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We study one of the central problems of the theory of wind waves, namely, the problem of the 
formation of the angular spectrum of the swell. We consider the evolution of a random field of 
weakly nonlinear surface waves in the energy-carrying range taking into account a new 
mechanism (in the context of this problem), namely the induced scattering by subsurface flow 
produced by the wind. The term "induced scattering" as applied to the present problem means the 
transformation of the wave field due to resonance absorption (or emission) of difference 
harmonics of the field in critical layers in the drift flow. This mechanism makes a contribution to 
the kinetic equation for spectral density N, of the wave action which is proportional to N :  and to 
the small parameter of the problem, the ratio of the drift velocity to the phase velocity of the wind 
waves considered, and also to a large parameter determined in our model by the Reynolds 
number. The particular features of this mechanism consist in that it causes a strong angular 
redistribution of the wave action practically without affecting directly the dynamics of the 
spectrum as regards the absolute magnitude of the wavenumber. We obtain for the description of 
the evolution of the angular spectrum through the action of the induced scattering a differential 
equation and we construct its explicit solutions. We show that the action of the induced scattering 
gives rise to the rapid formation of narrow spectral distributions which are, as a rule, bimodal. 
The preferred direction is given by the wind not directly, but through the direction of the 
subsurface drift flow. The results are in qualitative agreement with data from field observations. 

1. INTRODUCTION 

The waves which are produced on the surface of a fluid 
by the wind have been a classical topic in the theory of non- 
linear wave processes, starting from the time when the theo- 
ry originated a century ago. Many ideas and methods from 
the general theory of nonlinear waves first appeared and 
were developed in connection with waves on water. The 
problem of constructing a qualitative and quantitative theo- 
ry of the angular spectrum of the swell has recently been in 
the forefront of these problems. 

It is known from observational data that wind waves 
propagate in directions which are close to the wind direction 
and that they have a very narrow angular spectrum in the 
energy-carrying range.'-3 There is, however, a problem: 
"Why do the waves propagate strictly along the wind and 
why do they have such a narrow spectrum?" In other words, 
it took a long time to realize that there was the problem of the 
mechanisms for the formation of such spectra. It was estab- 
lished only relatively recently that in the energy-carrying 
range the processes by which the wind acts directly on the 
waves are negligibly weak compared to the weakly nonlinear 
wave-wave interactions and, hence, the narrow angular dis- 
tribution of the waves along the wind must be explained by 
some other  factor^.^ 

This problem is undoubtedly also of appreciable inde- 
pendent interest, but for now it has become part of the "bot- 
tleneck" of the weak turbulence theory of the swell. The 
main difficulty of the weak turbulence theory, based upon an 
analysis of the kinetic equation, is that within its framework 
it has been possible neither to explain the fact of the existence 
of a narrow angular spectrum, nor, even worse, to obtain the 
quantitative characteristics of the angular distributions. On 
the other hand, it has been found that the intensity of the 
nonlinear transport of the wave action to low frequencies 

and large scales and, thereby, the whole course of the tempo- 
ral evolution to a large extent are determined just by the 
integral width of the angular spectrum.3s4 We note that ac- 
cording to the results of the analysis of the kinetic equation 
the shape of the frequency spectra (or the spectra with re- 
spect to the absolute magnitudes of the wavenumbers), cor- 
responding to spectra with a constant action flux (close to 
the ones realized in the inertial range) ,4 depend on the pa- 
rameters of the angular distribution much more weakly than 
the flux of the action along the spectrum. 

The possibility for the existence of stationary spectra, 
narrow in angle, in the framework of the four-wave kinetic 
equation was studied in Ref. 5. It  was shown, firstly, that for 
spectra which are narrow in angle there is no transport of 
action along the spectrum (to first order in the angular 
width) and, secondly, that the width of a narrow angular 
distribution, corresponding to a stationary frequency spec- 
trum, increases exponentially with time. From another point 
of view (as the problem of the stability of isotropic Kolmo- 
gorov spectra) this hypothesis was considered in Ref. 6 
where it was shown that such spectra are stable with respect 
to anisotropic perturbations. These results indicated the ne- 
cessity to look for other physical mechanisms guaranteeing, 
on the one hand, the existence of the observed narrow angu- 
lar distributions and, on the other hand, the negligible effect 
on the shape of the frequency spectra, which agree well with 
experiments and which are constructed on the basis of the 
solutions of the kinetic "four-wave" equation. 

The dynamics of a random field of weakly nonlinear 
surface waves will be considered in the present paper taking 
into account a new mechanism (in the context of the present 
problems), namely, induced scattering by subsurface shear 
flow. 

This kind of mechanism is well known in the theory of 
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plasma turbulence. It is connected with including into the 
discussion new degrees of freedom. In typical cases this non- 
linear interaction of the waves with the plasma particles is 
the induced scattering of waves by electrons or ions.' The 
main effect to which such an interaction gives rise is the 
narrowing of the spectrum in angle, the formation of "jet 
~pectra."~ In our opinion the scattering of waves by drift 
flow, a shear flow produced by the wind, plays an analogous 
role in the theory of wind waves. 

