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We develop expressions for the nonlinear wave damping and frequency correction of a field of random,
spatially homogeneous, acoustic waves. The implications for the nature of the equilibrium spectral energy
distribution are discussefl51063-651X97)02606-3

PACS numbd(s): 47.27—i

I. INTRODUCTION AND GENERAL DISCUSSION scaling symmetries of the dispersion relation and the cou-
pling coefficient via what is now called the Zakharov trans-
Weak or wave turbulence, which describes the behavioformation[1,7].
of a spatially homogeneous field of weakly interacting, ran- Success to this point, namely, the natural closure, de-
dom dispersive waves, has led to spectacular success in opended crucially on the fact the waves were dispersive. This
understanding of spectral energy transfer processes in plageans that the group velocity is neither constant in ampli-
mas, oceans, and planetary atmosphéfds Furthermore, tude nor direction, or that, alternatively stated, the dispersion
the subject provides a useful paradigm for helping one thinkensor
about some of the challenges of fully developed turbulence. 5
First and foremost, the equation for the long time behavior of D .— JI°w
the spectral cumulantsvhich are in one to one correspon- @B K 0K
dence with the spectral momentgeclosedwithout making
a priori and unjustifiable assumptions on the statistics of théhas full rank. Hered is the system dimension, Greek letters
processegsuch as the quasi-Gaussian approximati®@ec- (herea andB) denote tensor indices varying from 1 to space
ond, the kinetic equation, which describes the spectral erdimensiond, and
ergy transfer vian-wave resonant processes, admits classes
of exactequilibrium solutions that can be identified as pure w=w(k) (1.2
Kolmogorov spectra, namely, equilibria for which there is a
constant spectral flux of one of the conserved densjdes, is the linear dispersion relation. The reason for closure is
energy, number densityf the physical process under con- slaving. In a field of weakly interacting random dispersive
sideration. By contrast, the thermodynamic equilibria, whichwaves, the first step to slaving is achieved by the linear char-
have very little relevance in any turbulence theory that musacteristics of the wave trains. Systems, which initially are
account for a sink at small scales, have zero flux. Third, the&trongly correlated, are decorrelated because different waves
theory allows one to glimpse the origin of the intermitencycarry statistically independent information from long dis-
and the breakdown of the conditions under which one catiances at different speeds and directions. Cumulants of order
expect relaxation to one of the finite flux Kolmogorov equi- N>2 tend to zero on the fast time sca.bq?l (w, is a typical
libria. frequency at which the energy is injecijedhe system ap-
The basic ideas for writing down the kinetic equation toproaches a state of exact joint Gaussian statistics. The energy
describe how weakly interacting waves share their energieat each wave vector remains constant, and there is no trans-
go back to Peierls, but the modern theories have their origifier. But the systems of interest to us are nonlinear and, there-
in the works of HasselmafR], Benney and Saffmanf8], fore, although the cumulants undergo an initial decay, they
Kadomtse4], Zakharov{1], and Benney and Newd]l5,6]. are regenerated by the nonlinear terms. In particular, the cu-
A particularly important event in this history was the discov- mulant of the ordeiN is regenerated both by cumulants of
ery of the pure Kolmogorov solution by Zakharf¥]. Usu-  higher order and by products of lower order cumulants. The
ally, the thermodynamic equilibrium solutions can be seersecond important reason for closure is the following. The
from the kinetic equation by inspection. On the other handjmportant terms in the regeneration of thgh order cumu-
the solutions, corresponding to pure Kolmogorov spectra artant are not the terms containing cumulants of order higher
much more subtle and only emerge after one has exploitethen N, but rather those terms which are products of lower
order cumulants. Important means that, even though the non-
linear coupling is weak, the effects of these terms persist

), 0<a,B<a (1.1
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56 STATISTICAL DESCRIPTION OF ACOUSTIC TURBULENCE 391

taken for triad or quartefor, as in some rare cases, quintic whereP denotes Cauchy principal value. In these cases, the

resonances to produce order 1 effects, the system of equimtegrand in the kinetic equation, the equation describing the

tions for the cumulant hierarchy becomes closede i§ a  resonant transfer of spectral density, contains products

typical dimensionless wave amplitudf®r acoustic waves it of energy densities and the Dirac delta functions

is Splpo, the ratio of average fluctuation density amplitude 5(='s,w(k;)) and 8(2V'k,), clearly indicating that spectral

to the ambient valug then this time(measured in units of energy transfer takes place on the resonant mankbldhe

the timescalaw, ') is €2 for triad resonances and™* for  asymptotic equations for the change of the higher order cu-

quartet resonances, although there is an additional frequenegulants can be interpreted as a complex frequency modifi-

correction in the latter case that comes in on &é time  cation whose real part describes the expected nonlinear shift

scale. in frequency, and whose imaginary part describes a broaden-
Mathematically, these results are obtained by perturbatiomg of the resonant manifold along its normal directions.

