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Abstract 

Using a combination of the canonical formalism for free-surface hydrodynamics and conformal mapping to a horizontal 
strip we obtain a simple system of pseudo-differential equations for the surface shape and hydrodynamic velocity potential. 
The system is well-suited for numerical simulation. It can be effectively studied in the case when the Jacobian of the conformal 
mapping takes very high values in the vicinity of some point on the surface. At first order in an expansion in inverse powers 
of the Jacobian one can reduce the whole system of equations to a single equation which coincides with the well-known 
Laplacian Growth Equation (LGE). In the framework of this model one can construct remarkable special solutions of the 
system describing such physical phenomena as formation of finger-type configurations or changing of the surface topology - 
generation of separate droplets. 

PACS: 47.10.+g; 47.15.Hg; 03.40.G; 02.60.Cb 
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1. Introduction 

Two-dimensional irrotational motion of  an ideal fluid in a domain confined between a free surface and a flat 

bottom is one of the classical subjects of  investigation in hydrodynamics. The method of  conformal mapping is the 

traditional approach to its study. The first important result in this area dates from the middle of  the last century and 

belongs to Stokes [1]. Since the classic works of Nekrasov [2] and Levi-Civita [3] performed in the 1920s, many 

publications have been devoted to this subject. (See, for instance, the beautiful book of  Stoker [4] and references 
therein.) The mathematical aspects of  these works gave a powerful impulse to the development of  certain branches 

in the theory of integral equations and in functional analysis. 

For the nonstationary surface phenomena studied in the 1960s and later, the Lagrangian description was more 
common [5,6]. Some authors (see [7] and the review [8] and references therein) tried to perform an analytical 

continuation with respect to Lagrangian coordinates. However, these coordinates do not allow a proper conformal 
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mapping, since their analytical continuation has singularities in both half-planes. Recently Tanveer [9,10] suggested 
applying the conformal mapping to the nonstationary problem directly in the Euler description. He applied for the 
periodic deep water case the mapping of the fluid region into the interior of the unit circle. The equations obtained 
are quite complicated and therefore are difficult for both analytical and numerical analysis. 

A convenient approach to the description of the potential flow of a fluid with a free surface in any dimension may 
be obtained by using of the Canonical Formalism known since 1968 (see [ 11 ]). For 2D geometry a combination of 
the Canonical Formalism and the conformal mapping appears to be the most natural approach to the problem. This 
approach was implemented for the deep fluid in the recent paper [ 12]. Both gravity and surface tension were taken 
into consideration. The equations obtained in the paper [12] can be written in two different forms - implicit (not 
resolved with respect to time derivatives of surface shape and surface potential) and explicit (resolved with respect 
to time derivatives). The implicit equations are simple and symmetric. In the absence of surface tension they contain 
only quadratic nonlinearity. The explicit equations, though not as simple as the implicit ones, are perfectly suited 
for numerical simulation. 

The most interesting unresolved problems in free-surface hydrodynamics are associated with formation of singu- 
larities (wave breaking) and essential modification of the surface geometry - wave generation, sprays, plumes, and 

droplets. Only in very special cases [13] they can be solved by using a traditional perturbation technique against 
the background of the flat surface. In these cases the Jacobian J of the conformal mapping remains close to unity. 
However, in many typical cases the Jacobian takes very large values in some piece of the surface. In this situation 
one can treat the inverse Jacobian 1/J  as a small parameter and expand the solution in its powers. The first step in 
this direction was done in our paper [ 12]. Due to the essential nonlocality of the basic equation, the whole procedure 
of expansion in powers of 1/J  is tricky, but a first approximation can be found easily. It is interesting that in this 
case the system of two equations for surface shape and surface potential reduces to a single equation, coinciding 
for some mysterious reason with the well-known Lagrangian Growth Equation (LGE). This equation is completely 
integrable, it has an infinite set of special solutions expressed in elementary functions. Among them are the solutions 
describing formation of finger-type configurations (quite similar to the Saffman-Taylor fingers [ 14]) as well as the 
solutions describing formation of droplets. 

