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Solitary waves on a strongly anisotropic KP lattice
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We consider a strongly anisotropic 2D atomic lattice model which in a continuum limit becomes the Kadomtsev—Petviashvili
equation. Solitary waves on this lattice are studied by a variety of analytic and numerical techniques.

1. Introduction

In this paper we study a strongly anisotropic 2D
atomic lattice model with Hamiltonian given by

H= Z [%ulzj+ % (uH- 1.j— ui,j)z
[

+%62(ui,/'+l_ui.j)2+%ae(uid—l,/’_ui.j):;] . (1)

Here e 1 is a small parameter and a is an O(1)
parameter. The lattice has a weak nonlinearity along
the / axis and has weak linear coupling in the j di-
rection. For general coefficients, this is about the
simplest strongly anisotropic lattice that can be stud-
ied. It models, for example, lattices which are made
up of weakly coupled nonlinear 1D chains. With the
specific coefficients given here (and in the special
case a=1), we recover the Kadomtsev—Petviashvili
(KP) equation [1] in a particular continuum limit.
This enables us to compare results with a well-stud-
ied continuum model with many nice properties.
The basic question we seek to answer in this paper
is the following: does the model (1) support exact
plane solitary waves, i.e. plane waves which travel
across the lattice without losing energy, the lattice
-analogue of the well-known exact solitary wave so-
lutions of the KP equation? Although we have no an-

alytic proof, we shall see that the numerical resuits
strongly affirm a positive reply to this question.

We first discuss the continuum limit that leads to
the (KP) equation. The equation of motion is

Ui j=Up— 22U+ Uy
+€2(ui,j+| =2t u; )
+af[(ui.j-ui—l,j)2—(ui+1.j—”i.j)2] . (2)

To get a continuous model, we expand all terms
around (7, j) in the usual way to get

uttzuxx+l_12uxxxx+ "'+62(uy,V+-|lEuy-"yy+ )
tae( —2uu + ..) . (3)

Now changing variables, z=¢€(x—t), w=e¢y, 1=€
so that the equation becomes to O(¢€®)

24u,.+2u,,..+12u,,, —24au.u., =0 . (4)

Finally differentiate with respect to z and set v=u,
to get

(24v,—-24aw.+v...).+12v,,=0, (3

which is the Kadomtsev-Petviashvili equation. In
the original discrete model (2) we often find it con-
venient to introduce the difference variable
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€U, =U , —Ui_y,,
which can easily be shown to satisfy the equation
i;/</:l'l+],/_21’yl</+l"l‘l‘l
hi
4'_Eh(l'yl./+l _21"1‘/ +l'1./— 1 )
20,2 9,2 2
—dae (Z"1+l‘/—‘-vl‘/+l'y/—l,/) . (6)

Eq. (6) can also be shown to reduce to (5) directly
using a similar continuum limit as above.

2. Solitary wave solutions

The KP equation (5) has solitary wave solutions
v(z,w.t)y=—1k?sech? [ (kz+Iw—wT)] . (7)

provided w=s3k*+/?/2k and a=1}. This solution
can be integrated to give a kink like solution in the
variable u to (4)

u(z, w, 1)
=—ktanh[{kz+3iw— (Fgk+12/4k)1] . (8)

We are interested in solitary wave solutions to the
original discrete models (2) or (6). These have the
form u, (1) =¢(icos O+ sin @—ct)=¢(z) for a wave
at angle 8 to the / axis [2]. With this ansatz, (2)
becomes

c*p..=p(z+cos §) —20(z) +¢(z~cos 0)
+e?[p(z+sin0) —2¢(z)+p(z—sin ) ]
+ae{[¢(z) —p(z—cos 0)]°
—[¢(z)—@(z+cos 0) ]} . (9)

Note that this differential-delay-advance equation is
exact and is not a continuum approximation. It can
be solved numerically using spectral and continua-
tion methods as in the 1D lattice case [3], or ap-
proximated by a variety of continuum approxima-
tions. We mention in passing that these techniques
can also be applied to other 2D or 3D lattices. In ref.
[4] for example, we apply the methods described
here to a weakly anisotropic nonlinear Klein-Gor-
don lattice.

Consider first a continuum approximation to (9)
for slowly varying ¢(z), corresponding to small c. It
is convenient to scale z by re, where ris a length scal-
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ing parameter. We write @(¢) =0 (qg/re) and express
@(q) and ¢ as formal power series In ¢,
D(q)=Dy(q) +e'Dy(q) +O(e?) .
c=cpt+ e tete, +O(e”) . (10)

We can now insert this into (9) and expand in a
Taylor series in € around e=0. Comparing coeffi-
cients of € we get

co=k/r.
’ /\.} /3
VPR T

L A o
1920 48r 8k 24kr

(LY

Cy
and

Dy(q)=2k(s—1).
2 2/4 >
Do(q)=1k*s(2s°+35—4)+ s s+B(s?=3).
(12)

where s=s(¢)=1/(14+¢Y) and B is an undeter-
mined constant arising from the solution of the o.d.e.
for @,. Both @,(q) and @,(q) are “kink’ shaped.
Since @, (g) is anti-symmetric about g=0, we choose
B= —k* making @,(g) anti-symmetric about ¢=0
also. This gives

