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The problem of Langmuir wave collapse in 2D and 3D plasma 1s considered A new approach for computer simulation of
this phenomenon 1s proposed, which includes two different theoretical models averaged dynamical equations and Viasov’s
set of equations It allows to take into account all essential effects during the whole process of collapse and, hence, to get a
reliable picture of the collapse 1n detail and to save markedly computer resources Peculiarities of the numeric methods are

also discussed

1. Introduction. Langmuir collapse in the
inertial interval

Langmuir wave collapse predicted theoretically
in 1972 [1] and recently confirmed experimentally
[2, 3] 1s of fundamental importance for modern
plasma physics. Specifically, collapse — the forma-
tion of catastrophically depressed density wells
filled by trapped oscillations —is the main colli-
sionless wave energy dissipation mechanism and
the natural structural element of strong Langmuir
turbulence both in cosmic and laboratory plas-
mas. For the past one and a half decade the
collapse of Langmuir waves has been under in-
tensive analytical and numerical investigations
(see reviews [4-7] and references theremn; and
recent works [8~18]). It should also be noted that
since [1] wave collapse became a conventional
concept of modern physics, wide range applica-
tions have been found in the study of self-focus-
ing for monochromatic waves, collapses of
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electromagnetic and lower-hybrid oscillations, and
other types of wave collapses [19].

The general scenario for Langmuir collapse is
the following: As a result of the development of
modulational instability in a turbulent plasma,
density cavities filled with Langmuir oscillations
are formed. The initial energy density W 1n the
cavity is of the order of the average turbulent
level W, and the characteristic size of the cavity
ly~rpynT/W 1s of the order of the Langmuir
wavelength. The process of cavity compression
becomes rapidly self-similar and the cavity ac-
quires an universal noticeably flattened shape.
During the collapse the energy of the oscillations
trapped 1n the cavity 1s conserved. In the final
stage the wave-particle becomes important and
Langmuir oscillations trapped in the cavity are
“burned out” through the acceleration of plasma
electrons. As a result the energy 1s transferred to
a small group of fast particles. The process of
energy burnout 1s fast and in general its duration
does not exceed several hundreds of plasma perni-
ods.

Up to the final stage the cavity evolution 1s
described by a set of dynamical equations aver-
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aged over fast time obtained in ref. [1] in the
framework of hydrodynamical plasma descrip-
tion:
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where W 1s the averaged electric field E
=1V(¥ e~ '@’ + cc.) potential, and dn 1s the
quasineutral plasma density variation. These
equations preserve the integrals of motion, the
number of quanta

N= [Vl dr (2)

and the Hamiltonian
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and have for sufficiently large initial conditions
collapsing solutions in 2D and 3D situations. The
important properties of Langmuir collapse in the
inertial interval follow from system (1) at d = 2, 3.
The negativity of the Hamiltonian is a sufficient
condition for collapse, but for d =3 this condi-
tion is exceedingly stronger and collapse takes
place for the following initial conditions [4]:

H<O0, d=2,

<—3—(52)2N, d=3, (4)

where [/, 1s the characterstic size of the initial
perturbation.

For sufficiently intensive oscillations W/nT >
m/M one can neglect the fact that the sound
velocity in (1b) 1s finite and the collapse 1s
transformed nto the supersonic regime. Asymp-
totically at ¢t — ¢, the supersonic collapse is self-

similar:
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where ¢, 1s the singularity formation time and /
the characteristic cavity size.

The collapsing cavity has an asymmetrical
oblate shape with the electric field in the cavity
center directed along the short size. The cavity
asymmetry is connected with the fact that the
spherically symmetrical collapse model is non-
real: in such a model the field 1n the cavity center
1s equal to zero, the ponderomotive forces are
absent and the hump density formation in the
cavity center takes place. Numerical calculations
have demonstrated that a dipole charge distribu-
tion in the cavity is a more realistic one. Since
1974 [20] egs. (1) are repeatedly solved numeri-
cally (see works presented 1n ref. [3] and also in
refs. [9, 15]). The calculated results well con-
firmed the cavity properties described above and,
i particular, have demonstrated the sufficiently
arbitrary initial condition for the self-similar
regime (5).

The applicability of system (1) is restricted to
small hf (high frequency) energy levels W/nT < 1
and large cavity sizes krp << 1. As the cavity
collapses and the field intensity grows, the set of
effects which are not taken into account become
important.

Among them we mention first of all the inter-
action between electrons and Langmuir oscilla-
tions. Also electron nonlinearities, nonlinearity
saturation dispersion law change; hydrodynamrcal
1on nonlinearities and others can play an impor-
tant role. Simultaneous and adequate taking into
account of these effects in the frame of some
“immproved” dynamic equations system seems to
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be impossible. Of course the investigation of some
effects inserted in model (1) in numerical experi-
ments (the model Landau damping [9, 15], the
electron nonlinearities in the quasi-one dimen-
sional approximation [14], nonlinearity saturation
and 10n kinetics [16]) are of substantial interest.
An adequate general physical picture description
in the final stage of collapse is possible, however,
only by using the full kinetic equation system:
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Namely the relatively short final stage of the
Langmuir cavity collapse, during which the oscil-
lation energy transformation to electrons takes
place, is of main practical and scientific interest.
Therefore the numerical simulation of the final
collapse stage, which can take into account the
main nonlinear and kinetic effects from “first
principles”, 1s of principal importance, 1.e. the
solution of the kinetic equations (6) by the parti-
cle method [21-25]. Only such simulations can
answer the principal questions for an adequate
building-up of the turbulence theory about the
anisotropy degree and sizes of the cavity in the
final stage of evolution, the time of cavity burning
out, the energy part which is transformed to
electrons, the accelerated particle distribution and
1ts anisotropy, and investigate the most important
cavity characteristics during and after its burning
out.

This paper presents a survey of works of sev-
eral authors {13, 16-18, 21, 22] which are devoted
to this extremely difficult problem. The huge
computational need for doing multidimensional
kinetic calculations forced us to maximally take
into account a prion properties of the collapsing
cavity in the formulation of the numerical expen-
ment and the agreement of the numerical model
applied both with the physical problem specifica-

tion and the peculiarities of the multiprocessor
computer system used for calculations, ES-
1037-ES-2706 SRI, Academy of Sciences of the
USSR. Below, these questions are discussed in
detail. Particularly, the Langmuir collapse con-
cept “through simulation” is proposed; in this
framework the solution of the self-similar dy-
namic equations (1) is used as an initial condition
for the system (6). The detailed 2D picture of
collapse is obtained for a wide inertial interval,
and the different cavity evolution regimes have
been investigated. Three-dimensional kinetic cal-
culations have demonstrated a clear picture of
the collapse. The cavity parameters, the density
variation amplitude and the maximal oscillation
energy were found to be substantially different
from the 2D case. Also the electron acceleration
character differed from the one obtained i the
2D case

2. The difficulties and general principles of the
simulation of Langmuir collapse

First of all we estimated the computational
need for the simulation of the cavity evolution.
Achievement in the numerical model of a suffi-
ciently large inertial interval [,/! . > 1 for the
self-similar solution formation before additional
mechamisms switch on, which are not inserted 1n
(1), is of principal importance We set for a crude
estimation /y~ 500 ., /., <20r, [2, 3, 16-18].
Using the estimate for the collapse development
time [4]

MnT\'/?
’k“’v~(W) >

we obtain

tw, ~ 10%/M/m .