The drift flow is the same unavoidable consequence of 
the action of the wind, as the wind waves themselves, and, 
generally speaking, posing the problem about the simulta- 
neous evolution of the waves and the flow would be the most 
correct procedure. However, the difference in the character- 
istic time scales enables us to restrict ourselves in the first 
stage to analyzing the problem of the evolution of the waves 
for a given shear flow. The term induced scattering, as ap- 
plied to the present problem, means the transformation of 
the wave field due to the interaction between difference har- 
monics of the field and critical layers in the drift flow. One of 
the components of this mechanism, the generation by fixed 
difference harmonics of the perturbations of a given drift 
flow with a given very simple model profile, has been studied 
before in connection with Langmuir circ~lat ion.~ (The pe- 
culiar motions of the flow excited by the difference harmon- 
ics of surface waves were interpreted as a Langmuir circula- 
tion.) We note that a significant difficulty of the induced 
scattering mechanism was noted in Ref. 10 where, without 
calculations or estimates, it was stated apriori that its effect 
is negligibly small. We obtain in the present paper a quanti- 
tative description of this mechanism and we show that it 
plays a dominating role in the formation of the angular spec- 
tra of the swell. (In a recent paper1' the formation of the 
angular spectrum caused by induced scattering of the waves 
by perturbations of the air flow was studied. We shall discuss 
in the Conclusion the possible role of this effect. ) 

The paper is constructed as follows: we give in $2 a 
statement of the problem; $3 contains the derivation of the 
kinetic equation which takes into account the induced scat- 
tering of the waves by the shear flow; in $4 we use it to study 
the evolution of spectra which are narrow in angle; and in the 
Conclusion we give a discussion of the results. 

2. STATEMENT OF THE PROBLEM 

We consider the evolution of an ensemble of free (i.e., 
not directly interacting with the wind) gravitational waves 
on the surface of an ideal deep fluid of unit density on the 
background of a horizontally uniform flow with a vertical 
shear velocity. We assume the shear flow Ugenerated by the 
wind to be given and stationary," and also to have a single 
direction2' (along the wind) and decrease monotonically 
with thedepthz, i.e., U=  (U(z),0,0) and U' <O (thex-axis 
is directed along the wind and the flow, and in the unper- 
turbed state the fluid occupies the lower half-space z> 0).  
To describe the motions of the fluid we take as the initial set 
the Euler equations for the velocity perturbation vector 
u = {u,u,w) and the pressure P: 

D,u+wU'+P,=f("=- (uV)u ,  
Dtv+Py=f12)=- (uV)V ,  (2.1) 

Dtw+P,=f'3'=- (uV ) W ,  

u.+v,+w,=o, 
where 

Dt=dt+Udz, U'=dZU, 

with the standard boundary conditions 

T,t+((u+u) V ) q = w ,  P=O (2.2) 

at the free surface z = v(x,y,t) and 

at the bottom or at infinity. 
For simplicity we restrict our discussion to the case of 

an infinite depth of fluid. We emphasize that there is no de- 
scription of the air motion in the present formulation of the 
problem and it enters the problem only indirectly through 
the magnitude of the drift flow U and the wave action flux 
along the spectrum to large scales. 

We assume that initially some set of gravitational waves 
given by the spatial spectrum (for definiteness, of the wave 
action N, ), is excited at the surface of the fluid. The problem 
consists, firstly, in deriving an equation to describe the evo- 
lution of the swell spectrum (the kinetic equation), taking 
into account the processes of induced scattering of surface 
waves by the drift flow perturbations, and, secondly, in using 
it to study the dynamics of the swell spectrum, in the first 
place, its angular spectrum. 

The geophysical problem contains a number of natural 
small parameters, the use of which considerably simplifies 
the investigation. First of all, we define the nonlinearity pa- 
rameter of the surface waves in the usual way: 

e-ulC, 

E characterizes the smallness of the horizontal velocity u of 
the particles in the wave as compared to the phase velocity C 
of the surface wave. We also introduce the small parameter 
P* 

which characterizes the smallness of the drift flow compared 
to the same phase velocity C. (Typical for the ocean are the 
values E-  10- p- 5 X 10- 2-10 - I . )  In our investigation 
we also use the narrowness of the angular spectrum of the 
surface swell, characterized by the small parameter 6. We do 
not, however, fix the order of this small parameter before- 
hand. 

The presence of these natural small parameters makes it 
possible in principle to construct a consistent asymptotic 
procedure for deriving the kinetic equation. 

3. KINETIC EQUATION 

1. The aim of the present section is to derive (in the 
framework of the usual hypotheses about the statistics of the 
surface wave field) a kinetic equation for the spectral density 
N, of the wave action of the following structure: 

N . = Z . [ N ~ I + N ~ J  G . I , N ~ ,  d k , = ~ , + ~ .  (3.1) 

The first term on the right-hand side (I, ) is the "Boltz- 
mann" collision integral, describing the change in N, as the 
result of resonance four-wave interactions of the spectral 
components of the surface swell. The actual form of the colli- 
sion integral I , ,  first obtained in Ref. 12, is as yet unimpor- 
tant for us. We only stress that I, is independent of the pres- 
ence of the flow. Our problem is thus reduced essentially to 
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finding only the form of the second term (I, ) on the right- 
hand side of Eq. (3.1 ), which describes the change in N, due 
to the induced scattering processes of the waves. We can 
treat the induced scattering as follows. Taking the shear flow 
into account gives rise to the appearance of new eigenmodes 
of fluid motions forming resonance triads with the spectral 
components of the surface swell. 

Let us elaborate on this crucial point. Each pair of spec- 
tral components of the surface swell with wavevectors, say, 
k, and k,, generates, due to the nonlinearity of the Euler 
equations and the boundary conditions at the free surface 
difference harmonics, perturbations of the medium with a 
space-time structure of the form 

For the "difference" harmonics with a positive x-component 
of the phase velocity c [c = (w, - w, )/(k,, - k,, ) less 
than the maximum flow velocity U,,, there occurs a critical 
layer (i.e., a layer where c = U(z, ) 1. The resonant interac- 
tion of difference harmonics with the flow causes an energy 
exchange between the waves and the flow and gives rise to a 
transformation of the wave spectrum due to this interaction. 