574

¢2(q):$k3s(2sz—3s+1)+is. (13)

/\,3

The kink height is then
Hgne=1 hm @&(g)— lim P(q)|
o v

o rx
= |2k+ €I (FK342047k3) | +O (%), (14)

which is independent of the choice of B. We then de-
fine the relationship between kink height H,;,, and
wave speed Sy for waves aligned at angle 6e [0, i)
to the i axis parametrically by

Hkink(l')=2k+fz(%k3+2/4/k})+0(64) N
Skink (F)=k/r+eco(r, ) +e*cs(r, ) +O(e°) .
(15)

where k=rcos(6), /=rsin(0) and ¢, ¢, are defined
above.
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A similar calculation can be carried out for the

“pulse” variable v; ;. First define

v (t)=w(icosB+jsin —ct)=y(z) . (16)

Then rescale as before, ¥(gq)=w(q/re). We get fi-
nally to O(e*)

P(q)=2k*(s*—s) +€*(s*—5)

X [5k*(5—18s+18s2) +2/*/k?] (17)
and
ko+ 48714
Hpulse(r)z%k2+62_'9_—6_k_‘z_—— +O(64) (18)

and Sy (7) as in (15).
For fast solitary waves, ¢>> 1, we can obtain a dif-
ferent formal expansion for y(z) in powers of ¢!,

w(z)=c?[Wo(2) +c 2y (2)+0(c™) ] . (19)

Inserting this into the equation corresponding to (9)
for v and neglecting higher powers of ¢ ~' we get

ws(z)=ae*[wi(z+cos 8) —2p3(z)
+yd(z+cos )] (20)

and a linear equation for ¥, involving ,. After some
rescaling we find that

1
Wo(2)=mQ(Z/COS€), (21)

where Q(z) is a universal function satisfying

S0 = Q2w+ 1) =202 (M) + Q2 (w—1)
(22)

subject to the boundary conditions Q(w)—0 as
| w| —oco0.
Thus the height of the solitary wave is given by

l
ae? cos?0

l//(0)=cz< Q(0)+O(C‘2))- (23)
The function @(w) can be calculated by solving (22)
using spectral methods, and we find Q(0)~
1.397686. Eq. (23) cannot, however, give a good fit
for small ¢, especially since in this limit it does not
give the continuum result c—cos 0 as H,,.—0. We
can introduce a constant correction to (23) which
will not alter the asymptotic result and recover the
small amplitude limit, to give
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c?—cos’0

v(0)~ — =5 2(0).

Rather remarkably, this heuristic formula gives an
excellent fit to the numerical results described below.

(24)

3. Numerical studies

One approach, already mentioned, is the numer-
ical study of (9) or the corresponding equation for
v using spectral and continuation methods [3]. Some
results are shown in fig. 1 for H,,. for the values of
6=0, 0.1z, 0.2r, and 0.3n from right to left across
the diagram. The solid lines correspond to the nu-
merical calculation and the dashed line shows the
“corrected” asymptotic formula (24). Note the fit
between the two is surprisingly good for all ranges of
¢ considered even for ¢< 1. This is unexpected be-
cause the width of the solitary wave —co as c—cos 6,
whereas the width of the pulse solution of (22) is
independent of ¢. By comparison, the continuum
model results (not shown) only give a good fit to
H,.s for amplitudes close to zero.

Another approach is to integrate the original lat-
tice equations (2) directly. If the initial conditions
are chosen to coincide with a solitary wave given from
the numerical solution of (9), the stability of such
solutions can be tested over finite time scales. The
method we use to integrate eqs. (2) and (6) is a
symplectic ordinary differential equation solver (see
ref. [5]). It is a fourth-order fixed-timestep method
and is applicable to any system which can be written
in separable Hamiltonian form, making it ideal for
discrete lattice models. When applied to the Toda
lattice model (for which there is an exact solution)
the symplectic scheme produces better results more
efficiently and easily than the commonly used
Runge-Kutta method (see ref. [6] for further de-
tails). In addition, it is easy to code for parallel com-
puters making the study of the 2D domains a great
deal less costly.

We have integrated both a 1D version of the equa-
tions (i.e. 6=0) and a fully two-dimensional version
(##0) in domains with periodic boundary condi-
tions and several different sets of initial conditions
corresponding to different choices of c. In all cases
the solitary waves are propagating almost undis-
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Fig. 1. Plot of H,. against ¢, see text for detalils.

Fig. 2. Plot of solitary wave v; ,, see text for details.
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torted with good conservation of the Hamiltonian,
although with a very tiny “tail” of ripples. For ex-
ample, for tanf8=3, c=1.15458, timestep size
h=2; and times up to = 1000, the solitary wave am-
plitude is about 616, the amplitude of the ripples is
less than 0.0003 and the Hamiltonian is conserved
to at least six significant figures. It is thought that
this “tail” of ripples arises from truncation of the
Fourier series when determining the initial condi-
tions. Fig. 2 shows a section of the domain with the
solitary wave passing through it at time t=600. The
initial conditions (not shown) are indistinguishable
from this figure at this resolution, except of course
for a translation. Note that the solitary wave is quite
sharp in this example, being appreciably nonzero over
only a small number of lattice points.
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