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We considera stronglyanisotropic2Datomiclatticemodel which in a continuumlimit becomestheKadomtsev—Petviashvili
equation.Solitary waveson this latticearestudiedby avarietyof analyticandnumericaltechniques.

1. Introduction alytic proof, we shall seethat the numericalresults
stronglyaffirm a positivereply to this question.

In this paperwe studya strongly anisotropic2D We first discussthe continuumlimit that leadsto
atomic lattice model with Hamiltoniangiven by the (KP) equation.The equationof motion is

H= ~ [~i~~+ ~(u,.+1~—u,~)
2

+1 2( \2+i ( ~3i ‘1’

2 ~ U
11+ i — U~~j ~aC u,. — U~j j

Here e<< 1 is a small parameteranda is an 0(1) ~ . (2)
parameter.Thelattice hasa weaknonlinearityalong To get a continuousmodel, we expandall terms
the i axis and hasweak linear couplingin the I di- around(i, J) in the usualway to get
rection. For generalcoefficients, this is about the
simpleststronglyanisotropiclatticethatcanbestud- Uu = Uxx + T~Uxxxx+ ... + C~( Uyy+ ~ Uyyyy+ ...)

ied. It models,for example,latticeswhich are made +aC(—2u~u~~+...) . (3)
up of weakly couplednonlinear1D chains.With the
specific coefficientsgiven here (and in the special Now changingvariables,z=C(x—t), w=�y, r=e

3t
casea=~), we recoverthe Kadomtsev—Petviashvili so that the equationbecomesto 0(C6)
(KP) equation [1] in a particularcontinuumlimit. 24u~~+ 2u~,+ 1 2u~— 24au~u~= 0. (4)
Thisenablesus to compareresultswith a well-stud- -

ied continuummodelwith many nice properties. Finally differentiatewith respectto z andset v=u~
Thebasicquestionwe seekto answerin this paper to get

is the following: doesthe model (1) supportexact (24v~— 24avv~+ v...)- + 1 2v~= 0 , (5)
planesolitary waves, i.e. planewaveswhich travel -

acrossthe lattice without losing energy,the lattice which is the Kadomtsev—Petviashviliequation.In
analogueof the well-known exactsolitary wave so- theoriginal discretemodel (2) weoften find it con-
lutionsofthe KP equation?Althoughwehaveno an- venientto introducethe differencevariable
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ingparameter.Wewrite cb(q) = 0( q/r�) andexpress
= U,, — U,_ ~ ~(q) and c as formal powerseriesin e,

which can easily be shown to satisfy the equation
~(q) = ~)(q) + ~ ( q) +O( ~4)

cc
0+�c~+Ec4+O(�) 0 (10)

+ �2 (i’,,~ — 2c,,+ z’~,_
We can now insert this into (9) and expand in a

—ae
2(t’~+

1.,—2u~,+i~_,,). (6) Taylor seriesin e around e=0. Comparingcoeffi-

cientsof e we getEq. (6) can also be shown to reduceto (5) directly
usinga similar continuumlimit asabove. ~

k
3 /~

= +
2. Solitary wave solutions —

k5 k/2 /4 /4

The KP equation (5) hassolitarywave solutions L’4 = 1 920r — 48r — 8k’r + 24/v (LI)

i’(:,w.’r)=—~k2sech2[~(kz+lw—w’r)]. (7) and

provided w=I~k3+I2/2kand a=~.This solution
~1~

0(q)=2k(s—I).can be integratedto give a kink like solution in the
variableu to (4) 2/~

~2(q)=~k~s(2s
2+3s—4)+ ~-~-s+B(s2—s).

u(z, w. ‘r)
(12)

=—ktanh[1kz+~Iw—(~k’+/2/4k)uj. (8)
where s~s(q)=1/(l+c”) and B is an undeter-

We are interestedin solitary wave solutionsto the minedconstantarising from the solutionof theode.
original discretemodels(2) or (6). Thesehavethe for ~2• Both ~b

0(q) and i~(q) are “kink” shaped.
form U,,(t) =0(icos0+Jsin0—ct)~Ø(z) for a wave Since 10(q) is anti-symmetricaboutq=0, we choose
at angle 0 to the t axis [21. With this ansatz. (2) B= —k

3 making i
2(q) anti-symmetricabout q=0

becomes also.This gives

c
2Ø~=0(z+cos0) —2Ø(:)+tS(z—cos0) 2/~

~
2(q)=~k

3s(2s2—3s+L)+’~-~.s’ . (13)
+2[Ø(z+sin 0)—2Ø(:)+Ø(~—sin0)]
+ae{ [Ø(z)—Ø(z—cos0)]2 The kink height is then

— [O(z)—Ø(z+cos0)]2J . (9) Hk~,,k= lim ‘i~(q)— lim ii~(q)~
‘/ . ‘1 ‘ —

Notethat this differential-delay-advanceequationis
= 2k+�2(~k3+2/4/k3)+O(�~), (14)exact and is not a continuumapproximation.It can

be solved numerically usingspectraland continua- which is independentof thechoiceof B. We thende-
tion methodsas in the ID lattice case [31, or ap- fine the relationshipbetweenkink height “k,nk and

proximatedby a variety of continuumapproxima- wavespeedSklflk forwavesalignedat angleOc [0, ~st)

tions. We mention in passingthat thesetechniques to the i axis parametricallyby
canalso beappliedto other2D or 3D lattices.In ref.
[4] for example, we apply the methodsdescribed Hkflk(r)=2k+e2(~k’+2I4/k’)+0(�4)
here to a weakly anisotropicnonlinearKjein—Gor- Skflk( r) = k/r+ � 2c

2(r, 0) + �
4c.~(r, 0) +0(e6)

don lattice. (15)
Considerfirst a continuumapproximationto (9)

for slowly varying 0(z), correspondingto small c. It wherek=rcos(0), /=rsin(0) and c
2, c4 aredefined

is convenientto scalezby r�,wherer is a length scal- above.
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A similar calculationcan be carriedout for the 2 20

“pulse” variablev,~.First define çt~(0)~i ‘~‘ 2cos20 Q(0) . (24)

v1(t)=~(icosO+jsinO—cl)=~(z). (16) .