The problem of deriving the kinetic equation thus splits 
naturally into two stages: the first one is the solution of the 
purely dynamic problem of calculating the difference har- 
monics or, in other words, the calculation of the induced 
low-frequency motions; the second is the calculation of the 
total effect of the energy exchange between the waves and 
the flow, caused by the existence of critical layers, on the 
evolution of the spectrum of the wave field. 

2. For convenience, in order to solve the problem we 
rewrite the initial set (2.1) and the boundary conditions 
(2.2) in the following equivalent form: 

D:Aw-U"a,w=Fm, 
(3.2) 

where 

Equation (3.2) is closed only to first order, so that for an 
analysis of the nonlinear terms we must consider it together 
with the initial set (2.1 ) . 

We look for the solution of the initial system (2.1) with 
the boundary conditions (2.2), (2.3) in the form of an 
asymptotic series in E: 

One sees easily that to lowest order the rotational and poten- 
tial components are separated: the motion is a superposition 
of shear flow and potential wave motion. The wave motion, 
strictly speaking, is a superposition of Fourier harmonics of 
the form 

where 

o=kx-o (k) t, K= 1 kl , a= ( g K )  ", 

and A, is the complex amplitude of the potential. It is more 
convenient at this stage to work with the amplitudes A, and 
not to change to canonical variables a,. In the normalization 
used in what follows we have N, = I C I [A, 1'. 

However, even to first order in p the wave motion 
ceases to be potential. We find the first-order rotational 
correction u,,,, (k )  to the potential wave with wavevector k 
and frequency w. Substituting the expansion (3.4) into Eq. 
(3.2) to order O ( E ~ )  we get an equation determining the 
vertical structure W,, , , (z) of the rotational correction w , ,  , , 
to the vertical velocity of the wave: w,, ,, = W,,,, exp(iku) 
(we no longer indicate that the quantities refer to the k th 
harmonic ) : 

One must, generally speaking, require from the solutions of 
Eq. (3.6) that they satisfy well defined boundary conditions 
at the bottom and at the free surface, but in the context of the 
present problem the form of W,, , , is important for us only 
apart from the solution of the homogeneous equation. We 
therefore choose for the sake of convenience - 

We find the vertical structure of the rotational correc- 
tion to the Fourier component of the horizontal velocity 
u,,,,, (k )  directly from the linearized Euler equations [tak- 
ing into account Eq. (3.7) for the vertical velocity] : 

Here and below we use the same notation for the corrections 
to the horizontal velocity, differing by the factor exp(ikx). 
Since the parameter p is small from the homogeneous Ray- 
leigh equation we can also easily find the linear corrections 
to higher order [through successive solutions of an inhomo- 
geneous equation of the kind (3.6) where on the right-hand 
side the corrections to the vertical velocity occur from the 
preceding approximation]. However, these corrections are 
important only in dynamic problems which are not consid- 
ered in the present paper. 

3. We find the field of the induced low-frequency mo- 
tions arising to second order in E. To do this it is sufficient to 
calculate the low-frequency motions produced by an arbi- 
trary pair of harmonics with amplitudes A, and A, 
(A, = A (k,,w(k, ) ), i = 1,2). We introduce the notation 

x=k,-kz, o=o  (k,) -o (kz) = m i - o z ,  c=o/x,. (3.9) 

We emphasize that we are interested in the induced low- 
frequency motion only on those space-time scales for which 
the existence of critical layers in the given flow is possible. 
The range of interest to us is distinguished by the obvious 
condition 
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c G  Urn,. (3.10) 

We note that the contribution to the x-harmonic comes from 
all pairs k, , k, satisfying the condition k, - k, = x by vir- 
tue of the definition of x. Hence, the total difference field is 
given by a convolution of the form 

However, for the sake of convenience we shall work with 
components generated by some selected pair of harmonics. 

To find the induced motions u, ( x j )  we substitute into 
(3.2) the solution in the form of a sum of a potential wave 
and the first-order rotational correction u,,,, . The problem 
of finding the vertical component W, requires, generally 
speaking, the solution of the Rayleigh equations with aright- 
hand side (we drop the indices) 

with inhomogeneous boundary conditions at the free surface 
(z = 01, 

where 

and zero at infinity (z = oo ), 

Here and henceforth W(z) is the vertical structure w,: 
w, = Wexp(ixx). We note that in the range of interest to us 
(c/U,,,,, S p )  the contribution from the first and second 
terms in (3.12a) is negligibly small compared to that from 
the third one. Their ratio is - ( U '/gh)S2 4 1 (here h is the 
characteristic vertical scale of the flow). Thus, the boundary 
condition at the free surface can be significantly simplified: 

W2=-  (S., ,rlgx2) I=O. (3.12a1) 

We must note that the value of W2 at the surface, given 
by (3.12a), is SE~,US~,  notwithstanding the fact that F,,,, 
in that approximation is independent of the presence of a 
flow and is given by formula from the potential theory. The 
additional small factor p arises because of restrictions such 
as (3.10) on the frequency of the induced motions: 
a = C l t ,  -pS2u. 