For such an evolution time the d-dimensional
cavity evolution problem must be considered in
the region ~ (10°rp)¢ The particle number used



A I Dyachenko et al / Computer sumulation of Langmur collapse 81

for such a region is N~ 10**Ny (Np> 1, the
total number of electrons and ions in the volume
r2) and the number of time steps 1s
~10°YM/m(w, At)™! =5 X 10*/M/m (we
have used the typical particle model value At =
02w, 1), Introducing the characteristic = (time in
microseconds to advance on one particle time-
step) of the standard particle method for the total
simulation time we obtain (in s)

T=35X%10%3/M/m Nyr. @)

Substituting for a crude estimation 7=40 ps,
Ny =50 we obtain that even in the 2D case for
the model mass ratio M/m = 100 it takes tens of
thousands of computer time hours for the calcu-
lation of one variant. Hence the pure Kkinetic
simulation in a wide inertial interval is absolutely
unacceptable.

It is clear, however, that the computational
process can be naturally divided into two parts.
At the beginning the averaged equations (1) are
solved on the whole inertial length After that the
obtained self-similar solution is used as the nitial
condition for the kinetic simulation by the parti-
cle method We proposed to call this approach
the “through simulation” and have realized it in
refs. [13, 16] (we also used this approach later for
a 1D Langmuir turbulence simulation [26]). The
transition moment ¢* from averaged to kinetic
description must be defined by the averaged de-
scription conditions:

Winax dn
ST < 1, Ty <1 (8)

kro <1,

near the bound of their applicability. As our
calculations have shown, the compression down
to / ~30r, and the maximum hf energy density
levels up to W, /n,T ~ 0.2 are acceptable. Be-
cause the kinetic calculations consume the main
part of the computer time, it 1s clear that the
“through simulation” technique provides huge
(about several orders) computational gain

Consider the transition from dynamic to kinetic
description in detail. As the initial data of the
particle method are the ion and electron distribu-
tion functions f,(r,t) and f,(r,?) in phase space
it 1s necessary to reconstruct them from the com-
plex high-frequency potential envelope ¢(r, t) and
the low-frequency plasma density variation
dn(r,t). In agreement with the applicability con-
ditions of the set (1) at the moment of transition
to the kinetic description the particle distribution
was assumed to be Maxwellian-

V-V, (r)|?
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Because of their large mass, the 1ons participate
only in the low-frequency motions. n, = ny + dn,
where 3n is determined from eq. (1b). The
macroscopic 1on velocity V, is searched from the
linearized continuity equation 83n/8¢t + nydivV,
=( The electrons participate in both low- and
high-frequency motions: n, =n,+ dn + 84. The
hf density variation component and the electron
velocity are determined from Poisson and lin-
earized electron motion equations:

| A o e
Ap = 41e b, _BT+3V7?=3V71;=;1-V‘P’

where
o= ~[1¥(r. 1) exp( i) +cc].

It should be pointed out that two-stage practi-
cal realization “through simulation” requires in-
dependent particle simulation of the final stage of
the collapse. In spite of the fact that the whole
investigation implies, of course, the “through sim-
ulation” performance, such a statement is un-
doubtedly of independent interest especially
when the “through” realization 1s 1mpossible
for some reasons or too complicated. Namely 1n
such a way the kinetic simulation of the Langmuwr
collapse by the particle method has begun [8,
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27-30]. However, in these works the statement of
the numerical experiment did not correspond with
the physics of the investigated phenomenon 1n an
optimal way because of a strong deficiency of
computer resources. Insufficient account of physi-
cal and geometrical cavity properties has led to
nonadequateness and /or vagueness of the simu-
lation of the general collapse picture as a whole.
Note several considerable points:

(1) The optimum choice of the mitial condi-
tions is extremely important. From (3) it follows
that for 82 =0, H >0, 1e. the uniform mitial
distribution choice leads in the 2D case to viola-
tion of the sufficient collapse condition (4), and 1n
the 3D case to its near-boundary character when
the influence of nonphysical effects of the model
1s essential. As a rule in this case the initial
uniform distribution is broken into localized cavi-
ties [27-29]). Therefore the effectiveness of the
“computational volume” used sharply drops.

It is clear that the choice of the initial condi-
tions for the pure kinetic problem is rather arbi-
trary. In any case, however, the initial plasma
state must contain small 10on and charge density
perturbations 82 <0 and p = —e 87 (to imitate
the density well filled by hf oscillations) which
obey the inertial interval description conditions
(8) and sufficient collapse conditions (4).

(2) The small model particle mass ratio (for
example, M/m <25 [27-29]) understates artifi-
cially the 10n inertia role, which is rather essential
for the final collapse stage and leads to inertial
mterval shorteming.

(3) The periodic boundary conditions used [8,
27-30] are rather inefficient from the computa-
tional resources viewpoint and (if the specal
measures for zero harmonic generation are not
taken) physically ungrounded 1n the case of one
cavity in the considered region. In this case
because of a nonzero potential jump along the
small axis of the dipole cavity nonphysical cavi-
ties—satellites birth is unavoidable This effect
disturbs the charactenistics and unadmissibily re-
duces the main cavity description under the con-
dition of deficiency of resources.

A physically correct and rather effective ap-
proach for cavity evolution simulation is proposed
and realized in refs. [13, 16-18]. This approach
uses the cavity properties described above 1n the
maximum degree. Suppose that the dipole cavity
1s flattened along the z-axis. Hence the electric
field potential is asymmetric along the dipole axis
and symmetric in the perpendicular direction:

o(r o, z)=¢(-r_,z)=—¢(r, ,—z)
=o(x,-y,z)=¢(—x,y,z). (10)

The question of cavity symmetry was discussed
for example in ref. [4] and this symmetry was
demonstrated in numernical studies. Breaking of
symmetry in ref [15] was associated with the
special case of rotating cavities, The symmetry
properties allow us to use only a part of the
cavity. For the simulation of a d-dimensional
cavity by the particle method 1t is enough to carry
out the calculations in the region

O0<r,<L,, —-3L,<z<3iL,
dp anl,e _
wmlr="an =0 (11)

which contains 1/29"! part of the cavity. One
can reach a larger computational gain by solving
the averaged equations (1) in the region 0 <r |, <
L,,0<z<L,/2, containing 1/2¢ part of the
cavity with boundary conditions ¥{,_o=0, is
sufficient. Unfortunately, in the particle method
there are no analogous conditions for particles,
the electron cross the z =0 plane and the kinetic
description must be carried out in the region (11)
with the boundary conditions for reflecting parti-
cles.

Because the mmmimum periodical cell contains
two whole cavities with the electric field directed
in opposite directions, the statement described
above leads to a drop in the computational re-
sources consumption of 2¢*! for averaged equa-
tions simulation and of 2¢ for particle simulation
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Fig 1 The kinetic simulation region contaiming 1,/29! part
of the cavity, (a) d = 2 (shaded region 1s sufficient for solving
averaged equations), (b) d =3

with respect to the problem with equivalent peri-
odical boundary conditions with zero averaged
electric field.

The optimal ratio between linear region sizes 1s
defined by the cavity anisotropy, which is time-
dependent and can become both more and less
than the initial one. It is reasonable therefore to
put L, =L, =L, which corresponds to an
anisotropy of the order of 2 Approximately such
a value was observed in calculations [13, 15-18]
and 1n laboratory expermments [2] In accordance
with this fact 1t 1s advisable to carry out the
kinetic calculations m the region 0<r, <L,
~ 1L <z < 3iL containing 1/2%7! part of the
cavity (see fig. 1) with boundary conditions for
reflecting particles and zero normal field compo-
nent.

Similarly, for the solution of the averaged
equations in the first stage of the “through simu-
lation”, 1t is reasonable to carry out the calcula-
tions 1n the region contaiming 1/2¢ part of the
cavity, 0 <r | < L,, 0 <z < 3L, with the bound-
ary conditions

o adn

wnln = Yle-o= g | =0

where I'; 1s the part of the boundary without the
points z = 0.

