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Is free-surface hydrodynamics an integrable system?
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Abstract

A strong argument is found in support of the integrability of free-surface hydrodynamics in the one-dimensional case. It is
shown that the first term in the perturbation series in powers of nonlinearity is identically equal to zero, the consequences
of which are discussed as well.

1. It is well known that the equations describing an ideal fluid with a free surface in a gravity field are
completely integrable in several important limiting cases. Integrability occurs for long waves in shallow water
(KdV [1] and KP [2] equations, the Boussinesq approximation [3], Kaup’s approximation [4], the Holm-
Camassa approximation [5]) and for spectrally narrow wave trains in a fluid of arbitrary depth (nonlinear
Schrodinger equation [6]). The weakly nonlinear motion of the fluid in the absence of a gravity field is
integrable as well [7].

It is very natural to formulate a conjecture that an arbitrary one-dimensional motion of an ideal fluid in
a gravity field is integrable. In this article we give arguments in support of this conjecture. We will consider
weakly nonlinear waves on the surface of a fluid of infinite depth and study their simplest resonant interactions,
and we will show that the amplitude of this process is zero.

Given the current stage of mathematical physics there are no effective general methods for checking and
proving integrability for the nonlinear wave Hamiltonian systems. Proving nonintegrability is a much easier
problem. Following Poincaré, one can do that by analysing the perturbation series in powers of the nonlinearity
[8]. Terms of this series being limited on their resonant manifolds are identified with the “amplitudes of the
nonlinear interactions” in the wave system.

Nonintegrability is a quite evident fact. To have nonintegrability, it is enough to prove that at least one
of these amplitudes is nonzero. As the complexity of calculations increases significantly with the order of
nonlinearity, much information can be extracted from the consideration of the first (lowest order) nontrivial
nonlinear process. For instance, nonintegrability of the nonlinear Schrodinger equation for d > 2 is a trivial
fact due to the nonzero amplitude for the process 2 — 2 wave scattering. This scattering is trivial for the
integrable case d = 1. One may verify (albeit with much effort) that the amplitude of the first nontrivial
scattering 3 — 3 is identically zero in this case.
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2. A one-dimensional potential flow of an ideal incompressible fluid with a free surface in a gravity field
fluid is described by the following set of equations,

Oxx + P2z =0 ($: — 0,z = —o0),
M+ Nxbx = balzmny ¢+ 3(PF + 62) + g0 = 0]2cp. (1)

Here n(x,t) is the shape of the surface, ¢(x, z,¢) is the stream function and g is the gravitational constant.
As was shown in Ref. [9], the variables 5(x,¢) and w(x,t) = ¢(x, z,1)|.=4 are canonically conjugated, and
their Fourier transforms satisfy the equations
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Here H = K + U is the total energy of the fluid with the following kinetic and potential energy terms,

n
K=%/dx/v2dz, U=%g/r]2dx.
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A Hamiltonian can be expanded in an infinite series in powers of the characteristic wave steepness kn, << 1
(see Refs. [9,10]),

H=Hy+H +H,+.... (2)
It is convenient to introduce a normal complex variable ag,
M = Vor/28 (ar + aZy), Vi = —iy/2g/wy (ar —aZy). (3)

Here wy = 1/gk is the dispersion law for the gravity waves. This variable satisfies the equation

8ak .0H _
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where

Ho = /wkaka,'; dk,

H = / Vet (@3 0ty @, + a1t 0y ) ety 1y 0 ks dly + § / Ukt (Bt Gt + 0103, )1, 1y K s ey,

(5)
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Uiy, = ry (m) Ly, + (k_kl) Ly, +( k) Li, |, (6)

Lty =k - ky + |k||k1]. (7)
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Among the various components of H, only one is important,

H, = %/W/kklkzhaza;l akzak35k+kl_kz_ksdkdkldkzdk;;, (8)
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1
Wi kakyky = —W(M—k,—kzk,k3 + Migky-ky -k, — M _kiky— gy

= M _kyy—teyks — M_tyhy—kkg = M iyt )

ksk.
M ook = |k|k2|( 2 4) (ki + k3| + [ka + ka| + k2 + k3| + |ky + ka=2) k1 |- 2k2]). 9)

The variable a; is not appropriate for gravity waves because the Hamiltonian contains cubic terms, while there
are no three-wave frequency resonances. The following canonical (up to O(a®)) transformation from a; to by
(see Refs. [9,11]) (note: in Ref. [9] there is a misprint - the negative sign is missing for Wi 4%, ),

@ = b + / e e, b By Bt iy, — 2 / i Ok by Bk, -y

2)
/ I"k(klkzbk, bty Ok vk vk, + / Bickykyky B, By iy O by —ky—ky s

_ ) m m ) (1
Biyyhy = Fkkzkl —ky " degkky—k + kyksky — k,Ilzkkz k"nckzk-kz k3kyky—ky