We reduce the boundary value problem (3.1 1 ), (3.12) 
to a problem with zerg boundary conditions by splitting off 
the :potential" pa$ W. Splitting W into two components: 
@, W( W= @ + W ) ,  where 

we get for @a boundary value problem of the form 

If we consider a general situation it is necessary to take into 
account both terms on the right-hand side. Up to this mo- 
ment we have nowhere used the assumption that the angular 

spectrum is narrow. Bearing in mind that we have 6 <  1 or 
x<K, we can neglect the contribution from the "surface" 
nonlinearity since we have 3,,, a x4 and F,, a x2, and 
moreover the component of the solution caused by the sur- 
face nonlinearity vanishes to first approximation in x in the 
critical layer. Correspondingly, in what follows we identify 
the field Pwi th  W (we omit the tilde). The boundary value 
problem (3.11), (3.12) can thus finally be written in the 
form 

We emphasize the following important fact: the vertical ve- 
locities of the induced motions given by the boundary value 
problem (3.11 ), (3.12), although we have FRO a ~ ~ p ,  are of 
order E' rather than eZp. We evaluate FRO, restricting our- 
selves to the first term of the expansion in x2: 

X 2  
5- -AiAzWx ( K ,  21, 

2C 
(3.13) 

x ( K ,  z )  = (U"'-4KU"+8K2U') e-2Kz. 

In the two limiting cases we have 

x U' 
5, = - A  iA2*U"' when K << - 

U '  
(3.13a) 

2C 
4xa U' 

F, = -AiA2*X2U'e-2Kz when K > -. (3.13b) 
C U 

Since x2 is small we can easily obtain a solution of the 
inhomogeneous Rayleigh equation (3.11 ) with an arbitrary 
right-hand side F i n  the "long-wavelength" approximation 
as a series in x2. The main terms of the expansion of the 
solution of the homogeneous equation have the form14 

(we discuss below the correct way to go round the singular- 
ity in the integral). Expressions for the next terms in the 
series were obtained in Ref. 13 and are, for instance, given in 
Ref. 14. We restrict ourselves, however, to the first terms of 
the expansion and give the solution of the inhomogeneous 
equation satisfying the selected boundary conditions (we 
note that the fundamental solutions W 'O', W'" are normal- 
ized so that their Wronskian equals unity): 

where 
I 

For our purposes it turns out to be sufficient to use the long- 
wavelength asymptotic forms of the Rayleigh equation 
which do not satisfy the boundary conditions at infinity. 
Equally suitable solutions which satisfy both boundary con- 
ditions (3.12') can easily be obtained by the method of 
matched asymptotic expansions [the solution (3.14) is 
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matched with an exponent of the form exp ( - I x lz) 1. 
The horizontal components of the velocity u, can be 

expressed in terms of w, and the right-hand sides of the ap- 
propriate Euler equations. We give the expression for the x- 
component of the horizontal velocity u, used below (we 
omit the indices) : 

where 

while W is given by Eq. (3.14). 
We note two different features of the velocity field u, 

which is given by Eqs. (3.14), (3.15). Firstly, the velocity 
field u, is singular in the critical layer z = z, ( U(z, ) = c ) .  In 
its vicinity 

W= Wc+gl ( 2 , )  (2 -2 , )  ln (2 -2 , )  , (3.16) 

where 
CC 

The ambiguity of the solutions which is connected with the 
singularity z = z, is removed by giving a "rule for going 
around the singularity" which will be discussed somewhat 
later. Secondly, the velocity field has a singularity also in k- 
space. As we let x, -0 the amplitude of the perturbations 
tends to infinity ( Wa x; ' ). This is connected with the reso- 
nance with the eigenmode of the shear motion which is often 
identified with Langmuir circ~lat ion.~ 

To remove the singularity of the u, ( x )  field in the limit 
x, -0 we must go beyond the framework of our original 
assumptions. Among the factors limiting u, we must, appar- 
ently, first distinguish the viscosity. Taking the viscosity into 
account the Rayleigh equation (3.11') for W, changes to the 
well known Orr-Sommerfeld equation which in the long- 
wavelength approximation in which we are interested has 
the form 

One sees easily that the effect of even a small viscosity always 
dominates for sufficiently small x, in the vicinity of the criti- 
cal layer where the behavior of the solutions of the Orr- 
Sommerfeld equation has been studied in quite some de- 
tail.14 An analysis of the complex structure of the field in the 
vicinity of the critical layer goes beyond the framework of 
the present paper. For us it is important only that there exists 
a viscous cut-off scale x:. As a rough upper estimate for x: 
we can take 

where Re is the Reynolds number and h the characteristic 

vertical scale for changes in U. For typical parameters of the 
upper layer ofthe ocean (v -  10- m2/s), U(0) - 1 m/s] we 
have Re- lo3-lo4, x: - 10-4-10 -6 m- I. We shall in what 
follows take the effect of viscosity into account only for de- 
termining the cut-off scale x:. We note that the problem of 
the primary mechanism for the cut-off of induced low-fre- 
quency motions remains to a large extent open and requires a 
special study. We do not exclude the possibility that other 
physical mechanisms (time-dependence, Rayleigh viscosity, 
and so on) may be more efficient for limiting the long-wave- 
length divergence. However, in the context of our problem it 
is only important that there exists a cut-off scale x,* which is 
small compared to x. Differences in the nature of the cut-off 
only affect the numerical value of the coefficient. 