It should be noted that during the simulation
of the collapse in the frame of (1) our method of
“cutting-out” [13, 16] seems to be rather efficient.
It means, 1n fact, that the sizes of the calculation
region follow the diminished cavity sizes. Practi-
cally, we extracted the central part of the calcula-
tion region 0 <r < 1L, 0 <z < ;L m discrete
time moments corresponding to the hf energy
density growth by an order of ten (here L 1s the
variable region size which varies n cutting-out
time moments). The required functions in the
cutted-out region were reconstructed with the
help of cubical splines. The number of grid-points
during the cutting-out process was constant; the
control was performed with the help of motion
mtegrals (2), (3). So, the cutting-out method leads
to an increase of the inertial interval without
additional consumption of computational re-
sources

Let us now discuss the question about the
simulation of the final stage of the collapse by the
particle method with the help of the principles
described above [21, 22] The spatial grid which 1s
necessary for the calculation of charges and fields
1s introduced by dividing the plasma volume L¢
mnto regular cells each of linear size 4, which
defines the spatial resolution in the system, the
cell number in each direction M = L /A 1s chosen
generally as M = 2? (p is an integer number) for
the applicabiity of FFT algorithms which are
used for the calculation of forces acting on the
particles.

The whole database volume V=Q +V,, Q>
V, 1s divided by particle arrays each of Q=
8dNLM*(A /rp)* bytes (every particle is de-
scribed by 2d parameters — coordinates in phase
space) and the common grid arrays of volume Ve
containing several arrays of volume V, = (M + 1)¢
(depending on the dimensionality and calculation
details [21]). It was taken into account here that
the grid functions in the statement (10), (11) are
real (re. expanded into sine and cosine products
contrary to complex exponents in the case of the
periodical problem); the spatial grid nodes are
placed not m the cell centers but 1n their apexes
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(in the periodical problem V, =;M¢, where ;=1
for real and j =2 for complex arrays).

Using the estimates M = 128, A =ry, Np =50
one can obtain that for the 2D problem V= Q ~
13 Mbytes. It 1s clear that such database volumes
cannot be placed in RAM computer storage and
have to be placed in external memory units (mag-
netic disks, as a rule). In addition a large calcula-
tion volume requires the use of a computer with a
large integral performance. This means both high
calculation speed and fast access to mformation
on the magnetic disks (MD). From this viewpoint
the multiprocessor system (MPS) is quite accept-
able. The MPS consists of the HOST ES-1037
and several loosely coupled array processors (AP)
ES-2706. The MPS is organized 1n SRI, Academy
of Sciences of the USSR jointly with the special-
ists of the Bulgarian Academy of Sciences and
I1ZOT (see, for example, ref [21]). The maximum
AP performance 1s 12 Mflops and 1t has memory
page organization with a total memory volume of
Mbyte (each memory page contains 2'¢ words).
The MPS permits mdependent calculations 1n
HOST and AP and data 1/0. This parallelism
allows us to carry out simultaneous calculations
in AP and 1/0 between HOST and AP, HOST
and MD,

Consider the calculation process for the single
AP case The phase “picture” as a whole (the
particle parameters) 1s placed on the MD. The
grid arrays and also two memory buffers for the
particle I/0 are placed in the AP memory. The
total particle set 1s divided 1 equal portions, each
of memory buffer size Each portion is read suc-
cessively from MD, put to AP and 1s written to
MD after processing. The memory buffers are

Table 1

organized by the “handshake” principle, i.e. dur-
ing the processing of the nth particle portion
mm the first memory buffer, the output of the
(n — th portion from the second memory buffer
and after that the mnput of the (n + 1)th portion
are performed. After that the buffers change
places. In the HOST computer also two memory
regions, each of the AP memory size, are re-
served. The particle 1/0 between HOST and
MD 1s also orgamized by the ‘“handshake” princi-
ple: in one time step the reading is performed
from one region and the writing 1s performed to
another one. In the next time step the regions
change places (see table 1). Such memory organi-
zation provides the existence of one undamaged
phase picture 1n the case of hardware malfunc-
tion. It 1s easy to see that the processing time of
one portion of particles is defined by the longest
process time, 1.e. either 1 /O time or AP process-
ing time Because the 1/0 speed U, 1s constant
(Uy~ 1 Mbyte/s) 1t defines the largest possible
particle processing rate. It 1s easy to obtamn that
the time which is required for _the 1/0_aof gne
particle in the d-dimensional case is of the order
of 16d ps (every particle is described by 2d
numbers each of 4 Mbyte to be read and write).
Therefore the processing time for one particle
cannot be greater than 16d ps. Such a hard
condition was fulfilled by carefully programming
the movement and change distribution subroutine
using Array Processor assembler Language. Fi-
nally, one should note that an additional gain can
be reached at the cost of parallelizing calcula-
tions and 1/0 data flow into several MD-AP
chains controlled by a single HOST computer
[21]

The temporal diagram of parallel processes in MPS The number of developed particles 1s given in parentheses G and P are the
input and output of particle parameters in and out of AP, W and R are the reading and writing of particle parameters from

and to MD
AP runmng (n-1) (n) (n+1)
1/0 AP & Host G(n —2)P(n) Gn—DP(n+ 1) G(n)P(n + 2)

1/0 Host & MD W(n -3)R(n+1)

W(n - 2)R(n +2) W(n - DR(n +3)
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3. The formulation of the 2D problem
specification and the simulation

The 2D geometry is the minimum one for
Langmuir collapse. It is natural therefore that the
final collapse stage investigation 1s based mostly
on 2D statements [8, 13, 16, 27, 29, 30] But the
2D situation 1s rather specific: 1t is a borderline
one, i.e. even taking into account the average
description (1) of small terms of different physical
nature (nonlinearity saturation, dispersion law
change and so on) can stop the collapse It 1s
clear that this effect is especially strong for near-
threshold cavities.

Consider the properties of the quasistationary
cavitons formed because of stopping of collapse
We shall consider only the nonlinearity saturation
effect Close to the stationary state, the low-
frequency motions can be considered as adiabatic
ones and the electron distribution function can
be taken in the Boltzmann approximation As-
suming for the sake of simplicity that the ion
temperature 1s zero, we have

dn =ngylexp(-®/T) — 1]. (12)
Here @ 1s the ponderomotive force potential
&= e2|E|2/4mw§.

Expanding the exponent and substituting (12) into
(1a) we get in dimensionless variables

AW +A¥) + V- [VE- (V¥ = [V¥[*)] =0
(13)

The time 1s here normahzed by o, !, the spatial
dimensions by (3/2)!/?r, and the electric field by
B2wn,T)V2

Eq. (13) is a Hamiltoman one:

AH
IAWI = - W ,
H= [[ive]? - Jvwl* + 4vei®] ar. (1)

Its stationary solution of the form
¥ =exp(1A%t) ¢
is described by the equation

—~NAp+Ap+V- [V<p|V<p|2(1 - lV(plz)] =0,
(15)

where A? 1s the nonlinear frequency shift in the
caviton (A 1s 1ts characteristic reciprocal size).
These solutions realize a minimum of H for a
fixed number of waves in the caviton N =
f |V |? dr. Multiplying (15) by ¥* and integrat-
ing we get

RN+ [(IVEP — |VO* + |VP[*)dr=0  (16)

Consider the scale transformation conserving N
in the 2D case ¢ — ¢(Ar). In this case

H() = [[R(ve? = 3ivel’) + e’ dr.
(17)

In the caviton H(A) has to reach a maximum.
Hence oH /6A2| 2=1=0 for localized stationary
solutions. This gives

H+§/|V¢ptf’dr=0. (18)

It is well known that if we neglect the nonlinear-
ity saturation the caviton size A~! is arbitrary.
This 1s clear, e.g., from the fact that after the
substitution » — Ar the stationary equation which
describes the caviton neglecting the nonlinearity
saturation,

— Ay + A%y + V- (Vg Vg %) = 0, (19)

1s independent of A.
It is clear from (18) that H 1s zero for such
solutions while the caviton energy

w,N =, [IVel* dr=w N
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is also independent of its size. If the imitial cavi-
ton energy 1s larger than the critical value w N th
the caviton collapses.