In the present paper we shall present a more detailed description of the results, briefly announced in the short 
letter [12]. We also extend most of our previous results to the case of a fluid of a finite depth. 

The paper is organized as follows. In Section 2 we introduce the Lagrangian description of a free-surface fluid of 
a finite depth, combining Canonical Formalism and conformal mapping, and derive the implicit equation as the cor- 
responding Euler-Lagrange equation. In Section 3 we find the explicit equation. In section 4 we consider stationary 
waves and calculate the dependence of their dispersion relation on the wave amplitude. The first approximation in 
the high-Jacobian expansion is introduced in Section 5. In Sections 6 and 7 we study finger-type and droplet-type 
solutions, respectively. 

2. Lagrangian description of a finite depth fluid 

Let an incompressible fluid fill a domain on the (x, y)-plane bounded by the free surface, 

y = o ( x , t ) ,  - c x ~ < x  < o o ,  

and the bottom, 

The fluid flow in - / ]  < y < rl is potential, 

(2.1) 
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V = V q O ,  A ~ = 0 .  

The Laplace equation (2.2) must be considered together with the following boundary conditions. 

Or/ 3 ~  Or] 3C1) y=rl 

3t + 3x 3x 3y 

O~ 1 (0t~'~ 2 l ( O ~  2 

a----t-÷-2 ~ x /  ÷ 2 \ ~ x ]  ly=, ÷ g r / = O '  

3~3y y=, ~-0. 

In (2.4) g is gravity acceleration. Let us introduce the quantity 

qJ(x, t) = ~ ( x ,  y,  t)ly= n = ~ ( x ,  r/(x, t), t ) .  

As found in [11], r/(x, t) and qt(x, t) are canonically conjugate variables, 

3r/ 3H 3kO 3H 

3t 6tP ' 3t &l 

where the Hamiltonian H is the total energy of the fluid, 

if H = T  + U ,  T = 

--CO 

g f r/Zdx" U=-~ 

77 

dx f(v ) 2 dy, 

-I/ 

Eqs. (2.7) and (2.8) extremize the action, 

8s=o ,  S= f Ldt, 

L=f 
Let us apply the conformal mapping of the domain on the plane z = x + iy, 

- c ~  < x < oo, - h  < y < r/(x, t) ,  

to the strip, 

--OO < U < 0~, - h < v < 0 ,  

on the plane o9 = u + iv 1. After this transformation, the shape of the surface is given parametrically by 

y = y ( u , t ) ,  x = u + 2 (u , t ) .  

Functions y and 2 are connected by the relation, 

y = /~2. 

! I f  r /--* 0 at Ix l ~ ~ ,  then/t = h. In the periodical case/t and h are different. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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Here/? is the operator, 

o o  

'--,.v. f ,x,. 2h sinh 7r l2h(x' - x) 
--0(3 

Taking Fourier transforms gives 

Yk = RkXk Rk = i tanh kh. 

In the limiting case of infinitely deep water h ~ ~x~ and/~ goes over to the Hilbert transformation, 

lim R = / q ,  
h--+~ 

OO 

f l  f = 1 p . v .  f f (u ' )du '  
U / -- U 

- - 0 0  

One can introduce also the inverse operator 7 ~, 

=7~y, w i t h / ~ T = T R =  1, 

in which 

0 o  

-£1 f f (u') l ' f  n P'V" 1 - e  -zr/h(u-u') du'. 
- - 0 0  

Asymptotically as h ~ oo, 

1"--~-/? ,  but 2 - 1 ~ - R .  

Both operators/?,/~ are anti-self-adjoint, 

/ ~ + = - / ~  and / ~ + = - T  

with Fourier transforms 

-~/, = Tkyk and Tk = --i coth kh. 