4. The usual mathematical procedure for deriving ki- 
netic equations assumes as a first step the use of some asymp- 
totic procedure to obtain a dynamic integro-differential 
equation for the canonical field variables a,. For a medium 
with forbidden three-wave processes we haveI5 

We emphasize that due to the singular nature of the pertur- 
bation introduced by the flow the assumption that the shear 
flow is small (of order p) does not enable us to write the 
interaction coefficient as a series in p ,  

where T,,, is the coefficient when there is no flow. 
Obtaining the complete expression for Tor, equivalent- 

ly, obtaining the dynamic equation for a, to order O ( E ~ )  
requires, in particular, the calculation of the combinational 
harmonics to next order (in E )  compared to the ones we have 
calculated and not only the "difference," but also the "sum" 
combinational harmonics. To realize the aims of the present 
paper, these involved calculations can be avoided if we take 
into account that for the kinetic description of the field the 
effects of the symmetric and of the antisymmetric parts of T 
are significantly different. The antisymmetric part of T has 
the meaning of a nonlinear damping/growth rate and it 
shows up in the kinetic equation in lowest order (quadratic 
in the wave action). This enables us to neglect the symmetric 
component of T. 

The special feature of the present paper which enables 
us in calculating the antisymmetric part of T to restrict our- 
selves to the main terms in the series for the difference har- 
monics is connected with the fact that, since the flow veloc- 
ity is much smaller than the characteristic phase velocities of 
the surface waves, the critical layer (in terms of which this 
kind of interaction occurs) is realized only for a narrow 
range of difference harmonics (to be more precise, for a frac- 
tion of orderp of the phase volume). This last important fact 
gives rise, on the one hand, to the fact that the contribution 
to the kinetic equation from the antisymmetric part of T, 
which corresponds to the induced scattering process and 
which does not contain the small parameterp, is found to be 
of orderp; on the other hand, notwithstanding that the sym- 
metric part of T differs considerably from T,,, in some part 
of phase space, in kinetics these differences show up only in 
the next order and hence the term describing the usual reso- 
nance four-wave processes remains the same as when there is 
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no flow. Strictly speaking, the kinetic equation describing 
the induced scattering process can most simply be obtained 
on the basis of the expressions for u, which we have already 
found starting from energy considerations, which are often 
applied in similar situations in plasma physics.' 

We consider the energy exchange between the set of 
surface waves and the average flow. Separating in the stan- 
dard way the stationary flow U(z) and the fluctuating 
(wave) component we get a well known relation which cou- 
ples the change in the energy of the flow E,,, and of the 
waves E,,,, (per unit area of a horizontal surface element) 
to the xz-component of the Reynolds stress tensor T: 

m 

According to the definition we have 

where the angle brackets indicate ensemble averaging, 
which by virtue of the ergodic hypothesis can be replaced by 
integration over x-space. In turn, we replace the integration 
over x-space by integration over k-space. For the present 
case of horizontally uniform flow the nonzero contribution 
to T, as we have already stressed, can give only difference 
harmonics. The increase in the flow energy due to the ele- 
mentary interaction process of the flow with some selected 
pair of spectral components of the surface swell with wave- 
numbers k, and k, is connected with the redistribution of 
the wave action Nk among the harmonics: 

Conservation of the total action (6Nk, = - 6Nk2 ) follows 
directly from the conservation of the transverse component 
X ( X  = k, - k,) of the momentum p"v2) (p( 1.2) 

= N,, k, + Nk2k, ) in an interaction with a difference har- 
monic with wavevector x: 

Combining Eqs. (3.17) and (3.18) for the energy increase 
we obtain an equation for the change in the action Nk, of the 
spectral component with wavevector k, : 

.., m 

Here r ( k ,  ,k2 ) is the component of the Reynolds wave 
stresses due to the pair of harmonics k, and k, while we must 
take u, and w, in the sense discussed in $3.3. 

Since to lowest order the wave action in the flow is addi- 
tive, the required kinetic equation can be obtained from 
(3.19) by integration over k,. The problem has thus been 
reduced to evaluating the explicit form of (u, w, ). 

The main term of T has the form 

where u, (z) and w, (z) are given by Eqs. (3.14) and (3.15). 

When there are no critical layers the components of the 
vertical and the horizontal velocities are shifted in each har- 
monic over +IT in phase and for such difference harmonics T 

vanishes identically. To find the nonzero value of r caused by 
the singularity of the critical layer, it is most important to 
select the correct branch of the many-valued solutions of 
(3.14) and (3.15) (choice of the rule for going around the 
singularity). The starting point for the choice of the rule for 
going around the singularity is the following indication. The 
wave motion must be a solution of a Cauchy problem, i.e., 
must "start" at some time. One must therefore consider only 
motions which grow exponentially with time (letting this 
growth rate tend to zero in the answer). Thus, for a wave of 
the form 

the imaginary correction to the frequency must be positive. 
The requirement wi > 0 can be reformulated in terms of ci: 

ci sign xx>O. 

The exponential growth with time must occur also for the 
conjugate solution which is proportional to exp( - iB), 
from which it follows that we have w: = - mi, ci = - c:. 
Determining in this way the rule for going around the singu- 
larity we can write down the main "working" formula: 

1 
-= 9 - 1 + in6 (U-c) sign xx=p - 1 
U-c U-c U-c 

in +- 6 (2-2,) sign x,, (3.21) 
IU'I 

1 1 in = p - - -  6 (2-2,) sign x,, 
U-c' U-c I U'I 

where 9' is the principal value symbol and US the value of 
the first derivative of U(z) at the point z = z,. 