theory, in which the terms leading to long time cumulative But acoustic waves are not fully dispersive. The linear

effects can be identified, tabulated, and summed. The methatispersion relation

closely parallels that of the Dyson-Wyld diagrammatic ap-

proach which will be discussed in Sec. IV. A key part of the w(K)=c|K| :C\/kﬁjL—ki k=(kj k) (1.8

analysis is the asymptotic (lim.,) evaluation of certain in-

tegrals such as where ¢ is the sound speed, leads to a dispersion tensor

N which has rank d—1). As we will see, this changes the
5( z kr>Hdkra (1.3 asymptotic. Furthermore, three wave resonances occur be-
r=1 tween wave vectors which are purely collinear. Therefore,

since the kinetic equatiofKE) only considers wave interac-
tion on the resonant manifold, there is no way of redistribut-
exg(iht)— 1 ing energy out of a given direction. At best, the_ KE will only
L (1.4 describe spectral energy transfer along rays in wave-vector
ih space. Moreover, depending on dimensihrthe long time
. . . . behavior of integral§1.3) differ greatly. For a given vector
andé(x) is the Dirac delta function. The funct_m:]n(l']_) Con- k. the locus of the resonant partnérsandk—k; in a reso-
tains the fast(oscﬂlaﬂohs of the .order ofw, 7) time t, nant triad is given by the surface kq space defined by
whereas the other functions in the integrand, here denoted by
f(k,), only change over much longer times. The exponent of _ v _
A(h) is SNs w(k,) wherew(k,) is the linear dispersion re- h(ke) =Sk +Solk—ka| =s|k| =0. 9
. . . T
o o oot 1 SAMADIEnS 01 eres. 3= 1. Ford=1 an the spproriae choies o
' ' the wave directions;, S,, ands, this manifold isall k;.

quencies correspond!ng to waves running parallel and antlT’herefore the fast oscillations in the integral are of no con-
parallel tok. The maximum contribution to integrals such as

Eq. (1.3 in the limit of large timet occurs on the so called sequence, and do not cause any decorrelation to occur. All
g (2. . 9 waves moving in the same directions travel with the same
resonant manifoldV, where

speed. Initial correlations are completely preserved. More-
N N over, we know that for one-dimensional compressible flow,
> k=0, h=2 sw(k,)=0 (1.5  nonlinear terms, no matter how weak initially, eventually
r=1 r=1 lead to finite time multivalued solutions. Assuming the usual
) ) viscous regularization, multivalued solutions are replaced by
for some choices of the sequenge However, the precise shocks, namely, almost discontinuous solutions where dis-
form of the asymptotic limit also depends on whether thecontinuities are resolved across very thin viscous layers. One

zeros ofh on M are Simple or of hlgher order. For the case would natura"y expect an energy SpectrET(k) which re-
of (fully) dispersive waves, such as gravity waves on deefects this fact, namely,

water, Rossby waves, waves of diffraction on optical beams,

N
f f(krm{;l s (k)

where

t
A(h)zfodtexp(iht)=

Lh;s zero ofh is simple, andfor sufficiently smoothf) one E (K)o K2, (1.10
o expliht)—1 In two dimensions, one has dispersi@iffraction) in one
Iimf f(h)Tdh direction. Indeed, fod>1, while
t—ood —®
Vi,h=0 (1.1)

=7 sgr(t)f(O)+inw @dh,

— o

on the manifoldM, the Hessian oh(k;) is not identically

(1.6 zero. In two dimensions, integrél.3) behaves as

or, schematically,

o
1 f f(x)wdxmﬁf f(x)exp(ix?t)dx,
A(h)y= sgr(t)&(h)+iP(E), 1.7 X 112
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which grows ag*? ast— . In three dimensions, the growth
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is much weaker. Since that is the case we will look at in

detail, we give the exact result. Let

k=(K>0,0,0, k;=(K,,K,K,),

ko=(K—Ky,—Ky,—K,).
Then, fors;=s,=s5,
h=c(s|kq|+olk—ky|—SK)

sKc

= (K2+K? 3 2
_ZKX(K_KX)(Ky+KZ)+O(K KK, o)

(1.13

near the resonant valu&(0,0). The integral

oo iht __
f F(Kx.Ky K818 ——dKdK,dK,

tends to

0
af f(K,,0,0;—s,s)(—K,)(K—=K,)dK,
K
+aJ f(K4,0,0;8,5) K (K—K,)dK,
0

+ af f(K4,0,0;8, —s)K, (K, —K)dK,
K

2ias 0
-t f (K 1,0,0:~ 9K (K—K,)dK,

2ias K
- Tlntf f(K4,0,0;5,5) K, (K—=K,)dK,
0

2ias ®
- Tlntf f(K4,0,0;5,—s)K,(K—K,)dK,
K

(1.19

in the limit t—o. Here o= 7?/Kc and we have kept only

the leading order real and imaginary contributions. The es-

sential difference from Eq41.6) and(1.7) is the additional
Dirac delta function multiplied by Inin the imaginary term.