After the conformal transformation, the velocity potential q~ = q~ (u, v) obeys the Laplace equation 

32~i~ 32~ 
OU 2 q'- ~ 0 

with boundary conditions 

3~3v v=-h = 0  and 

One can check that 

0 .  = _ Z k q ,  = 

3v v=0 3u 

~lv=0 = ~(u,  t). 

655 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 
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SO the kinetic energy is 

OO 

1 f T - - - ~  

Then 

dx = Xu du, qt dx  = ( y t x  u - X t Y u )  du, 

and the Lagrangian can be expressed as follows, 

OG O0 OO 

f 'f  f L = tit (ytXu - XtYu) du 4- -~ kOR~u du - -~ y2Xu du -t- f ( y  - R x )  du. 

- - 0 0  - -OQ - - 0 0  - - 0 0  

Here f is the Lagrange multiplier which imposes relation (2.20). Hamilton's principle, 

3S 
- -  ~ 0 ,  6qJ 

gives the following equations, 

ytXu - XtYu = -/~l/tu, (1 -{- .~u)Yt - .~tYu = -RkOu. 

The mean level of fluid is constant, so 

OO 

f (ytXu -- du O. XtYu) 

- - C O  

From (2.30) one finds 

qt --_ _~ '8  -1 (ytXu -- XtYu) + C( t ) .  

Substituting (2.29) into (2.32) and using the identity (2.31) implies 

O,0 

L = T - U  + / f ( y -  RYc) du. 
t,, 

- - 0 0  

If y = y(u ,  y)  is chosen as the set of coordinates, one can drop the last term in (2.33). Consequently, 

L = T - U .  

Consider now the conditions, 

8S 8S 
- - = 0  and - - = 0 .  
8y 3x 

These conditions imply the equations 

I I ' t t X u  - -  ~ l l u X t  " F  gyxu = f ,  

q"tYu - k#uXt + gYYu = - R  f ,  

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
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which are equivalent to the equation 

~tYu - qtuYt + gYYu + g(!I'ttXu - tl'tuXt -[- gyXu) = 0. (2.37) 

Eqs. (2.30) and (2.37) constitute the complete system of equations describing the potential flow of a free-surface 

fluid. They are not resolved with respect to time-derivatives, rather they are written in implicit form. 

3. Explicit form of  the motion equations 

We resolve the system (2.30), (2.35) and (2.36) with respect to time-derivatives only in the simplest case, h = oc. 

In this case, the equations take the following form, 

y tXu - -  X tYu  = --I21q/u,  (3.1) 

qStXu - q~uxt + gyxu = f ,  (3.2) 

qLt yu - qJuYt + gYYu = -121f. (3.3) 

Since z = x + iy, we have x = l ( z  + z*) and y = ½i(z - z*). So Equation (3.1) can be rewritten as 

* 2i/~ qj u Zt Z t 
-- (3.4) 

Zu z.* Iz .I  2 
ZtZ~ * - 2 i  H q-% or - z t Zu = 

We introduce projection operators, 

p+  = l ( ]  _ i/-)), 

which satisfy, 

_ Zt Zt _ Z t 
p -- , p - - = 0 .  

Zu Zu Z* 

p -  = 1(1 + i/-)), (p+)2  = p + ,  ( p - ) 2  = p - ,  (3.5) 

Hence, one obtains from (3.4) 

or, 

zt  = Zu(Igt - i) /4 q"u 
Iz.I 2'  

Yt = (Yu I2I - Xu)  I2Iqju 
Izul 2'  

^ [ l q ,  

xt = (Yu + Xu H )  Iz, 12 " 

Subtracting (3.3) multiplied by Xu from (3.2) multiplied by yu and using (3.1) yields 

-qtuI21~u = y u f  + xuI2I f .  

Introducing 

qJf  = p+kOu and f~: = p+ f 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.1 O) 
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leads to the relation 

(0+)  2 -- (Ou-) 2 = -iOu/}qJ.. 

Consequently, the identity (3.10) can be rewritten as follows, 

(Ou+) 2 -- (IPu-)2 = f + z *  - f - Z u .  