Using (3.22) we rewrite Eq. (3.14) for w, (z,x,K), se- 
parating the x from the K and z-dependence and splitting off 
the function F. The latter is the solution of the form (3.14) 
forF(6) = x(z,K), wherex(z,K) is given by Eq. (3.13). We 
note that for the evaluation of r we need know only the value 
Fc of Y ( z )  in the critical layer which is given by the rela- 
tively simple expression: 

m 

We turn to a direct calculation of r following the defini- 
tion (3.20) and using Eqs. (3.13) to (3.15) for u, and w, 
and taking into account the auxiliary Eqs. (3.2 1 ) to (3.23). 
One sees easily that the main contribution3' comes from the 
terms caused by the product of the second term in Eq. (3.15) 
for u, and w, given by (3.14) : 
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Using the normalization IAi l 2  = IC I Ni, we have 
n x' U' $." 

(uw>= --9N,Nz sign xX.6(z-z,) -- 
2 xx I U,' I Ucfa  ' 

where 

whence we finally get the required expression for T: 

n x6  U' 
T=-(uw)= - -  NINz sign xx.6(z-z,) - 

2 xx I ue. $5. 

Thus, Eq. (3.19) for Nk takes, if we use (3.24), the form 

n $,1 sign xx - Gk,kJ'k,h'k,. = -(%) * N~,N~,--- 
2 x, 1 U C ' I  u c  

(3.25) 

Using the definition (3.25) of GkIk2 and (3.13) we get an 
explicit expression for GkIkZ: 

The interaction coefficient GkIk2 contains a strong noninte- 
grable singularity as x, -0 due to the long-wavelength di- 
vergence discussed in $3.3. Remaining within the frame- 
work of the nonviscous theory we introduced, parametrizing 
the effect of viscosity, a cut-off function in the shape of the 
Heaviside function H ( x ,  ) : 

where, for definiteness, Ix,* 1 is given by the estimate 

1 x 2  1 -h-' (Re)  -'. (3.26) 

We note that the depth of the critical layer z, (k, ,k, ) is a 
symmetric function of k, and k, for any profile U(z) while 
the kernel Gklk2 is antisymmetric (Gklk2 = - GkZLI 1. 

Integrating over k, and using the resonance condition 

gives us the required kinetic equation (here and below we 
drop the "tilde") 

IPk,=Nk. 1~k,k.8 ((3-x.u.) Nk,dkz (3.27) 

for the description of the induced scattering processes. 

5. For well defined ratios of the small parameters occur- 
ring in the problem (we shall determine these ratios below) a 
contribution to the evolution of the wave field may be given 
not only by the induced scattering processes but also by reso- 
nance wave interactions, which are normal for a medium 
with a nondecay spectrum, of the form 

Taking these two kinds of nonlinear interactions simulta- 
neously into account we are led to the following kinetic equa- 
tion: 

We do not give the complete expression for TkklkZk3 since it is 
cumbersome and since the second term is obtained in the 
small angle approximation; in what follows we only use an 
expansion of Tin small angles, obtained with the necessary 
degree of accuracy in Ref. 5. 

From the general properties of the kinetic equations 
(3.27) and (3.29) we note the conservation of total wave 
action within the framework of (3.29) 

As to Eq. (3.27) we note that such a kind of equation often 
arises in plasma theory in wave-particle interaction prob- 
lems and their properties have been rather well studied.',* 

4. EVOLUTION OFTHE ANGULAR SPECTRUM OF THE SWELL 

1. Our final aim is a study of the evolution of the spec- 
trum of the wave field in the framework of the kinetic equa- 
tion (3.29), i.e., taking simultaneously the two kinds of non- 
linear interactions into account. In the present section we 
concentrate on one aspect of the evolution of the field, the 
transformation of its angular spectrum. 

We start with an analysis within the framework of Eq. 
(3.27). We consider the consequences of the resonance con- 
dition a = x,  U,. Expanding the first term of the dispersion 
relation mi = (gK, ) 'I2 we find 

We rewrite this equation in a clearer form: 

Two important conclusions follow immediately from the 
form (4.1 ) : the first one is the resonance surface k, (k, ) 
close to the circle lkl = const and, hence, 

and the second the difference in the frequencies of the inter- 
acting pair of waves which has the same sign as x, (see Fig- 
ure 1): 
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FIG. 1 .  Sketch of the resonance surface (dot-dash curve) given by the 
resonance condition (4.1 ). The isofrequency surface (dashed curve) 
close to the resonance surface is the circle o = (gK) I/'. 

sign a=sign %,=sign (k2,2-kly2). (4.1") 

The induced scattering process thus primarily trans- 
forms, the angular spectrum of the swell. If we consider the 
elementary interaction of a pair of waves, we see easily from 
(3.27) and (4.1f), (4.1") that if the kernel Gktk,signx, is . 
positive the wave with the lower frequency will transfer ac- 
tion to the wave with the higher frequency, where by virtue 
of (4.1 " ) action is transferred from the wave with the larger 
transverse wavenumber to the wave with the smaller trans- 
verse wavenumber. If Gklk2 sign x, retains its positive sign 
for any pair [which occurs in our problem independently of 
the form of U(z)] we can conclude that the angular spec- 
trum is narrowed. We note, however, that for narrowing 
(broadening) of the angular spectrum the positivity (negati- 
vity) of the quantity Gklk2sin x, is sufficient only in some 
average sense which we shall determine somewhat further 
on. [The latter case has a meaning only for nonmonotonic 
functions U(z) which are not considered in the present pa- 
per. l 

It is convenient for a description of the dynamics of the 
angular spectrum to change to polar coordinates K, a 

sin a=k$K-a. (4.2) 

The presence of a 6-function in the collision integral and the 
simple form of the resonance surface enable us to simplify 
the kinetic equation significantly, carrying out a single inte- 
gration over one of the components of k, . Since for fixed k, , 
k, we simultaneously give the position z, of the critical layer 
it is advisable to replace the integration over k,, by an inte- 
gration over z,. Using (4.1') and (4.2) we have 

2K 
=- I a12-a22 I U,' dz,, dkZu=Kda2. 