Ratherremarkably,this heuristicformula gives an
Then rescaleas before, !P(q)=y,(q/re). We get fi- excellentfit to thenumericalresultsdescribedbelow.
nally to 0(e~)

!P(q)=2k
2-(s2—s)+e2(s2—s)

3. Numericalstudies
x[’~k4(5—l8s+l8s2)+214/k2] (17)

and One approach,alreadymentioned,is the numer-
ical studyof (9) or the correspondingequationfor

H ‘ ‘—‘k2+
2k

6+4814~ ‘18’ vusingspectralandcontinuationmethods[3]. Somepuise’,!) ~2 C 96k2 “ ‘ resultsareshown in fig. 1 forH~~
15~for the valuesof

0=0, 0.lit, 0.2it, and 0.3it from right to left across
and Sklflk ( r) as in (15). . . the diagram. The solid lines correspondto the nu-

Forfast solitarywaves,c>> 1, wecanobtain adif-
merical calculationand the dashedline showsthe

ferent formalexpansionfor ~(z) in powersof c~
‘corrected”asymptoticformula (24). Note the fit

~i(z)=c
2[~

0(z)+c
2çt

2(z)+0(c
4)] . (19) betweenthetwo is surprisinglygoodfor all rangesof

Insertingthis into theequationcorrespondingto (9) c consideredevenfor c< 1. This is unexpectedbe-
for v andneglectinghigherpowersof c’ we get causethewidth of thesolitarywave —* ~ asc— cos0,

whereasthe width of the pulsesolution of (22) is
~g(z)=ae2[~~(z+cos O)—2~~(z) independentof c. By comparison,the continuum

+~~(z+cos0)] (20) model results (not shown) only give a good fit to
H~~

15~for amplitudescloseto zero.
anda linearequationfor ~‘2 involving çii~.After some Another approachis to integratethe original lat-
rescalingwe find that tice equations(2) directly. If the initial conditions

arechosento coincidewith asolitarywavegivenfrom
Wo(z)= ae

2cos2OQ(z/cos0) , (21) the numericalsolution of (9), the stability of such
solutionscanbe testedover finite time scales.The

whereQ(z) is a universalfunction satisfying methodwe use to integrateeqs. (2) and (6) is a

d2 symplecticordinarydifferentialequationsolver (see
Q(w)=Q2(w+ 1) —2Q2(w)+Q2(w—1) ref. [5]). It is a fourth-order fixed-timestep method

(22) andis applicableto anysystemwhichcanbewritten
in separable Hamiltonian form, making it ideal for

subject to the boundary conditions Q(w)—~0as discrete lattice models. When applied to the Toda
I WI —~x’. lattice model (for which thereis an exactsolution)

Thus the height of the solitary wave is givenby the symplecticschemeproducesbetterresultsmore

/ 1 efficiently and easily than the commonly used
cU(0)C2(\

220Q(0)+O(C
2)). (23) Runge—Kuttamethod (see ref. [6] for further de-

tails). In addition,it is easyto codeforparallelcorn-
Thefunction Q(w) canbecalculatedby solving (22) putersmakingthe studyof the 2D domainsa great
using spectral methods, and we find Q(0)~i deal less costly.
1.397686.Eq. (23)cannot,however,give agoodfit Wehaveintegratedbotha 1 D versionof theequa-
for small c, especiallysincein this limit it doesnot tions (i.e. 0=0) anda fully two-dimensionalversion
give the continuumresult c—~cos0 as Hpuise~O.We (O�0) in domainswith periodic boundarycondi-
can introducea constantcorrectionto (23) which tions andseveraldifferent setsof initial conditions
will notalter the asymptoticresult andrecoverthe correspondingto different choicesof c. In all cases
small amplitudelimit, to give the solitary waves are propagatingalmost undis-
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Fig. 1. Plot of~ againstc. see text for details.

~ ~\1!flU ~ i
I I~N~W~1.A1 A

~ ii 1..

~ 1l!~I~flhAIII~1~IYVMI/I/)/IAn 11/ ~

~ I~I AIIRI!~II/!III/1Iñ/4’J’P/II~ ~2~OW~AIVY1AI~U~flIfA/IIVIfl/I/!III/I/ ~

~ VJAI~1JN~f1/1/1/1/ ~
~ ~

Fig. 2. Plotof solitary wavev
1,, seetext for details.
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torted with good conservationof the Hamiltonian, memory. The first threeauthorsare grateful to the
althoughwith a very tiny “tail” of ripples. For ex- NATO SpecialProgrammePanel on Chaos,Order
ample, for tan0= ~, c= 1.15458, timestep size and Patternsfor support for a collaborative pro-
h = ~ andtimesupto I = 1000,thesolitarywaveam- gramme,to theSERCfor researchfundingunderthe
plitude is about616, the amplitudeof the ripplesis NonlinearSystemInitiative, andto theECfor fund-
lessthan0.0003andthe Hamiltonianis conserved ing under the ScienceprogrammeSCI-0229-C89-

to at least six significant figures. It is thought that 100079/JUl.
this “tail” of ripples arises from truncationof the
Fourier serieswhen determiningthe initial condi-
tions.Fig. 2 showsa sectionof the domainwith the References
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