From (3.12) one finds immediately that 

f + -  (0+)2 and f - =  ( q / u - ) 2  
Z~ Zu 

We now subtract Eq. (3.3) multiplied by xt from Eq (3.2) multiplied by yt to find 

(Or + gy)(ytXu -- XtYu) = Yt fu  + xtI2I f = f + z t  - f - z t .  

Time-derivatives xt,  Yt, zt ,  z~ can be excluded by using (3.1), (3.8) and (3.9). Hence, 

0 -  2 /-IOu /~t/'tu 
-12IOu(Ot + g y )  = [(0+) 2 + (  u ) ] - ~ -  - [ ( 0 + )  2 - (Ou-)2]/1T~u ( ~ . 

By means of the identity (3.11) one can divide this equation by HOu and finally obtain 

Ot + g y =  
(Ou+) 2 -4- ( W )  2 

J 
+ o.Fi(flOu/J). 

The last equation can be rewritten as 

^ 

q{t + g Y  = iZul 2 - + O u H ( l ~ u [ 2 ) .  

4. Stationary waves 

We rewrite the implicit equations for surface shape and hydrodynamic potential as 

yt(1 + Xu) - XtYu = - R O u ,  

Otyu - q*uYt + gYYu +/~(Ot91  + 2u) - (xtOu + gy2u) = O. 

The last equation has a particular solution, 

y = ~(u - ct) ,  2 =- fc(u - ct) ,  ~ = ~ ( x  - ct) ,  

which describes stationary waves propagating with a constant velocity c. 
Substituting (4.3) into (4.1) yields 

cyu = RqJu. 

Substituting (4.3) into (4.2) and using relation (4.4) leads to 

- (c 2 + 2gbo)Yu + gYu + gR(y(1 + 2u)) -- 0. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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Hereafter, we assume that all functions are periodic with period L = 2Jr/k. We assume further that the total 

amount of  fluid is conserved, 

(y(1 + ~u)) = 0. (4.6) 

One can then find a solution of  Eq. (4.5) in the form 

OO 

y = ao + ~.~ an cos nku. (4.7) 

n = l  

It is convenient to introduce the operator 

satisfying 

oo 
an 

~ - l y  = ~ ~nn cosnku,  
n = l  

where 

tanh knh 
S . =  

kn 

From (4.6) one can define a0 as 

1 a n (4.8) 
a0 = - -~  S-~-" 

n = l  

For b0 there is the relation following from (3.17), 

b o = a 0 - - -  1 -  (4.9) 
g 

The other coefficients a,~ satisfy the following system of equations: 

g ~ - ~ ( S I ( S m [ - S m + I ) )  (4.10) (?2 _ gSl)al = -~ 1 + amain+l, 
m = l  SmSm+l 

g ~m~. 1 ( Sn(Sm q-Sn+m)~ 
(?2 __ gSn)a n = 2 = 1 + SmSn+m ,] aman+m 

• -tg ~ ( Sn(Sm ~---Sn-rn)~smSn_ m ] -[--~ 1 q- aman-m. (4.11) 
rn=l 

Here ?2 = c 2 _ 2g(a0 -- bo). In these equations the amplitude of  the first harmonic, al ,  is arbitrary. It must be 
treated as small. In a zero approximation, 

a 0 = 0 ,  b 0 = O  and c 2 = ? 2 = g t a n h k h ,  (4.12) 
k 

in accordance with the linear theory. In the first nontrivial approximation, 
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a2 = a2k 3 -t- tanh 2 kh 
4 tanh 3 kh ' 

c2 g ( [ 9 - 6 t a n h 2 k h + 5 t a n h 4 k h ]  ) 
= -~ tanhkh 1 q- (kal)  2 

8 tanh 4 kh 

If  we get back to the physical depth h the dispersion relation (4.13) exactly coincides with that of  in [ 15], 

c2=gtanhk[~( l+[9-1Otanh2k[~+9tanh4k[~]  ) 
8tanh 4 k[~ (kal )2 . 