Including the saturation lifts the degeneracy
and the caviton equilibrium size is determined
uniquely by 1ts energy. We define this connection
assuming that the nonlinearity saturation is small
We look for a solution of the form

P=¢o+d¢p, B¢ <g,,

where ¢(r) is the solution of (19). One can as-
sume that the function ¢ 1s real. Introduce 3N =

N—N®*= 2[(V<p0,V8<p)dr. Lineanizing egs. (16)

and (19) we get

_3N-N")
2 f IVe,!® dr

A2 (20)

We see that if the energy enclosed in the caviton
1s considerably larger than the cnitical one, N >
N the equilibrium caviton size in dimensional
variables 1s of the order of the Debye radius. It
1s clear that such cavitons cannot exist due to
Landau damping. If we are just above criticality,
the caviton size increases,

I~rpN®/(N-N™), (21)

and the role of Landau damping decreases
rapidly.

We have already mentioned that as the caviton
size decreases, many effects neglected in (1) be-
come important. We mention only electron non-
linearities with characteristic time 77! ~
(krD)zwa 2 /8wnT, corrections to the dispersion
law with 77! ~ (krp)*w,, and the nonlinearity sat-
uration with 77! ~ @ (E?/8wnT)?. Since for the
caviton (krp)* ~ E%/8mnT, all these effects must
be considered at the same time. Therefore, the
calculations given above are only quantitative and
show that the caviton structure formation can be
expected only 1n the regime just above criticality.
However, the final conclusion about caviton exis-
tence can be drawn only by numerical simulation

In the 2D case we have realized the whole
collapse 1nvestigation program —the “through
simulation” [13, 16}. In the inertial interval the
cavity compression 1s described well by the equa-
tion set (1). After transformations to dimension-
less variables,

64

Vw2 - B . Mgy,

these equations take the form
A(Y + A¥) =V - (nVV¥),
i—An=AIVE)? (22)

with corresponding Hamiltonian
H= [[|AW +nV¥I” + in? + (VO)?] dr,

where @ 1s the hydrodynamical low-frequency
motion potential 9n/3t = —~AP In accordance
with section 2 the system (22) was solved 1n the
region 0 <x <Ly, 0<z<L,/2 (see fig. 1a) with
the following boundary conditions:

| _
onir

r

q’xlx=0=q’r' =q’2l =1P]z=0=

x=Lg z=Ly/2

We choose as an mitial condition for the set (22)
the function ¥ such that

AV =pgsinkz(l +coskx), k=m/L, (23)

and for low-frequency plasma density variations

sn| _ |V

o T6wn,T,’ on=0. (24)
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The 2D collapse 1nitial condition H <0 for the
mitial distribution (23), (24) takes the form

, >pm_( m )2(384)‘/2_ 14.4
0 0o~ = 72

L) \®) -

with the number of quanta N(p{') =2mw?/3

The equation set (22) was solved with the help
of FFT algorithms using a technique analogous to
that of ref. [31]. The rehability of the calculations
was checked by the motion integrals N, H. The
initial region size was L, =512r5. During the
calculation process twofold successive cutting-out
was performed and the kinetic simulation was
carried out in the region L = 128rp. The first
stmulation stage was finished when the character-
1stic cavity size was decreased down to (20-30)r,
or the field energy density in the cavity center was
increased up to W, /nT ~ 0.2 Further, one of
the most important particle methods (the dipole
expansion method) was used [21, 25] We used
values standard for such a model a =4 =rp (a 18
the macroparticle half-width) with Gaussian
macroparticle charge distribution. The number of
model particles of each kind in the Debye cell
was changed from 16 to 64; the total number of
particles reached ~ 8 X 10°. The simulation ade-
quateness was checked in different ways® by
checking the total energy conservation in the
field-particles system, the particle number and
time-step variation (0.2 <w,At<04) for the
same physical vanants, with the help of test calcu-
lations for periodic boundary conditions in the
region containing two whole cavities with oppo-
sitely directed electric fields.

The orgamzation of the kinetic stage of the
calculations was performed according to the
scheme described 1n section 2 In the 2D situa-
tion the use of one AP with its memory contam-
ing grid arrays of the charge density, the forces
and their derivatives happened to be suffictent
The volume of one portion of particle which 1s
transferred along the MD-AP chain 1s equal to
11264 particles. The AP processing time did not
exceed the I/0 one, 1e. 32 pus

Before presenting the calculation results and
their analysis we shall return to the question
about the possibility of the appearance of caviton
structures To study them we have performed two
additional calculation sets in other, stmpler mod-
els In the first of them the calculations were
performed 1n the framework of egs. (13). In the
second one we considered a mixed description
[13, 16] The high-frequency motions were de-
scribed by the equation

w
A2 + 3w, rA AW) = 2 V- (30, VW),  (25)
0

and the 1on motion 1n the low-frequency potential
¢ field was described by the kinetic equation

afl a~f‘l

d
= +v- /.

e
o TV MY w0 (26)

and solved by the particle method. The electron
distribution, on the other hand, was assumed to
be a Boltzmann distribution,

on, =n0[exp(— wT_ ¢) - 1] =8n,,

€

2 2
o= VY , (27)

and the charge separation 1n the If motions was
neglected

In the static limit this hybrid semi-kinetic de-
scription 1s reduced to eq (13), but besides the
nonlinearity saturation effect 1t describes the
1on nonlinearities and the Landau damping on
the 1ons.

4. The results of 2D collapse simulation

As was mentioned above, one of the features of
the Langmuir collapse “through simulation” 1s
the presence of a large inertial interval. This
enables us to assume that the final collapse stage
1s independent of the mitial electric field and
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density distributions 1n the cavity but 1s deter-
mned solely by the number N (or energy W) of
plasmons trapped n it. The threshold value N™
(W™) can be determined reasonably i the 2D
geometry from the condition that the Hamulto-
man of the equation set (1) 1s equal to zero. It 1s
clear that the cavity evolution character has to be
defined by the overcriticity parameter € =
W/W™ = (po/p)

We shall turn now to the results obtamed in
the numernical experiments and their analysis. It
should be noted first that in the dynamical equa-
tion framework the cavities reach rather rapidly
the self-similar compression regime (5) This fact
was checked by the depression and electric field
amphtude changing rate The largest iertial in-
terval length was reached for variants with two
central cavity parts cutting-out. The caviton size
up to the moment of transition to the kinetic
stage was decreased by a factor of 10 to 15 with
respect to its initial size

After the transition to the kinetic description
both particle and averaged simulations were per-
formed. We show in fig 2 the temporal evolution
of the oscillations of the energy density for vari-
ant € = 6.6 It 1s clear that dynamical equations
satisfactorily describe the collapse up to the oscil-
lation level W, ,, ~ 04n,T

The calculations showed, as was expected, that
the cavity evolution depends significantly on the
imtial overcrniticity €. The calculations were per-
formed for various ion to electron mass ratios,
100 < M/m < 1836 It was found that for all e

W
e,

0.981

0 0 it

Fig 2 The dependence of the maximum energy density of
the field 1n the cavity (1) results of the dynamical equations
solution, (2) the results of the “through” simulation

the cavity evolution depends on the 10on mass 1n a
self-similar way while all characteristic times de-
pend only on the product w,t=T

For overcriticy € > 6 a clear collapse picture
(see figs 2-4) was observed. The oscillation en-
ergy evolution for several typical variants 1s shown
in fig. 3. It 1s clear that for € = 6.6 fast (during
7 ~7) burning out of an appreciable part of the
energy (65%) trapped in the cavity 1s observed.
The spatial electric field energy and plasma den-
sity distributions are presented 1n fig. 4 at several
successive moments. The maximum energy den-
sity for this vaniant was W,_, /nT = 0.98 and the
1on well depth was 8n/n,= —038. It 1s also seen
from fig. 4 that the cavity continues to deepen
also after burning-out of Langmuir oscillations
due to 10n mertia. The cavity size for maximum
deepening time 1s rather large, ~ (10 X 25)r}
The electron velocity distribution 1s also aniso-
tropic (see fig 5) It 1s clearly seen that as a result
of the collapse the hf field energy 1s transferred
to a relatively small part of the fast electrons,
which 1s accelerated mainly 1n the direction of the
average caviton field (along z-axis).

