  in (6.12) coincides with the corresponding element in the scattering matrix: 

" ÷ S ' ' ' S q  _ _  $ ' ' "  S q  ( 6 . 1 3 )  R * . . . k q - - S k . , . k .  

Now let us represent the integral of motion G ÷ in the form 

q_ * * q_ * * 

fg ( )(*+ * ) d k  + _ a k a k -4- k ak -- ak (6.14) 

and substitute (6.11) into (6.14). Let us collect in (6.14) the terms having the singularity on the whole 
resonance manifold (6.14) and having a complete power q. Such terms are only contained in the second 
and third terms in (6.14) and after symmetrization are reduced to the form 

S "'" Sq 
1 f L k  "'" ko ~ +s ... s a s Sq 
N A . . . .  s + i 0  R k . . . l i q a k ' " a k q S ( P q ) d k d k l  " " d k q ,  

k " ~ o  
(6.15) 

N is some integer. 

L ~ . . . ~  = sg ,  + sagk~ + • • • + S q g k .  (6.16) 

Compar ing  formula (6.14) with (6.3) we are convinced that F .... s, k... k, can be represented as follows: 

N q/~ + A ' " " -  " . . . . . .  F~ . . . . .  k,q= L~,'...'~ ~,'~ii.~l, k ... ;o z~k ... ],q, (6.17) 

s • • • Sq being regular on Aq = 0, though probably it has singularities on the " junior"  resonance surfaces. 
Let the dispersion law ~0(k) be nondegenerative and system (2.2) have an additional integral of motion 

with continuous coefficients. 
As we have already seen, from this follows the triviality of the scattering matrix and the coincidence of 

asymptot ic  states a ~ .  Now on the resonance manifold Aq = 0, Pq = 0 the matrix element j~s. . . . . .  0. This k . . . kq  

means that on the resonance surface A q = 0, Pq = 0 the singularity in the motion integral is cancelled. One 
can see directly from the formula (6.2) that the singularity is cancelled in the junior term of the expansion 
(6.1) as well. Now, applying induction, we obtain that generally all the singularities are cancelled. Thus, in 
the considered case one can use an arbitrary function gk in order to construct the motion invariants of the 
system (2.2). Roughly speaking, in this case there are as many integrals with continuous coefficients and 
having a quadratic part as we have them in the linear problem. All these integrals are conserved in the 
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periodic case as well, i.e. in this case the periodic system (2.2) is quite integrable*. Particularly the periodic 
equation KP-II  is integrable. I.M. Krichever** has recently come to this conclusion on the basis of 
algebrogeometric approach developed by him. We should stress, however, that our results have been 
obtained on the level of formal series and that convergence of these formal series has not yet been proved. 

Now let the dispersion law be degenerative. We restrict ourselves to the consideration of the case when it 
has the form (3.10) at d = 2. Now the scattering matrix is different from unity, S s .... q ~ 0. However, the k .- .  kq  

nonvanishing scattering matrix is only concentrated on the minimal manifold F~/",  when all the scattering 
occurs with the participation of real intermediate waves only. Now in expression (6.17) /~ .... sq 4= 0, and k . , .  kq  

generally speaking, the integral of the form (6.1) is singular. The only way out of this situation is to require 
n , m  the vanishing of the expression LSk'"...Sqkq" It is possible to do that on the manifold FM , by requiring 

g ( k )  = f ( k ) ,  i.e. the function itself should represent the degenerative dispersion law, permitting the 
parametrization 

P = ~1 - ~2; q = a(~l)  - a(~2),  

= b ( ~ ) - b ( ~ z ) ,  g = c ( ~ l ) - c ( ~ 2 ) .  