In the limiting case of  deep water one gets 

C 2 = (g/k)(1 + (kal)2). 

This result was first obtained by Stokes [1]. For shallow water, 

~ h(1 - lh202/Ox2), 

and Eq. (4.5) goes over to a differential equation describing KdV-type solitons. 

(4.13) 

(4.14) 

(4.15) 

5. High-Jacobian approximations 

Let us suppose that the function z = z(w) has a singularity in the upper half-plane on the imaginary axis close 

to zero. In the vicinity of  zero the quantity J = J(u) is a very singular function. But it might happen that 1/J is 

in this region a smooth function close locally to zero. In this case one can develop a new type of an approximate 

theory. We will discuss only the case of  infinite depth. We will seek a solution of Eq. (3.10) in the form 

1 fz  2 q~ = - 2  dt + )~(t)y + ~.  (5.1) 

Here 

~. = - g  (5 .2 )  

and )~ = )~(t) = Lo - gt is a linear function of time. 
The idea of separating ~' from q~ is the following. Let the singularity in qJ be posed at a distance 8 << 1 from the 

real axis. Then the functions qJ(u) and y(u) are sharp, they change their value essentially in a region u _~ 8. Our 

central assumption is that in (5.1) ~ is a "smooth" function. It varies on a scale of order of unity. 
To justify this assumption we must write the equation for ft .  To obtain this equation we exploit the identities, 

(1 - iH)(~u -4- iyu) 2 = 0, (5.3) 

(1 + i /4)(1/z* - 1) = 0. (5.4) 

These imply 

i?t(yut21yu) = 1 [(~u)2 - y2]  (5.5) 

and 

Y__.~u + lgi(xn/J _ 1) = 0.  (5.6) 
J 
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After a simple transformation one finds 
^ - 

Ot --  2 J  + L I?-I~u + q tu t? l (1 /J  - 1) + 

Eq. (5.7) is an exac t  relation. All information about the shape of surface is hidden in the function 1 / J ,  which 

according to our assumption is smooth and "large scale". Therefore, we may consider ~b smooth and large scale as 

well. 
In the first approximation, we put 

~' = 0. (5.8) 

The corresponding equation for the surface shape looks very simple in its implicit form, 

Yt (1 + Xu) -- x tYu = )VXu. (5.9) 

Let us denote 

~ = ~ + i y .  

In terms of ~ Eq. (5.9) can be rewritten as follows, 

"* + ZtZu* - -*-  iX(~,, -* = +z.)  (5.10) Zt -- Zt Z t Zu 

By introducing a new function 

z = ~ + u - i f z d t ,  

one transforms (5.10) to the form 

~C~(ZtZ:) = - -Z .  (5.1 1) 

In the simplest case X = const., this equation has been known in the literature since 1945 [16,17]. It is usually called 
the LGE and is used widely in the theory of interfaces and dendrite growth. 

6. Finger-type solutions 

Eq. (5.10) is an integrable system. One can find a general solution of this equation starting from a very wide class 
of  special solutions (N-finger solutions), 

N 

= E qn log(u - an (t)) .  
n=l  

(6.1) 

Here N is any positive integer (including N = c~), qn are complex constants and ~an > 0. Strictly speaking, to 
satisfy the condition ~ --+ 0 at lul -+ oo, one must demand 

N 

E qn = O. 
n=l  

(6.2) 
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However, the constraint (6.2) is not significant from the physical view-point. For arbitrary choice of qn it can be 
satisfied by adding to (6.1) one more term, 

-- qn log(u - - a N + l ( t ) ) ,  "~aN+l --+ + 0 0 .  