For small overcriticities a long-lived (7~ 40)
caviton structure was found (see figs 6, 7) We
shall note first 1ts nonstationary nature Such
behavior is completely natural in the framework
of eq (13) Indeed, for the caviton solution the

W
o
1
7
3
aoz-——zx_-
ot
0 1 90

Fig 3 Time dependence of the average energy density of the
field 1n the cavity (1) e =66,(2) e=125,3)e=27
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'Fig 4 Spatial distribution of hf field energy E£2/16mwn,T, (left) and plasma density n,/n, (right) for the variant with € = 6 6, (a) at
t =0, (b) at the time when the field in the cavity 1s a maximum (¢ = 10 Sw;“); (c) at the time when the depth of the cavity 1s a

maximum (¢t = 17 2wp_.l)

Hamuiltomian has a completely defimte value dif-
fering from the imitial one. Therefore, because of
conservation of the Hamiltonian, the caviton so-
lution can be reached only if small dissipative
processes or energy emission beyond the simula-
tion regton limits are taken into account

We have performed additional calculations of
caviton structures mn the framework of (13) and a
hybrid semu-kinetic approach (25)—(27). The cal-
culations in these models gave similar results.
However, n this case the caviton size turned out
to be one-and-a-half to two times smaller than in
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en)_[e(v)
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023 4 5

Fig 5 The electron distribution function for the variant € =
6 6, integrated over space and the velocities V, (1) and V¥, (2)
at t=351w,!

the “through simulation”. This fact indicates that
such effects as electron nonlinearities, changes
in the dispersion law of Langmuir waves and
Landau damping make an appreciable contribu-
tion to the caviton formation.

We shall now discuss the cause of the caviton
damping after the time 7 ~ 40. Passing through
the caviton of size / the electron gains an energy
AE =efEV dt. The electric field E changes pro-
portionally to cosw,t. If the time for passing
through the caviton 1s less than mw/w,, the elec-
tric field does not change sign and the electron
gains an energy eEl ~ T. Assuming that the char-
acteristic electron velocities are of the order of
3V we find that the caviton starts to be strongly
damped when /=1 ~37V;/w, ~ 10rp, which
corresponds to the minimum cavity size obtained
in the calculations. When /> the quantity
AE is exponentially small, AE ~ Texp(—1/1,.),
but for our calculations completely finite. Ulti-
mately this nonadiabatic interaction with the
electrons leads to the caviton damping.

To check this assumption we performed a one-
dimensional calculation by the particle method 1n
which we used as imitial condition the soliton
solution of the average dynamical equations It
turned out that a soliton with dimensions close to
the caviton dimensions obtained 1n the “through
simulation” also burns up after a time of the
order of 7~ 40.

A T S

Fig 6 The temporal dependence of the cavity characteristics
for the caviton vaniant € = 125, (1) average density of the hf
field energy W/nyT,, (2) maximum energy density W/n,T,,
(3) density vanation dn/n,

We have described two opposite situations:
pure collapse and formation of quasistationary
structures Calculations for moderate overcriti-
cies, 2 < e < 6, showed that, as one should expect,
m that case an intermediate regime is realized
which can naturally be called a delayed collapse
(fig. 8). We note that in all cases the mmimum
caviton size was ~ (10 X 25)r3.

So, the 2D “through simulation” has shown
that if the initial oscillation energy in the cavity is
appreciably larger than the threshold N, there
occurs 1n the final stage of the collapse burning
out of almost all the energy trapped in the cavity
The mimimum cavity size is rather large and 1s of
the order of 10r, In this case one can expect
that 2D calculations simulate adequately 3D tur-
bulence. If N 1s close to N then in the final
stage a long-lived quasistationary state 1s formed.
Its formation 1s connected with the 2D nature of
the calculations and this result cannot in general
be extrapolated to the 3D situation. The results
obtained indicate additional difficulties arising in
the 2D strong turbulence calculations (see refs.
[32, 33D. It 1s interesting, 1n particular, to clear
the question about the amount of energy cap-
tured by the cavity when 1t 1s formed as a result
of development of modulational instability
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Fig 7 Spatial distributions of the hf field energy E?/161n T, (left) and the plasma density n,/n, (night) for the caviton vanant
corresponding to € = 1 25 (two cavities are presented)
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Fig 8 Temporal dependences of the average (1) and the
maxtmum (2) hf field energy in the cavity for € = 2 7, corre-
sponding to a delayed collapse

The 2D collapse simulation is much simpler
than the 3D one and consideration of the 2D
collapse 1s the natural first step for the investiga-
tion of the collapse problem. As was already
mentioned above the 2D situation is a specific
one and has its own distinctive features. We shall
enumerate the most appreciable differences be-
tween 2D and 3D collapse:

(1) From eq. (5) it follows that the hf energy
level increases in the 3D case more rapidly than
characteristic wave number values of trapped os-
cillations and can exceed appreciably the thermal
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density energy in the evolution process. This fact
was demonstrated, for example, in the framework
of the calculations of averaged equations [9]. The
large density intensity values can lead to a change
in wave-particle interaction, electron accelera-
tion character and the energy part transforming
them.

(2) 1t was previously shown that for 2D near-
threshold cavities the collapse is stopped and
formation of quasistationary structures is typical.
In the 3D situation this phenomenon must be
absent.

(3) From egs. (1) and (5) 1t follows that the
ratio of the kinetic energy of the ions, %nOV,Z, to
the potential one, c2ny(dn/ny)?, vanes as
~(ty—~t)*4-2, Therefore for the 3D case the
ion kinetic energy grows faster than the potential
one and the density profile in the cavity is defined
by the ion inertia but not by the thermal motion.
Therefore even though additional nonlinear
mechanisms of the final stage would stop the
collapse the ion inertia have to compress the
cavity down to switching on of electron—oscilla-
tion interaction. In this case the density well will
continue to deepen even after the burming out of
the plasma energy part. Thus, in 3D cavities the
plasma variation value must be appreciably larger
than in 2D case.

The discussion above illustrates obviously the
fact that solution of the 3D problem is of princi-
pal importance. In the next sections the final
stage of the 3D cavity evolution 1s investigated by
the particle method [17, 18]. Such simulation 1s
near the limits of today’s computer capability [21,
22].

5. The 3D kinetic model and its realization

We succeeded in solving the problem of the 3D
Langmuir cavity evolution using the principles of
collapse simulation by the particle method pre-
sented 1n section 2. The huge computational need
for the 3D simulation required a very deep in-
sight in cavity properties in the numerical model

[22] and also in the application of parallel compu-
tation with its new organization elements [21].

The total astronomical calculation time is of
the order of

201,

T~ Gomar

(28)

where m is the number of processors (not large,
as a rule), f; the characteristic time for the final
stage of the collapse, f;w, ~ 200. From (28) tak-
ing into account the expressions for Q and char-
acteristic values U, and Az presented mn section
2, it follows that a reasonable maximum calcula-
tion time (15-20 h) 1s reached for a number of
cells in each direction of M < 32. Because T is
proportional to M? it is difficult to use more
grids by means of enlargement of m or At. For
M =32 and the typical particle model value 4 =
rp the cavity quarter was simulated in a region
(32rp)3, ie. the whole cavity in a region 64 X 64
%X 32r). It is clear that for a sufficiently large
inertial interval providing acceleration of heavy
ions an increase of the linear size L is required.
It can be performed only at the cost of a more
crude grid used with a linear mesh-size exceeding
the standard value r,. The principal possibility of
such inertial interval increase is provided by a
sufficiently large minimum cavity size observed in
the 2D calculation (see section 4) and laboratory
experiments 2, 3] (/, ~ 10~-20rp). The increase
of mesh-size A leads, however, to enhancement
of the aliasing effect and a correction of the
model becomes unavoidable. Let us consider this
question 1n detail.