C 

As a result the kinetic equation (3.27) is transformed into an 
equation for the angular spectrum 

n l z  

where Nai = N(K,ai ) and H is the regularizing function de- 
fined by (3.25b), while all characteristics of the flow are 
accumulated in the integral interaction coefficient D: 

We introduce the notation 

The sign of Dl  determines the qualitative nature of the evo- 
lution of the angular spectrum: for Dl  > 0 the spectrum has a 
tendency to narrow, and for Dl < 0 to broaden. We empha- 
size that the coefficient D which is a functional of U(z) is 
always positive [for any monotonic profile U(z) 1. The sign 
of Dl and thereby the qualitative nature of the wave evolu- 
tion is uniquely determined by the orientation of the waves 
with respect to the flow: for waves propagating along the 
flow ( C >  0)  the angular spectrum narrows and for waves 
propagating against the flow ( C  < 0, Dl  < 0)  the spectrum 
broadens. 

We summarize the preliminary analysis of the dynam- 
ics of the angular spectrum: we have reduced the problem of 
a quantitative description of the evolution of the angular 
spectrum to an analysis of the relatively simple Eq. (4.3); on 
the other hand, the problem of a qualitative description was 
reduced to solely determining the sign of the interaction co- 
efficient D, (K) given by (4.4a,b). 

2. For a quantitative description of the evolution of the 
angular spectrum it is more convenient to use the normal- 
ized angular dependence n (a ) : 

Since N= vanishes in the framework of (4.3) we find 
n/2 

where 

and x* is the cut-off scale. 
The quantitative characteristics of the evolution of the 

angular spectrum depend strongly on the regularizing func- 
tion a or, more precisely, on the cut-off scale x:. Using 
(4.1') and (4.2), we write the Heaviside function (3.25b) in 
terms of a: 

whence in the small fl region (fl = a, + a, ) which is of 
interest to us we get 

Using (4.6) and retaining in the integro-differential Eq. 
(4.5) the main terms in (x,*/K) - ' we get the differential 
equation 
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K 
d(a) -13 (-) [ 1 a 1 n ( a )  n (-a) -2a2n(a) nr (-a)] -0. 

Y 

We note that in connection with the approximate na- 
ture of the transition from (4.5) to (4.7) the peripheral part 
of the solution may be significantly distorted which, in par- 
ticular, gives rise to a violation of the normalization condi- 
tion Snda = 1 for solutions of (4.7).  We introduce the di- 
mensionless time 

and restrict the discussion to the evolution of symmetric an- 
gular distributions ( n  ( a )  = n ( - a )  ), whereupon in the 
a > 0 region Eq. (4.7) takes the form 

fz=an2-2ann1, n=n (a ,  P),  nl=d,n. (4.8) 

Equation (4.8) is a hyperbolic first-order equation and can 
easily be integrated using the method of characteristics. It is 
more convenient to write the solution of the set of two ordi- 
nary differential equations which is equivalent to (4.8): 

with initial conditions for 7 = 0 

in the variables 

a=a/ao, ~ = n  (a ,  f) /no (ao, 0 )  , z=noaof. 

The initial conditions on the different characteristics (4.10) 
and the solution of Eqs. (4.9) corresponding to them take on 
a universal form: 

RIT=o=l, &=ll,=o, (4.11) 

The region r > 0 and tr > 1 corresponds to solutions describ- 
ing the narrowing of the angular spectrum for waves moving 
along the flow.4' In that case n increases along all character- 
istics with the characteristic dimensionless time which is 
a ( n o a n )  - '. 

Thus, on the "zero" characteristic (a,  = 0 )  the initial 
value n, is conserved [in the framework of (4.8) 1. The max- 
imum value of n at each time r is realized on the characteris- 
tic a,, corresponding to the maximum value of n,a,. This 
means, in particular, that smooth single-humped initial dis- 
tributions n ( a ,  ) evolve for t > 0 into narrow two-hump dis- 
tributions. At time T, = e - ', n becomes infinite in the point 
tr, = e [in the variables i, a :  i, = (en,a,, ) -I, 
a, = a,, e l  and Eq. (4.8) ceases to be applicable. 

3. An analysis of the evolution of the wave field in the 
framework of the kinetic equation (4.5),  neglecting the usu- 
al four-wave interactions, is justified for a well defined class 
of initial conditions, for instance, when the initial nonlinear- 
ity of the waves is sufficiently weak. However, it follows 
from (4.12) that during the evolution (for C >  0 )  there is a 
concentration of wave action in k-space and, hence, at suffi- 
ciently long times it becomes as a matter of principle neces- 
sary to take the "Boltzmann" collision integral into account. 
A detailed study of the dynamics of the field on the basis of 

the "complete" kinetic equation (3.29) goes beyond the 
framework of the present paper. Here we restrict ourselves 
to giving the equation for describing the evolution of a nar- 
row spectrum. We use the results of Ref. 5 where expansions 
of the "Boltzmann" integral for small angles were obtained 
and analyzed. The fact that to a first approximation & van- 
ishes enables us to write the "complete" Eq. (3.29) in terms 
of the normalized angular spectrum n ( a )  : 

n=d (Klx,') [ 1 a1 n ( a )  n (-a) -2a2n ( a )  n' (-a) I 
+DSuZ(-ln uz )  n3 ( a ) ,  

DN=1 ~ I C ~ ~ ~ K I N , ~ .  