Substituting (6.1) into (5.10) and using an expansion in the sum of elementary fractions, one obtains a system of 
ODE for an, 

~m * an - a m i~.(t). (6.3) 
an ÷ qm -~n --------7 -- 

a m 

Integration by t gives the following system of transcendental equations, 

an + Z q* log(an - a~n) = - f ~.(t) dt + Cn, (6.4) 
m d 

where Cn are arbitrary complex constants• The simplest possible solution (one-finger solution) of this type is 

= - i  log(u - ib(t)), where b is real• (6•5) 

Now 

log b = - f ~ dt + log r, where r is a real constant• (6•6) b + 

If f k dt --+ + ~ ,  one finds the asymptotic behavior of  b, 

b ~- r exp ( -  f ~. dt) --+ 0, t (x). (6•7) 

In our case, we find 

u 1 u2 ÷ bZ(t) (6.8) 
y = - log x/U 2 ÷ b2(t), Y = arctan b(t----)' -J = (1 + b(t)) 2 + u 2" 

Let f z dt be positive and large• Then 

1 u 2 
- - ~  - -  ( 6 • 9 )  
J 1 ÷ u  2" 

This expression is small for u _~ b, and is indeed smooth and large scale. From (5•2) one gets 

f ~.dt = -½g t  2 ÷ Ct. (6.10) 

For positive g (stable case), f ~. dt can be large only during a finite time (if C is positive and large). For g < 0 
(neutrally stable or unstable cases) the approximation improves as t --~ ~ .  

In the one-finger solution, 

y(0, t) = - 2  log b(t) ~ f ~ dt, as t ~ ~ .  

At the same time, the curvature tends to a constant 

1/R = rlxx -+ - c o n s t  as t ~ c~. 

(6.11) 

(6.12) 
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The one-finger solution was found by Saffman and Taylor [ 14]. N-finger solution were studied in the articles [ 18,19]. 

A general solution of Eq. (5.10) can be obtained from (6.1) by a kind of transition to the limit N ~ ~ .  We will 

discuss this procedure elsewhere. 

7. Droplet-type solutions 

Let us consider the simplest case of rational solution for LGE, namely 

= ot / (u  - ib). (7.1) 

Here ct and b both are positive. Substituting (7.1) into (5.11) and using an expansion in the sum of elementary 

fractions leads to a system of ODE for ~ and b, 

6tb + orb + A.ot = 0, 6tb 3 + ot6tb - otb2/~ - o t 2 / ~  - -  ~.otb 2 = 0. (7.2) 

This set of  equations has a solution which is valid until some final time to. Asymptotically, when t --+ to the solution 

approaches 

ot ~ 6b, b ==> l ~.(to - t ) ,  (7.3) 

where 6 is a constant. This solution describes formation of a droplet which separates from the fluid at t = to. Again, 

this solution is valid provided HqJ, is small compared to Ju. To study the validity of  this assumption one must 
estimate the solution of (5.7) where J is calculated from (7.1) and (7.3). Here we are able to solve only the linear 
(with respect to ~') part of  (5.7), 

c~t + iUC~u = llt.2U. (7.4) 

This is a linear complex transport equation which can be solved by the method of characteristics. Here, 

U ( u ,  t )  = 1 / J  + i I ? t l / J ,  q~(u, t) -- tp + i / 4~ .  (7.5) 

All functions in Eq. (7.4) are analytic in the lower half-plane. The equation for the characteristic is 

f~ = i U ( u ,  t) .  

In the vicinity of  to the complex velocity U is given by 

i 8u 
U ~  

2 u 2 - 6b" 

In this case the characteristic equation can be solved exactly, namely 

u / ( u  2 -~- &b) = C,  

and the general solution of Eq. (7.4) is 

c~ = C~(u/ (u  2 + &b)) - l iu ,  

where ~ is arbitrary function. 

(7.6) 

(7.7) 

(7.8) 

(7.9) 
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Let us impose zero initial condition for q5 at 8b = 1. Then the solution acquires the form 

1 Iiu2+Sb ~ 4 - ( + S b )  -1~1  
= _ q- u2 2 . u 

4 ,  u u " 

The behavior of H~'u = 9t~u at u = 0 is proportional to C/b and is similar to that for xu. 

(7.10) 
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