For the traditional dipole method with Gauss-
1an particle charge space distribution ~ exp(—r?/
2a?) the long-wave Langmur oscillation disper-
sion 1s

w(k) = w,[1+ 3(krp)® - 3(ka)’] (29)
and can differ markedly from the real one. In

particular 1f the particle size a > V3 rp, the dis-
persion agent becomes negative. A trial 3D col-
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lapse simulation with mesh-size 4 =2r;, and
traditional smoothing a =rp has demonstrated
the strong energy nonconservation due to aliasing
effects. The energy conservation was much better
in the strong short-wave harmonic suppression
(a =2rp) case But in this case the dispersion
term, however, becomes negative and the
collapse 1s absent. For the long-wave region
minimization of dispersion correction and alias-
mg effects we have chosen the “plateau-like”
distribution (for n — )

S(k) = exp| — (ka)"], (30)

which differs from the traditional Gaussian charge
distribution. The “plateau-like” distribution
makes the spectrum equal to zero at k> 1/a.
The choice of a and n was verified by means of a
much less expensive 2D model The correctness
of the 2D simulation with the smoothing factor
(30) for A =2ry was verified by comparing 1t
with the results obtained for A =rj. The test
calculations were found to be the best for a =
1.4rp and n = 6 (energy nonconservation ~ 0.2%
during the time ~ 30w, ). One can see that at
such smoothing parameters the dispersion of the
long-wave part of the spectrum is defined by

w(k) =w,[1+ 3(krp)?],

with an accuracy of the order of k* The above
expression coincides with the real dispersion of
Langmuir waves.

The conclusion about the possibility of using an
analogous k-space smoothing for the 3D case 1s
based on the theoretical prediction about stronger
collapse character 1n the 3D case. This means, at
least, that energy flow along k-space scales 1s
absorbed by plasma particles within a smoothing
zone defined from 2D calculations.

The described procedure of standard dipole
particle method correction enables to use both
linear sizes L = 34rp and L = 64r, The last one
corresponds to consideration of the whole cavity
in the region 128 X 128 X 64r,

The mutial conditions for the final collapse
stage were chosen in accordance with the re-
quirements described in section 2. To minimize
the aliasing effects and to increase the inertial
interval we have chosen the imtial charge distri-
bution in the cavity as a combmation of the
eigenfunctions of the boundary problem

_ d¢ | _
Ap =0, 8_n_r—0’

O<x,y<L, —-L/2<z<L/2
for minimum wave number k = w/L:

p(r) =po(1+cos kx)(1 + cos ky) sin kz.

The plasma density variation 8n was defined from
kinetic and hf pressures balance,

dn| |EI?
no |y~ " Tomm,T, T 6
1 2
= ——— (IE)dr,
l6~n-n0TeL3[' I"ar

where the constant C corresponds to zero mean
density, which is unavoidable in particle models.
The initial particle velocity distribution was cho-
sen to be Maxwellian, the ion temperature and
velocity equal to zero.

For the described initial plasma conditions the
calculation of integrals (2) and (3) gives in dimen-
stonless variables

= 19 272
N=gmrol’

H= (%)2[13.5—747(37";’;)21}]. (31)

Here N and H are normalized by the whole
thermal energy L’n,T,, the charge density p, and
length L by en, and rp,, respectively. Now substi-
tuting /;=L /2 1n the sufficient collapse condi-
tion (4) for the nitial perturbation amplhitude
(here the condition W/n,T <1 is taken nto
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account) we have
35.9/L2 = p < p, < 4.99/L. (32)

From this condition, 1n particular, 1t follows that
L>172

The particle mass ratio in the calculations was
chosen sufficiently large, 100 < M/m < 400. The
total particle number was ~ 1.8 X 10%. The calcu-
lation correctness was checked by controlling
total energy conservation 1n the system.
the nonconservation did not exceed several per-
cents. Furthermore, 1n the 1n1tial cavity evolution
stage (for small long-wave oscillations levels) we
always had exact conservation of the integral N,
1e. the whole field energy

Now consider briefly the pecuharities of 3D
software development and realization. The maxi-
mum particle processing rate is achieved by gnid
arrays displacement in the AP main data mem-
ory. It should be noted that these arrays cannot
be placed in the same memory pages as process-
ing particles because of memory conflicts in the
case of simultaneous memory region requirement
by the processing program and I1/0 channel
The number of grid arrays (each of volume V, =
(M +1)%) is for the 3D case equal to 10: G (the
charge density and 1ts Fourier components), FX,
FY, FZ (the forces and their Fourier-compo-
nents), FXX, FXY, FXZ, FYZ, FYY, FZZ (the
force derivatives). However, the existence of a
sufficient time-stock (the processing time is less
than the I/0 time) makes possible the calcula-
tion of derivatives immediately in the inner cycle
and storing only four data arrays. The trial calcu-
lations have shown that this problem 1s solvable if
the above memory distribution requirements have
been fulfilled Such data volume can be placed on
three AP pages It means, however, that two
array elements have to be placed on different
memory pages and results in additional mnner
cycle programmung difficulties, which increase the
processing time. From the other side, to minimize
the imitiahzation time for 1/0 between HOST
and AP, MD and HOST and AP running, one

e e e B

Fig 9 The gnd array distribution in the AP memory for 3D
simulation BUF1 and BUF2 are the memory regions for
pumping portions of particles

should use the maximum portion size. Taking
mto account all previously mentioned circum-
stances we used in 3D kinetic calculations eight-
page AP with a memory distribution presented
schematically n fig. 9

The orgamzation of the calculations for the
case with one AP comncides with the one de-
scribed 1n section 2. In the case of m AP there
are m MD-HOST-AP chains Each AP memory
distribution remains the same; the phase space
on MD 1s divided by m parts (each one 1s in-
tended for the arbitrary AP); the HOST memory
contamns 2m particle buffers The whole data
processing flow consists of parallel working
pipelines This process becomes possible by means
of 1/0 synchronization between m MD and the
first group of m HOST memory buffers simulta-
neously with an analogous 1/0 process between
m AP and the second group of m HOST memory
buffers. After the particle processing the whole
charge density 1s defined by the summation G =

™ G,. This process consists of sending each
array G, from the ith AP to the others m — 1 AP
and simultaneous computation of the sum G n
each of the m AP This addition does not worsen
the time characteristics because it 1s performed
simultaneously with the next I /0. When the cal-
culation of G has completed the calculation of
forces is performed for each of the m AP. It 1s
easy to show that any other calculation procedure
of forces (for example, accumulation of the den-
sity array G in one AP and its subsequent sending
to the other ones) is much more expensive

The described computational procedure pro-
vides =m(1l + «)/(1 + am) times computational
gain [21] where « < 1 characterizes the relative
calculation time for the calculation of the forces
using the density The configuration of the used
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multiprocessor system allowed to use mn our cal-
culations two AP. The volume of each portion
travelling along each MD-HOST~AP chain was
equal to 10922 particles. The particle processing
time does not exceed the 1/0 time of 48 ps. The
average computer system performance per parti-
cle turned out to be slightly larger and for one
AP equal to 51 ps due to some expense; for
m =2 this value was found to be 27 ws. The
whole database volume on MD was 2Q =85
Mbytes.

