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Abstract 

Using the combination of the canonical formalism and conformal mapping, a theory of the free surface of deep water 
in the approximation of a high curvature is developed. It is shown that the numerical simulation is in excellent agreement 
with the analytical description. 
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1. Introduction 

The prospect of finding an integrable model in the 

theory of potential flow of an incompressible, infinitely 
deep fluid with a free surface is one of the most intrigu- 
ing in mathematical physics. We will discuss in this ar- 

ticle only a 2-D fluid (one dimension is the depth). So 
far, the only integrable model for deep water is the 1-D 
nonlinear SchrGdinger equation [ 11, which describes 
an envelope of a quasi-monochromatic wave train of 

a small amplitude. But this model is not specific for 
surface waves. It is a universal model for generic non- 
linear dispersive Hamiltonian wave systems. 

Some information about the integrability can be ex- 
tracted from an analysis of small-angle motion when 
the free surface is just slightly different from flat. Such 
an analysis can be made by expanding the Hamilto- 
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nian in powers of the nonlinearity and by then using 

Poincart’s normal form technique. 
Several essential results were achieved recently in 

this direction. It was shown [ 2,3] that in the simplest 

case of a zero-density fluid with no capillarity, the 
first two terms in the expansion of the Hamiltonian 

give a very simple integrable system, but very little is 
known about the possible role of higher order terms. 

Nevertheless, the conjecture of integrability of the full 
system does not seem improbable. 

In the presence of gravity one has to expand the 

Hamiltonian at least to the fourth order. Then, by ap- 
plying a proper canonical transformation, third-order 
terms can be eliminated. It is remarkable that, for some 
unclear reasons, the resulting fourth-order Hamilto- 
nian is equal identically to zero on the resonant mani- 
fold [4,5]. So in this approximation the system is in- 
tegrable, but cumbersome calculations, performed by 
using an analytical computer program, showed that the 
effective fifth-order term does not vanish on the corre- 
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sponding resonant manifold [ 61. So it is proved that 
a free surface deep fluid in the presence of gravity is a 

nonintegrable system. It is interesting that in spite of 
a very complicated intermediate calculation the final 
expression for the effective fifth-order Hamiltonian is 

very simple [ 61. 

where fi is the Hilbert transformation. After the 

conformal mapping 4(x, y, t) -+ C#J(U, v, t). Let 
P(u,t) = &u,O,t). It was shown in Ref. [8] that 

y(u, t) and !P(u, t) obey the following system of 
equations, 

As the non-zero-density free surface deep fluid is 
nonintegrable, we have no hope for integrability in the 

most realistic case, when both gravity and capillarity 
occur, but the case of pure capillarity is not so clear. 

Nothing is known about the nonstationary behavior 

of one-dimensional capillary waves, but the shape of 
stationary capillary waves (unlike gravity waves) can 
be found explicitly and expressed in elementary func- 

tions [7]. 
In the present article we offer a new approach to this 

problem. Instead of considering an almost flat surface, 
we now study an extremely curved one, close to the 

state of wave breaking. We will show that in this case 
there is a possibility to find a wide class of fluid mo- 

tion, which can be described approximately by a cer- 

tain integrable model, known in mathematical physics 
since 1945 and widely used nowadays in the theory of 

interface dynamics. In this article we essentially ex- 
ploit our previous results, obtained in Ref. [ 81. 

2. Approximation of a high curvature 

Let us consider a non-zero-density incompressible 
fluid filling the domain --0;) < x < o;), --oo < y < 

77 (x, t) . The surface of the fluid ~7 (x, t) is free, and 
the flow is the potential 

, v=v+, nf$=o. (2.1) 

One can perform the conformal mapping of the do- 
main filled by the fluid to the lower half-plane of a 
complex variable w = u + iv 

-oo<u<oo, -oo<v<o. 

Now the shape of the surface is given parametrically, 

Y = y(u,t), x = x(u,r) = z4 +2(&l), (2.2) 

where 

y = AT, T--&y, AZ=-1, 

A%4 
yt= (Y&x"+, (2.3) 

where g is the gravity acceleration and 

J=x;+y,2=1+2ZU+Z;+y,2. (2.5) 

Another form of Eq. (2.3) (see Ref. [ 81) is 

ytx, - xty, = -AP,. (2.6) 

Let us present P in the following form, 

P=a(t) +h(t)y+& (2.7) 

Here 

;\ = -g, b = +2. (2.8) 

One can show that y and @ satisfy the following sys- 
tem of equations, 

yt = -ho& - x,) F + (y,A - x,) 7, (2.9) 

+,=g+* ft2&++“Rf ( > 
(2.10) 

Our key assumption is the following: in some small 
vicinity of the point u = 0 

If,] > ]A@,]. (2.11) 

So one can neglect in (2.9) the last term and get a 
closed form equation for y, 

y, = -A(yuA - xu)+. (2.12) 

Substituting (2.7) into (2.6) and casting off A$,, one 
can find another form of Eq. (2.12), 

yt(1 +R,) -Rry, = AA,. (2.13) 
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Condition (2.11) holds when the Jacobian 1 together 
with the curvature of the surface tends to infinity. So 

we call it the approximation of a high curvature. 

