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New invariant for drift turbulence 
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A new invariant for drift wave (or Rossby wave) turbulence in two cases, ( 1) in zonal flow and (2) in the large scale range, is 

discovered. This invariant is proved to be a unique additional invariant (besides energy and momentum). Thus the first examples 

of wave systems with a finite number of additional invariants are obtained. A new Kolmogorov-type spectrum with the flux of the 

additional invariant through the scales is derived and the structure of fluxes in the k-space of invariants is analyzed. 

1. A lot of problems in the physics of atmosphere 

[ 11, in the physics of magnetized plasmas [ 2 ] and 
in astrophysics [ 31 leads to a study of drift-type 
waves, or Rossby waves, having the dispersion law 

(k= (k,, k,,) is a wave vector, p, p are constants). 

The nonlinear interaction of the waves may vary 
[ 4,5 1, depending on a particular physical situation, 
e.g. in a number of cases it is described by the fol- 

lowing equation [ 1,2], 

afww=, --- 
ax ay 7 (2) 

which differs from the equation of 2-D hydrodynam- 

ics only by the presence of terms - e- /3aw/ax. If 
/3# 0 then under sufficiently small w the turbulence, 
described by eq. (2 ), may be represented as a system 
of dispersive weakly interacting waves. For the sta- 
tistical description of such a turbulence one can use 
the kinetic equation for waves [ 6 ] : 
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ank 
at =4X s 1 Vkk,kz i’&k-h -kz) 

-nknkz w(WkWkl) 1 dk, dh > (3) 

where nk=ek/mk is the wave action spectrum, ek is 
the energy spectrum, nk=n_k; vkk,kz is the matrix 

element of the nonlinear interaction, e.g. in the case 

of eq. (2) it is of the form [ 71 

vkk,kz = - 2 1 M&2x 1 “* 

k -_Ly 
1 +p2k: 

(4) 

Note that all the following parts of this article do not 
depend on the form of the nonlinearity. 

2. The time alteration of any integral 

@=f jIc(sgnW)nkdk 

is determined by the expression 

(5) 
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Hence the quantity @ is an integral of motion of eq. 
(3 ) if and only if for all wave vectors k, kl, k2 bound 

by the resonance relations 

k=k, +k,, ok =wk, +-ah, (6) 

the identity 

pk =vk, +qk, (7) 

is fulfilled. It is clear that eq. (3) always conserves 
energy ( 8) and momentum ( 9): 

s=; IWkItlkdk, g=f k(S@lWk)nkdk. 
I I 

If the kinetic equation (3) has some more integrals 
of motion linearly independent of I and 9 (such a 
situation is exceptional) then the dispersion law is 
called degenerate [ 8,9]. To the integral of motion @ 
of the kinetic equation corresponds an adiabatic 
(approximate) invariant of the original equation. 
This invariant contains a quadratic (with respect to 
the wave amplitudes) part equal to @ (regardless of 
the form of nonlinearity), and its time derivative has 
fourth order of smallness with respect to the wave 
amplitudes [ 9 1. 

3. We will show that for the turbulence of drift 
waves in two limiting cases, ( 1) in the case of zonal 
flow ( 1 k,,l B I k,l ) and (2) in the case of large scale 
turbulence (p2k2 -x 1 ), the dispersion law is degen- 

erate and there exists one additional invariant of the 
form (5). 

The turbulence in the region of zonal flow and in 
the region of large scales plays a particularly impor- 
tant role in drift turbulence. This is confirmed by 
some experimental data, e.g. the observations of the 
Jupiter atmosphere [ lo], and the measurements of 
plasma turbulence in the F-layer of the equatorial 
ionosphere [ 111. Computer experiments also show 
a strong concentration of the spectrum in the zonal 

flow and in the large scale range [ 12-141; such a 
process can be regarded as the result of inverse en- 
ergy transfer in the case of absence of effective dis- 

sipation in large scales. It is shown in ref. [ 15 ] that 
the evolution of drift turbulence can be determined 
only by its interaction with the zonal flow and large 
scale range (but not by close scales). Moreover the 
system tends to the state when just the mentioned 
regions contain the main amount of energy. 

4. In the case of zonal flow ( I ky I a ) k, I ) the dis- 

persion law of Rossby waves has the form 

Now we shall show that the system of such waves 
possesses an additional invariant (5 ) with 

pk= w:/k;. (9) 

For this sake we will twice use the following easy ver- 

ifiable fact: if some quantities x, x1, x2, y, y,, y, are 
bound by the relations 

x+x, +x2 =o ) y+y, +y, =o ) 

then 

w2+w: +xzy: ‘WlY2 
( 

-x+xI+xz . 
Y Yl Y2 > 

Supposing x=wk, y=k,, Xi=-Wk,, yi=-ki,, (i=l, 
2) and taking into account that Wkks = (/3kx- 

w)p -2 we obtain that for any k, kl, k2 complying with 
relations (6) the following equality, 

?+?+?+0, 
Y lY 2Y 

iS fulfilled. NOW SUppOSing y=Wk/ky, yi=Wk,/kiy 

(i= 1, 2) and leaving the quantities x, xl, x2 un- 
changed, we obtain that on the resonance manifold 
(6) the following identity, 

- 

is valid, so that the quantity (5) with spectral den- 
sity (9) is invariant indeed. 