Finishing this section we shall note that an
assembly of methods described here (the using of
asymmetry, the doubling of the mesh-size with
correction of smoothing, the calculations paral-
lelization) allowed to reach in the 3D case two
orders of computational gain with respect to the
traditional approach and to perform 3D Kinetic
cavity evolution simulation.

6. The final stage of 3D Langmuir collapse

Consider the results of the numerical experi-
ments. We shall note first of all that in any
simulation vanant the hf field energy maximum
corresponds to the 10n density well and coincides
with their mtial location (the coordinate refer-
ence pomnt). The trial calculation set carried out
for region size L =32r, has demonstrated the
collapse picture: a growth of a hf oscillation in-
tensity maximum of 2 times accompanied by a 10on
well deepening of 1.5 times. The small inertial
interval due to the small initial perturbation led,
however, to a fast average hf oscillation energy
damping by electrons because of switching on of
Landau damping. An appreciable advance was
obtained using doubled region size. We have
found expermmentally the imtial perturbation den-
sity threshold pj§ = 0.009, which happened to be
the same as calculated from estimation (32), p{’
=(.0088 For values p, > p¥ the picture of field
focusing at the initial density perturbation center
and ion well depression was observed, which led

to hf oscillation energy burning out (the spatial
physical cavity characteristics for one of the typi-
cal variants are given in fig. 10). The choice of the
perturbation amplitude p, <p§ led to destruc-
tion of the mitial field and density amplitude
Similar to the 2D case, we introduced overcritic-
ity parameter € = W(p,)/W(p¥) = (p,/pt)?. The
calculation results for an nitial hf oscillation en-
ergy density in the cavity center of 0.135 <
Wenax/NoT. < 0.485 is presented below; the aver-
age hf field energy was changed in the limuts
0.024 < W/n,T, < 0.080.

The temporal dependences of the mean hf
oscillation energy W/n,T,, the maximum hf oscil-
lation energy W_,,,/n,T, and the ion well depres-
sion (n,,,, — N,.n)/n, for four simulation variants
are presented in fig. 11 For large exceedings
po =002, e =5, M/m =100 (variant 1 1n fig. 11)
and p,=0.015, e =3, M/m =100 (variant 2 1n
fig 11) a bright collapse picture with a six times
energy growth up to a maximum W, /n,T. ~ 3, a
3-5 times 1on well depression down to (n,,, —
n,.n)/ne~ 07 and a significant part (70%) of the
hf dissipation during ~(8—9)wp‘l ! was observed.
In the 2D case for exceedings 2 <e <6 a “pro-
longed” collapse was realized (fig. 8) but a
“bright” collapse was only for € > 6. Even for the
regime practically near threshold p,=0.01, e =
11, M/m = 100 (variant 4 in fig. 11) we observed
a three-times field energy growth and a 2.3 times
well depression during ~ 30w, '. The average
oscillations level remained practically unchanged.
In the 2D case we have already seen that for the
exceeding € = 1.25 during the same time the cavi-
ton structure formation took place (see fig. 6).

To clear the ion inertia role we have carried
out twice calculations for the amplitude p,=
0.015: for M/m =100 and M/m = 400 (variants
2 and 3 in fig. 12 respectively). This ion time-
scaled variant (see fig. 13) 1s seen to be the same
with respect to a time-shift of ~4w,'-5w;’
because of the 1on immobility at the initial time;

the burning-out time in w, ! units does not de-

pend on the mass ratio yM/m . In accordance
with the qualitative presentations of the 10n iner-
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Fig 10 Spatial distributions of hf field energy density E2/8wn, T, (left) and the ion density n,/ny (nght) for vanant p, = 0015,
M/m =400 (a) for ¢t =0, (b) the mtensive hf field growth stage (+ =70 4w, 1), (¢) the time of hf field maximum in the cavity
(t=13920, 1), (d) the stage of hf field burmng-out (¢ = 210 4 1), (e) the time of the maximum cavity depth (¢ = 284 0w, D (Left
side) the whole region, (rignt side) the cross-section by plane z =0
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Fig 11 Temporal dependencies of collapsing cavity charac-
teristics (1) pg = 0020, M/m = 100, (2) po=0015, M/m =
100, (3) po =0.015, M/m =400, (4) p,= 0010, M/m = 100
(a) The average hf field energy W/n,T, m the cawty, (b)
maximum hf field energy in the cawvity, (c) maximum value
over space of cavity depth (n,,, ~ n,,0)/R0

tia role in the 3D case for the bright collapse
variants the main ion density well depression was
after the hf field reached its maximum (see fig.
11). The hf energy levels and plasma density
variation values reached exceeded appreciably
(more than twice) the observed ones in analogous
2D calculations.

The field and density variation spatial depen-
dences along and perpendicular to the dipole axis
presented 1n figs. 13 and 14 for variant p, = 0.15,
€=3, M/m =400 for the time moments ¢, =0,
t,=1392w;"' (at which the field is at its maxi-
mum) and ¢;=284w,' (at which the density
deformation 1s at 1ts maximum). The cavity
eccentricity (the long size to small size ratio) at
the time moments ¢, ¢,, t; was 1.65, 2.1, 2.3 for
the field intensity and 1.65, 2.3, 2.2 for the density
well, 1.e. during the evolution the cavity preserved
the dipole flattened shape tending to a more
spatial anisotropic shape.

One of the most important simulation results
which we have observed for all bright collapse
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Fig 12 The same as 1n fig 11 on 1on time-scale for vanants
(1) pg=0015, M/m = 400, (2) po=0015, M/m = 100
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Fig 13 Distributions along the dipole axis of values
E?/87un,T, (curves 1) and 238n/n, (curve 2) for vanant
po=0015, M/m =400 (a) t=0, (b) t=13920; ", () t=
284 0w
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Fig 14 The same as in fig 13 perpendicular to the dipole
axis

variants 1s the rather large (~ 10r5~16rp) mn-
mal cavity size; in the 2D case this value was
~10rp. This result is in good agreement with
laboratory experiments [2] (see also ref. [3]) which
seemed previously mexplicable. The explanation
could be in the fact that because of a higher value
of W,_../n,T. than m the 3D case the
electron-oscillation nteraction 1s appreciably
modified by the strong nonlinearity. This assump-
tion 1s confirmed by the phase plane picture
(z,V,) analysis (see fig. 15, z is the field oscilla-
tion direction, the picture is averaged in perpen-
dicular direction). The “curls” formation 1s clearly
seen, Le. wavebreaking takes place The final
electron velocity distribution (see fig. 16) is char-
acterized by a substantial amsotropy (the maxi-
mum electron acceleration along the dipole axis)
and the existence of strongly accelerated, up to
V=V, =97, electrons (n 2D calculations

max

Vinax = 5V, see fig. S) It means, in particular,
that collapse 1s a more effective mechanism of
fast electron generation than one could expect

from 2D model calculations.

Fig 15 Electron phase plane (z,V,) (in perpendicular direc-
tion the picture is averaged) for vanant M/m = 400, p = 0 015
at the time ¢ = 284w,

bafe

%,

Fig 16 The electron distnibution function integrated over
space and velocities (1) V,, V,(t =0), (2) V,, V,(t = 284w, ),
BV, V, (t=284w; ") for vanant py = 0015, M/m = 400

25 5 #5 40

The number of electrons whose velocities ex-
ceed 3, Sand 7 Vre in dependence on time are
presented in fig. 17. The hf oscillation energy 1s
seen to be transformed to a small part of the
electrons (about 0.3% of the total number) be-
longing to the tail of the distribution function.
The growth of accelerated particles starts when
the hf field is maximal. This fact demonstrates
that the collapse is stopped simultaneously with
the beginning of the effective electron accelera-
tion.