3. Finger-type solutions 

LetusdenoteZ=z+iy.Intermsofz’Eq.(2.13) 

can be rewritten as follows, 

it - it* i- &it - i,*& =iA(t)(Z + f). (3.1) 

This is an integrable system. One can find a general 
solution of this equation starting from a very wide 

class of special solutions (N-finger solutions) 

N 

i= 
c qnlog[u - Gl(t>l. (3.2) 
n=l 

Here N is any positive integer (including N = 00)~ q,, 
are some complex constants and Ima, > 0. Strictly 
speaking, to satisfy the condition 2 4 0 at IK( -+ 00, 

one has to demand 

N 

c 
n=l qn = O* 

(3.3) 

but constraint (3.3) is not significant from a physical 

point of view. For an arbitrary choice of q,, it can be 
satisfied by adding to (3.2) one more term 

N 

- 

( > 
c 

qfi log[u -w+~(f>l, ImaN+ + +a. 
n=l 

Substituting (3.2) into (3.1) and using the expansion 
to the sum of elementary fraction, one can obtain the 
following system of ODES for a,, 

b” + c 6” - ci; 
qit- 

a, - a; 
= -iA( 

nl 
(3.4) 

Integration by t gives the system of transcendental 

equations 

a,+Cq;log(a,-a;) = - 
I 

A(t) dt+C,,, (3.5) 
m 

where C, are arbitrary 
plest possible solution 
type is 

2 = -ilog[u - ib(f)], 

complex constants. The sim- 
(one-finger solution) of this 

b is real. (3.6) 

Now 

b+logb=- Adt+logr 
.I 

r is some real constant. (3.7) 

If s A dt -+ +oo, one obtains the asymptotic behavior 

of b, 

(3.8) 

In our case 

y=-log@+b*(t), (3.9) 

(3.10) 

1 u* + b*(t) 
-_= 
J [l +b(t)12+u2’ 

Let s Adt be positive and large. Then 

1 u* 

--t1f J 

(3.11) 

(3.12) 

This expression is small for u N b, and we can justify 

our approximation (2.11) . From (2.8) one obtains 

J hdt = -;gt* +Ct. (3.13) 

For positive g (stable case) 1 A dt can be large only 

during a finite time (if C is positive and large). For 

g < 0 (neutrally stable or unstable cases) the approx- 
imation improves at t + co. 

In one-finger solution 

~(0, t) = -2logb(t) N J Adr, 

at t -+ co. 

At the same time the curvature 

l/R = r)xx --+ -const, at t -+ 00 

By introducing a new function, 

Z=i+u-i J Adt, 

we can simplify Eq. (2.13) to 

Im( ZtZ,*) = -A. 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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Fig. 1. -@P, as a function of f,. 

In the simplest case A = const the equation has 

been known in the literature since 1945 [9,10]. The 
one-finger solution was found by Saffman and Tay- 

lor [ 111. The N-finger solution was studied in Refs. 
[ 12,131. A general solution of Eq. (3.1) can be ob- 

tained from (3.2) by a transition to the limit N 4 co. 
We will not discuss this procedure here. 

4. Numerical results 

As it was reported in Ref. [ 81, we elaborated a nu- 

merical algorithm to integrate Eqs. (2.3)) (2.4) in the 

case g = 0. We considered periodic boundary problem 
in the infinite half-strip with width 27r (both in real 
space and after a conformal transformation) in the ab- 

sence of gravity and surface tension. Initial conditions 
were chosen symmetric with respect to the vertical 

axes: ?P (u) = P ( -u) . This symmetry was used in the 
simulation, which allowed us to reduce the domain to 
0 < u < V. Initial conditions were chosen as follows, 

i=y=o, @ = -Alog[ 1 - exp(-iu - l)], 

A =0.2sinh(e). (4.1) 

The main goal of the numerical integration was to 
check the validity of the assumption (2.11)) i.e. to 

verify that the potential P does almost coincide with 
the shape of the surface. 

Fig. 1 shows --I&, as a function of &. Its almost 
linear behavior clearly demonstrates that the term 

0.30 

O.“O 1 

,’ 

0.10 1;’ ’ 

,’ 
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- l/d 

OX 

Fig. 2. Spatial behavior of the Jacobian of the confomal mapping. 

On the u-axis there are N 2000 grid points. 
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Fig. 3. Curvature of the surface in physical space. 

is small with respect to X,,. We calculated from the 
numerical data A = 1.043 here, and it practically does 
not depend upon time. 

Another check of the approximation of high cur- 
vature theory is the spatial behavior of the Jacobian 

of the conformal mapping. It is shown in Fig. 2. To 
understand this picture better, one should realize that 
the surface at this moment evolves in the region 0 < 

]u] II 0.05, which corresponds to 0 < In] N 0.22, 
and it decreases in time. We would like to emphasize 
here that the number of grid points in the interval 0 < 
u 6 0.2 (that is shown in the Fig. 2) is 2 2000. So 
in the vicinity of the origin the assumption l/J + 0 
improves when t + 00. The curvature of the surface 
in physical space is given in Fig. 3. Its value given in 
the origin grows faster in time than a linear function. 
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Fig. 4. Shape of the surface in physical space. 

Thus, the high curvature near the origin indicates that 
a finger-type solution does not occur here. Instead of 

that, the shape of the surface in the physical space, 
V(X) is very close to 

v(x) N Re(-a(t) log{1 - exp[-ix - u(r)]}), 

(4.2) 

where a(t) and a(t) both are positive, and dr( t) > 0, 

Lz( t) < 0. The shape is shown in Fig. 4. 

In conclusion we would like to stress that the ap- 
proximation of a high curvature is in excellent agree- 

ment with numerical experiment, so that Eq. (2.13) 
or (3.17) describes the evolution of the free surface 
at large t. However, the simplest one-finger solution is 

not realized in the experiment. We have to use more 
general solutions of Eq. (2.1) to interpret the numer- 

ical results. The description of this solution will be 

published elsewhere. We will show also that on the 
infinite axis -cc < u < cc the approximation of a 
high curvature generates a wide class of exact solu- 

tions of the system (2.3)) (2.4). So far this fact was 
established only for the simplest case g = 0. 
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