5. Let us show that the system of large scale drift 
waves with the dispersion law 
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wk =j?k,( 1 -p2k2) 

has an additional invariant (5), where 

(10) 

In fact, in the variables 

p=kv+,,bkx, q=ky- fikx, 
the quantity ( 11) acquires the form 

,=p__!c 
9 P' 

(11) 

(12) 

and relations (6 ) (when the dispersion has the form 
( 10) ) can be presented in the following way, 

P=PI +p2, 4=41+42 > PP1P2=44142 

(Pi=P(k), qr=dk) > i=l, 2). 

Under these conditions we have 

p’ _ 2 _ Pd =PIq2-P2ql PI 

4 91 42 44142 

=41P2--42Pl q2 4: 4: 

PPIP2 P PI P2 

so that the quantity ( 12) satisfies identity (7). 

6. The existence of an additional invariant is of 
fundamental significance for the integrability theory 
of nonlinear equations [ 9 1. So far it was assumed 
that all wave systems either have no additional in- 
variants (besides energy, momentum, wave action) 
or have an infinite number of additional invariants 
as, e.g., the well-known Korteweg-de Vries, Kadom- 
tsev-Petviashvili, Davey-Stewartson equations, and 
the nonlinear Schrodinger equation. It can be shown 
(the proof will be published apart), that in the sys- 
tems considered in this paper the obtained invariant 
is the only additional invariant (quadratic with re- 
spect to the wave amplitudes). Thus the first ex- 
amples of wave systems with a finite number of ad- 
ditional invariants are discovered. 

7. The availability of the additional invariant (5 ) 
leads to a more general form of the thermodynam- 
ical equilibrium spectrum: 

T 

nk= Wk+(k,V)+/f(Dk sgn wk 
(13) 

(T, v= (v,, v,), p are arbitrary constants) and in- 
volve the existence of a new Kolmogorov-type (see 
ref. [ 16 ] ) spectrum, which is determined by the flux 
of the new invariant through the scales. This spec- 
trum we succeeded in finding only for the case of 
zonal flows - and moreover; either for long wave tur- 
bulence (p’k: x- 1) or for short wave turbulence 
(p’k: -SK 1); in these situations the matrix element is 
usually scale invariant with respect to the compo- 
nents of the wave vectors with some vector exponent 

P= (AX P,), 

(A,, 1, are arbitrary positive numbers). Then the 
Kolmogorov-type spectrum with flux R of invariant 
@ is of the form 

~=p+(2, -1)) p2k$<<l, 

=p+ (2, -2) , p2k; >> 1 (14) 

( C is a dimensionless constant). For example in the 
case (2), (4): for long wave turbulence B= (& 3), 
Y= ($, 2), for short wave turbulence p= (2, - 1 ), 
v = (z, - 3). The Kolmogorov-type spectrum ( 14) 
along with the already known Kolmogorov-type 
spectra with fluxes of energy and enstrophy [ 17,18 1, 
as well as the thermodynamical spectrum ( 13 ) are 
exact stationary solutions of the kinetic equation (3 ). 

8. The presence of the additional invariant ( 5 ) en- 
ables us to make essential conclusions about the 
structure of drift turbulence and in particular about 
the directions of fluxes in the k-space of various in- 
variants [ 191. This is analogous to the situation in 
2D_hydrodynamics, where the presence of the ad- 
ditional (in comparison with 3D-hydrodynamics) 
invariant of enstrophy forbids energy to flow to small 
scales. In figs. l-3 we have schematically shown the 
picture of the fluxes of the invariants I, Q= f3gX- b, 
9, $ in stationary turbulence, when the regions of 
dissipation and growth rate considerably differ in 
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Fig. 1. Domains restricting the directions of the fluxes of invar- 
iants 6, Q, @ in the case of zonal flow. 

Fig. 2. Domains restricting the directions of the fluxes of the in- 
variants 8, Q, Q in the case of large scale turbulence under the 
condition 1 key 1 < fi 1 k,,, 1. 

scales, the growth rate is characterized by some scales 
koX, koY and the region of possible dissipation is 
marked by touches (we used coordinates (ok, k,) 
instead of (k,, k,,) ). Let us consider for example how 
the invariant @ restricts the directions of the flux of 
energy d. 

In the case of zonal flow (see (8), (9)) the in- 
variant 4 is positive definite, so an essential amount 
of energy cannot dissipate in the region 

I:l+Zl~ 

because otherwise a too large amount of the invar- 
iant @ would dissipate in that region. Therefore al- 
most all of the energy transfers in the region limited 
by the condition 

k, 
Fig. 3. Domain restricting the directions of the flux of y-momen- 
tum Y”, in the case of zonal flow; in the case of large scales this 
domain is qualitatively the same. 

(see fig. 1). 
In the case of large scale turbulence (see ( lo), 

( 11) ) the invariant $ is not of fixed sign, and in gen- 
eral it does not restrict the fluxes of other invariants. 

However, it does if the growth rate region is located 
in the domain 1 k, 1 <J? 1 k, I. In fact, the enstrophy 
(x-momentum) restricts the 
by the domain 

(seelig. 2). If lb,,1 <fi lkox then almost all of the 

ux of the invariant @ 

invariant @ remains in the domain I k,, I < J3 I k, I 
and the invariant @ can be considered to be of fixed 
sign, and during that time it restricts the direction of 
energy flux by the domain I wk/pk I > I w~,,/~P~ ( (see 
fig. 2). Similarly other restrictions on fluxes of in- 
variants are obtained (figs. l-3). 

We are grateful to B. Dubrulle, E. Ferapontov, V. 
Gordin, B. Legras and V. Van’kov for discussions and 
interest to the work. 
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