Here the function c(~) is arbitrary. Thus, in the given case, system (2.2) also has an infinite set of integrals 
of motion with continuous coefficients, but this set is sufficiently narrower than in the previous case; 
instead of the arbitrary function of two variables at our disposal there is only an arbitrary function of one 
variable. This is not quite enough for the integrability in the periodic case. So the systems with a 
degenerative dispersion law under periodic boundary conditions are nonintegrable, though they might 
possess an infinite set of integrals of motion. It is this very fact that allows one to apply the kinetic 
equation with the nonvanishing collision term (see [36]) for the statistical description of such systems. 

7. Conclusion 

Let us summarize. We have tried to show in this paper that the analysis method of the integrability of 
Hamiltonian dynamic systems, based on the study of sequences of the perturbation theory, proves to be 
rather effective relative to the nonlinear wave systems. Let us notice that earlier in ref. [49] this method 
allowed us to prove the nonexistence of a strong recursion operator. One can hope that the method has not 
exhausted its possibilities yet. A priori, for example, one cannot exclude the probability that some systems 
of the form (2.2) can have additional integrals, depending evidently on the coordinates and time or just 
essentially nonlinear integrals only. 

If we speak about the systems considered in our paper, i.e. having an additional integral with the 
quadratic main part, then there remain a number of unsolved problems. First of all, we would like to 
exhaust the problem of the description of degenerative dispersion laws. In the case when the dispersion law 
is nondegenerative, it is not quite clear how, in the situation with the periodic boundary conditions, one 
should construct action-angle variables and what dependence of the Hamiltonian on the action variables 

*In this case there exist nonsingular canonical transformations aJ, =,~¢~[a~], reducing the system (2.2) to the normal form 
id~ k = ~k[ la}2]~ tk ,  where ~k[ltltl  2] = tO k q-Y'.q°C, l f ~ k k  I ...kqlOtkl 12 " ' "  lak 12 dk l "'- dkq is renormalized frequency. This renormal- 
ization is obtained from the requirement of regularity of canonical trans{ormation ~¢~ on all trivial scattering manifolds F~/". (E.I. 
Schulman, to be published in Teor. Mat. Fiz.) 

**Private communication. 
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for  these sys tems is possible.  The  ini t ia l  ca lcula t ions  m a d e  in this d i rec t ion  show that  though at  s = 1 the 
infini t ies  in f o rmu la  (6.11) vanish, the kernels  R -+ ssl ...s ~kl --- ~q conserve on the surfaces of  a " t r i v i a l  sca t ter ing"  

k l +  " ' "  f f - k n = k l +  "'"-~-~:n 

(vectors  /~i differ  f rom vectors k i by  pe rmu ta t i on  only)  ra ther  compl i ca t ed  s ingular i t ies  of  the type  of  a 

j u m p  of der ivat ives .  One should take into  account  these s ingular i t ies  in the per iod ic  case. However ,  the 

case  of  a degenera t ive  d ispers ion  law is the most  in teres t ing one. Desp i te  the fact that  the inverse 

sca t te r ing  t r ans fo rm can be app l ied  to such systems, such as the KP- I  equat ion,  the exist ing analy t ica l  

m e t h o d s  do  no t  a l low us to const ruct  the solut ions  of  these systems which are  not  r ap id ly  decreas ing and  

are  in a genera l  posi t ion.  In  cont ras t  to the sol i ton and  finite b a n d  solut ions,  which now in the space of  all 

so lu t ions  are  no t  dense, such solut ions of  a general  pos i t ion  possess the s tochast ic  p r o p e r t y  and  mus t  be 

desc r ibed  s tochast ical ly .  The  s tudy  of  such solutions,  which are not  necessar i ly  weakly  l inear,  is ra ther  

i m p o r t a n t  f rom the po in t  of  view of  under s t and ing  the turbulence  na ture  in the dyna mic  systems. A 

weak ly  l inear  solut ion of  a general  pos i t ion  in the case of  degenera t ive  d ispers ion  laws can be s tudied  via 

the k ine t ic  equa t ions  for waves, the s tudy of  which s ta r ted  in ref. [26]. This  represents  a large field of 
special  interest .  
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