_rn (1) 8)] rw 2) (2)
I‘k]k;kl—k;I-;(zklkz—kl I‘;(+k]kk| k2+k3k2k3 F—k klkklr—kz —kykyks?

w ___ Vi @ ___ Uk

kigky = 7 > kkjky =

=—-— (10)
Wy — Wy, — W, Wi + W, + Wy,

transforms the Hamiltonian to a form not containing cubic terms,
H = /wkbkb,’;dk <+ %/Tkkl,kzksb’:bzl bkzbk36k+kl—kz—k3 dkdkldkzdk3 + ... (11)

Here Tkkl,k2k3 satisfies the symmetry conditions Tkk‘,kzkg = Tklk,k2k3 = Tkklykskz = Tkzkzkk1 and has the form

1 1
Tiky koks = Wiikidoks — Vikgk—ky Vigky kg~ +
kky koky 1kokaks 2k —ky Visky k3 ~ky W, +CUk-k2—(l)k Oky + Diey—ky — Dk

1
+
Wi, + Wik, — Wy, Wi + wk3 — Wy,

= Viyheyky —ky Vieskky—k (

1
+
Wi, + W, —ky — Wk wk+wk —k — Wk
3 1 3 1 2= 2

1
= Vikgk—ty Vi ky—k +
WTRORARTH N\ Wk + Wkky — Wk Wk, +60k2 by —

~ Veyesky —kes Vigkey—k (

1
= Vet kg Vg kg +
PRTRTRRE \ Wkiky — Ok — Wk Dikyrky — Dky —

1
- U—k—klkkl U—kz—k3k2k3 (

. (12)
Wiy + Wi + Wy Wiy 4+ky T wkz + wks)

The first nontrivial process is four-wave scattering, which is governed by the following resonant conditions (k;
are one-dimensional),

k+hk =k +k, o+ =wg+ ok, (13)

and all frequencies wy, are positive here. The system (13) describes a certain two-dimensional manifold in
four-dimensional space (k, k1, k2, k3). This manifold has a trivial component,

kz = kl, k3 = k, or k2 = k, k3 = kl, (14)
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but it has also a nontrivial part. Let k, ky, k3 > 0,k; < 0. Now (13) describes the rational manifold, which can
be parameterized in the following way,

k=a(l+0)?% ki=a(l+0%%  kr=-al? ks=a(l+(+(3? (15)

Here 0 < { < 1 and a > 0. It is easy to see that these two manifolds, (14) and (15), represent the general
solution for resonant interaction (except trivial permutations).

The main result of this article can be summed up as follows: the amplitude Tiy, i,x, is identically equal to zero
on the resonant surface (15). This fact can be checked by direct calculation of Tiy, ik, using expression (12)
(we did it with the help of “Mathematica” [12]). The cancellation of dozens of terms in Tiek, ok apparently
is not accidental; the cancellation would take place naturally if the system (1) were integrable, or had at least
an additional integral of motion [8]. Of course, this is not a strict proof of integrability (we have no way
of checking all higher order amplitudes in (11)), but there are other evidences, mentioned above, supporting
our conjecture. Additionally, the integrability of gravity waves in the fluid of a finite depth can be checked by
calculation of the appropriate Tix, ik, as well. Also, the recently published numerical simulation [13] of the
evolution of a set of waves has shown that the wave number frequency spectrum is concentrated in discrete
points near the curves w; = Vnk, n = 1,2,3,.... In addition, the discrete spectrum is the direct consequence
of the integrability of the system (1).

However, we can obtain the full proof of integrability by developing a new method of integration (e.g.,
inverse scattering method), or by finding an L-A pair, etc.

The vanishing T, k,k, On the resonant surface leaves in effect only the trivial interaction (14), which
corresponds to the nonlinear frequency shift of separate modes,

W = @ + /Tkkl|bk1|2dkla

where Ty, = (1/ 472)(k-k,) min(|k|, |k,|), and the Hamiltonian can be written (using new canonical variables
Cx) as

H = /kaCk* dk + %/Tkkllck|2|ckl|2dkdkl + O(Cks).

Therefore, integrability occurs at least up to the fifth order of ¢, (or steepness k7). Furthermore, any quantity
of the form

Iy = /f(k)|ck|2dk
is also an integral of motion up to the fifth order.

3. The integrability of the one-dimensional free-surface hydrodynamics results in a rather different view of
the problem of sea waves. It is well known that the well-developed surface wave turbulent spectrum is very
narrow in an angle (indeed, it is almost one-dimensional). Thus, there is a natural small parameter k, /Ky
permitting the development of a perturbation theory for sea waves. Wave breaking, which is also a nearly
one-dimensional phenomenon, can be described by an integrable set of equations as well.
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