The equation for the equilibrium form of the angular spec- 
trum n ( a )  follows immediately from the condition n = 0: 

A rough estimate of the equilibrium width of the angu- 
lar spectrum n (a) on the basis of (4.13) for typical values of 
the parameters enables us to reach important conclusions. 
Firstly, the characteristic equilibrium width of n ( a )  turns 
out to be significantly smaller than the observed one.3 Thus, 
the mechanism studied guarantees a rather efficient narrow- 
ing of the angular spectrum which not only compensates for 
the opposite action of the normal four-wave interactions, but 
also for the effect of factors which are not taken into account 
in this paper. 

Indeed, we take as the characteristic time for the trans- 
formation of the angular spectrum due to induced scattering 
the time T, for the appearance of the first singularity in the 
framework of (4.8): 

The largest uncertainty in the estimate (4.14) comes from 
the large parameter K/x,*. Even considerably reducing it by 
an order of magnitude and putting it of order unity, we get a 
characteristic time which is a ( p ~ 2 )  - which is less than or 
of order E - 4, the times for the usual four-wave interactions. 
A rough estimate of this large parameter (K/x ,* -Re)  
based upon the idea of the viscous nature of the cut-off x, 
and about the turbulent viscosity in the upper layer gives a 
characteristic time for the formation of the spectrum on the 
order of minutes. The problem of a more precise estimate of 
x,* becomes in this context extremely difficult and requires 
the analysis of other physical mechanisms which goes be- 
yond the framework of the present paper. 

In the light of these remarks the problem remains open 
of the mechanism for the narrowing of the angular spectra 
and of other physical mechanisms (differing from resonance 
interactions) which compensate for the tendency to narrow. 

5. CONCLUSION 

The main results of this paper can be summarized as 
follows. We have shown that, firstly, the mechanism of in- 
duced scattering of wind waves by the subsurface drift flow 
is undoubtedly an important factor in the evolution of the 
wave field and must always be taken into account for a kinet- 
ic description of the ocean swell. The contribution from the 
induced scattering to the collision integral of the kinetic 
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equation is proportional to the square of the wave action, 
N : ,  to the small parameterp (more precisely to U 1 / o ) ,  and 
also to the large parameter K /x:  which for typical condi- 
tions of the ocean is much larger than the contribution from 
the resonant four-wave interactions of the gravitational 
waves. Secondly, the effect of this mechanism gives rise to 
the formation of narrow angular spectra without practically 
affecting the shape of the frequency spectra which are deter- 
mined by the usual four-wave interactions. The main direc- 
tion of propagation of the waves is thus determined by the 
direction of the drift flow and not directly by the wind. Two- 
hump distributions that qualitatively agree with the results 
of field  observation^'.^ turn out to be typical in the frame- 
work of our model. The characteristic time T for the forma- 
tion of the angular spectrum increases as a power law with 
increasing wavenumber. For typical ocean condition T lies 
in the range of minutes. 

Let us discuss the problem of the possible role of other 
physical mechanisms in the formation of the angular spec- 
trum. Induced scattering of surface waves by the wind flow 
has been specially studied from this point of view in Ref. 1 1. 
The contribution from this mechanism to the collision inte- 
gral, proportional to N :  and to the ratio of the air and the 
water density, turns out to be much smaller than that caused 
by the scattering of the waves by the flow (according to the 
calculations of Ref. 11 the characteristic time Tis - 10 yr). 
Moreover, the width of the stationary angular distribution 
increases in this model with decreasing frequency which 
contradicts the observational data. It was noted in Ref. 16 
that the effect of a nonstationary wave field (the develop- 
ment of the swell) can give rise to a narrowing of the angular 
distributions. One may expect that this mechanism will 
dominate in the region where the swell is significantly non- 
stationary, on the leading slope of the frequency spectrum. 
(No numerical estimates are given in Ref. 16.) 

There are therefore grounds for assuming that the in- 
duced scattering of waves by the drift flow is the main factor 
guaranteeing the formation of narrow angular distributions 
in the whole energy-carrying range of the wind swell (with 
the possible exception of the leading slope of the spectrum). 
An indirect confirmation of this statement is the qualitative 
agreement of the main conclusions of this paper with the 
experimental data. A quantitative comparison of the present 
theory and the experiments is prevented, firstly, by the ab- 

sence of reliable data about the vertical structure of the sub- 
surface drift flow and its connection with the development of 
the swell and, secondly, by the absence of clarity regarding 
the mechanism of the long-wavelength cut-off and, as a re- 
sult, the uncertainty of its estimate. 

I '  We distinguish the problem of the evolution of the wavefield itself and 
assume the flow to be given and stationary; this enables us to separate 
the characteristic times: for the establishment of the drift flow 
rd (rd - 10'-lo4 s) and for the wave processes. 

"The neglect of the rotation of the direction of the drift flow with depth is 
justified by the fact that the characteristic spatial (Ekman) scale A is 
considerably larger than the thickness of the layer of effective interac- 
tions. For typical conditions of the upper layer of the ocean we have 
12-40 m. 

" The main omitted term is of order O(x ,  ) (in relation to the main term). 
4' Waves propagating against the flow correspond to T < 0, & < 1. In that 

case (4.1 1 ) and (4.12) describe a broadening of the spectrum. Along all 
characteristics n decreases and the characteristics themselves get con- 
centrated towards the ordinate. 
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