The results obtained 1n the 3D kinetic simula-
tion - the local level of high hf oscillation, the
quasi-one-dimensional electron distribution func-
tion tail, the flattened cavity shape —allow us
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to use for a qualitative general physical picture
analysis in the final stage the auxiliary one-di-
mensional particle-method simulation of high-in-
tensive hf energy structures over the ion density
well. One should note that 1D kinetic calcula-
tions of large-amplitude wave evolution were car-
rnied out, for example, in works of Buchel’nikova
and co-workers (see, e.g., ref {34]) In contrast to
these works we have investigated the dissipation
distribution process obtamed as a 3D evolution
result. For the sake of simplicity we have carried
out auxibary 1D calculations for periodical
boundary conditions, 1e. two full cavities with
oppositely directed electric fields were consid-
ered.

The field structure m the cavities was simu-
lated by a soliton-type 1nitial distribution

E(x)=Ey[l1/chA(x—L/4)
—1/ch A(x —3L/4)],

where L is the region size, for parameters (E,
the amplitude, A the inverse size) corresponding
to 3D cavity parameters at the beginning time of
field burning out. The 10on density deformation
value was defined from hf and kinetic pressures
balance,
E? dn
T6mn,T, ~ ~ n, +C,
1

—_ = L 2
C= TomnzL J, B2 4%,

b aNe (102
03} Ng
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Fig 17 Temporal dependencies of the number of electrons
whose velocities exceed (1) 3V, (2) 5Vr, (3) 7V, for varant
po=0015, M/m = 400

where « is the coefficient which allows to calcu-
late the required field using the known field am-
plitude

Using the above initial distribution for cavity
parameters W, /n,I.=1.8, —dn/ny~ 05 and
cavity half-width 15ry corresponding to the 3D
variant py=0.015, e =3, M/m =400, we have
observed a fast (2-3 plasma periods) burning out
of such structure accompanied by a formation of
a tail in the accelerated particle electron distribu-
tion function; the 1on cavity profile during this
time remamned practically unchanged (see fig 18).

From the phase space picture corresponding to
this variant the peculiarity formation with subse-
quent transformation into multiflow 1s clearly seen
(fig 19). The zero electron temperature and with
the same 1mitial conditions calculation variant (the
phase space plane evolution presented in fig. 20)
gave a more clear multiflow picture ongin

The physical interpretation of the energy trans-
formation to electrons 1s studied next. The cavity
electric field changes its direction during the time
T ~m/w, If asufficient number of electrons suc-
ceed 1n crossing the whole cavity during this time
then a substantial part of the trapped energy is
taken away by these particles from the cavity. The
oscillations of the electric field in our calculations
are so large that even mitially immobile particles
succeed 1n accelerating and leave the cavity within
the time 7. In this process a part of the particles
is reflected back and produces multifiow motion,
which 1s clearly observed in fig 19. The finite
temperature washes away the picture but the
main phase space structures are observed suffi-
ctently well

For 3D simulation a similar phase space behav-
1or is also revealed. The absence of a break in the
small-velocity region 1s explained by the fact that
the picture given 1n fig 15 is averaged in perpen-
dicular direction and particles from the cavity
periphery, where the field 1s negligible, fill the
break. One should note also that the part of
burned energy in 1D calculations is about 80%,
which 1s 1n good agreement with 70% of the
burned-out energy in 3D simulation
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Fig 19 Electron phase plane for a time = 48wp"

1D experiment

in the

The initial cavity size increase decreases sub-
stantially the energy transmission to particles
The hf field level decrease 1n the cavity acts
similarly. To simulate such an effect we shall take
mnto account that in the real 3D situation the
cavity collapse preserves the plasmon number
N~ W, 1>, where | 1s the charactenstic size,
W, .« the maximum value of the hf energy in the
cavity. Therefore the sizes r, and r, correspond-
ing to W, ., and W, . are connected by r, =
r Wi max/ Wamax- This allows us to simulate the
cavity dissipation described above 1n the more
recent stage. The value W, /n,T,=0.5 for the
above described example W, /nT.=18, r,=
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Fig 20 The phase plane evolution 1n the 1D expenment for 7, =0 (a) imhal stage (¢ = 1 pr‘l), (b) wave breaking (¢ =3 2w;‘),

(c) the multifiow (¢ = 6 0w )

15r, corresponds to the length r =24r,. The
variant of the calculation with the initial condi-
tion W,,./neI.=05, r,=24r;, has demon-
strated a practically unchanged energy value
localized 1n the cavity during several plasma
periods. This fact emphasizes the threshold char-
acter of the hf energy burning-out process 1n
dependence on field amplitude and its localiza-
tion size

Thus, the mnvestigation of the 3D cavity evolu-
tion final stage has demonstrated a clear collapse
picture. The general characteristics of the cavity
and 1ts interaction with electrons — the maximum
hf energy levels, the 1on density deformation am-
plitude, the maximum electrons velocity, the min-
imum final cavity size — exceed substantially the
analogous charactenistics in the 2D kinetic calcu-
lations. The geometrical cavity character-
1stics — the large munimum size (~ 16rp) and
anisotropy power — agree with experimentally ob-
served ones [2, 3). The burning out of high nten-
sive structures 1s accompanied by formation of
phase-space vortices, generation of multifiow and
a throwing out of a substantial part of the parti-
cles from the cavity

One should note that stable registration of a
suffictently large mmimum cavity size means, In
particular, that one of the most important cavity
parameters — trapped oscillations characteristic
wave number - remains small (krp~0.2) up to
the final stage of evolution. This fact can play an
appreciable role for a simplified description of

building up of the collapse. On the other hand, a
large mimmum cavity size can lead to the fact
that the inertial interval length for real plasma
experiments will not be very large This fact must
be taken mnto account in the mterpretation of
experimental results,

One should emphasize finally the following. As
calculation results show [32, 33] the density fluc-
tuations excited by the ponderomotive forces dur-
ing the cavity collapse can affect substantially the
turbulence properties. In several works (see ref
[33] and references therein) attention was paid to
the “nucleation” of the collapsing cavities, 1 ¢ the
rise of cavities on the location of the burned-out
ones. This effect depends substantially on the
well density structure at the location of the
burned-out cavity. In ref. [33] the 2D simulation
in the framework of the dynamical equations was
carried out. Our calculations show that the maxi-
mum density fluctuation amphtude which is
reached already after the cavity burning on the
mertial compression stage even in the 2D case 1s
large, 8n/ny~03-0.4. In 3D calculations this
value 1s increased up to dn/ny=0.7. Kinetic
effects are already very mmportant for such fluc-
tuations and this fact must be taken into account
in carrying out turbulence simulation In particu-
lar, the problem of the level and the fluctuation
spectrum remaimng after the cavity burning-out
have to be studied using the particle method. It 1s
convenient to do this using the semi-kinetic model
(25)-(27) described in section 3.
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7. Conclusions

We have carried out a Langmuir collapse nu-
merical simulation which includes the physical
picture analysis of the especially important cavity
evolution final stage. Such an investigation based
on 2D and 3D kinetic calculations became possi-
ble due to especially designed and practically
realized general principles of the Langmuir col-
lapse simulation. These principles are based on
rigorously taking into account of the cavity physics
1n the model, through co-ordinated performance
of all problem stages — from physical statement to
software development.

The 2D problem solution in the wide mertial
interval (“through simulation”) have demon-
strated the collapse of cavities which trapped a
large energy amount and quasistationary cavitons
for low exceedings, This result must be taken into
account in the interpretation of 2D turbulence
simulation results and their extrapolation in the
3D case.

The 3D particle simulation has demonstrated a
clear collapse and particle acceleration picture
Agreement between the cavity characteristics with
ones observed n laboratory experiments has been
obtamned The calculation results point out the
important role of joint nonlinear and kinetic ef-
fects taken 1nto account in theoretical models of
turbulence and present useful data for building-up
of such models and interpretation of the experi-
ments
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