56
xX[e(yk)e((y+1)k)+ ye(k)e((y+1)k)
—(y+1)e(k)e(yk)]

1
+f dka(1l—a)[e(ak)e((1— a)k)

0
—aek)e(1-a)k)—(1-a)e(k)e(ak)],

(1.1

where u is the adiabatic constantp=py(p/pg)*] and
|k|=K. In d dimensions a little calculation show, that the
right-hand side of Eq(1.16) has thet dependence&®~9?), so
that in general the nonlinear interaction timg, for the
resonant exchange of spectral energyig®~ 92=0(1) or
e Y69 (Note that ford=5, there is no cumulative
effect of this resonance.

While the extra term in Eq(1.14 proportional toi Int
plays no role in the spectral energy transfer, it will, however,
appear in the frequency modification. Calculating the long
time behavior of the higher order cumulants leads to a natu-
ral renormalization of the frequency,

w(k)=cl|k|| 1-2m(u+ 1)262Inzlgjom,82e(ﬂﬁ)d/3+ 0O(€?)

+m2(M+1)262{ ‘:Bze(ﬁk)dﬁ

. (119

1 [l - IK| -
3
ar | “metsioas ik [ “seskoas

0

wherek=k/K. The calculation of the frequency renormal-
ization is the main result of this paper. We present two deri-
vations of this result, in the framework of the above analysis
and making use of a diagrammatic perturbation approach.
Equation(1.16) is nothing but a “regular” kinetic equa-

tion for the three-wave interactions, written in a dispersion-
less limit w=c|k|. In this case three-wave resonant condi-
tions

T w(k)=*w(k)) = w(k,),

k=k,+k, (1.18

can be satisfied if and only if all three vectdts k;, and

This will not_ change th_e kinetic equation for the_ spectralk2 are parallel; as a result, the integration oker andk, is
energy density. If we write the total energy per unit volumegjong the line parallel t. It is uncleara priori that the

E as

E=2p00262f e(k)dk, (1.15

wherep, is the ambient density anel a measure of ampli-
tude, then

de(k) :
%zSt(e,e)
Ste.8)= m’c(p+ 1)262K4[

7 12f0 dyy(y+1)

three-wave kinetic equation can be used in the dispersionless
case; is certainly less plausible in the two-dimensional case,
where the formal implementation of the kinetic equation
leads to stronger divergences.

The derivation presented above is taken from the article
of Newell and Aucoir{9], who made the first serious attempt
at an analytical description of the dispersionless acoustic tur-
bulence. Newell and Aucoif9] also argued that a natural
asymptotic closure is also obtained in two dimensions be-
cause of the relative higher asymptotic growth rates of terms
in the kinetic equation involving only the spectral energy.
However this is still a point of dispute, it is not yet resolved
and will not be addressed further here.
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Independently the kinetic equatidt.16) was applied to (1) To what distribution does the energy along a given
acoustic turbulence by Zakharov and Sagdgdywho used wave-vector ray relax?
it just as a plausible hypothesis. However, Zakharov and (2) How does energy become shared between neighboring
Sagdeev also suggested an explicit expression for the speys?

trum of acoustic turbulence (3) Does energy tend to diffuse away from the ray with
maximum energy, or can it focus onto that ray? In the latter
e(k)ck™ 372 (1.19  case, one might argue that shock formation may again be-

come the relevant process, especially if the energy should
which is just a Kolmogorov-type spectrum, first obtained bycondense on rays with very different directions.
Kolmogorov from dimensional considerations in the context The aim of this paper is to take a very modest first step in
of hydrodynamic turbulence. Here, however, Egl9 is an  the direction of answering these questions. In particular, we

exact solution of the equation present a curious result. The fact that there is a strong
_ (€?In1/€?) correction to the frequency leads us to ask if that
St(e,e)=0. (1.20 terms could provide the dispersion required to allow the

usual triad resonance process to carry energy between neigh-
The proof of this fact can be found in Ré¢fl]. One should boring rays. At first sight, it would appear that that is indeed
also mention that the quantum kinetic equation was appliethe case, that the modified nonlinear dispersion law is
to a description of a system of weakly interacting dispersion-
less phonons as long ago as 1937 by Landau and Rumer
[10]. w(k)=c(k)

Kadomtsev and PetviashviliL1] criticized this result on

the grounds that thg kl'n.etlc equation in the dlsper3|onles§vhereQ is proportional tolk|. But a surprising and non-
case can hardly be justified because of the special nature gfyia| cancellation occurs, which means that the first correc-

the linear dispersion relation. They suggested that acoustigyns 1o the wave speed still keeps the system nondispersive
turbulence in two and three dimensions was much more, ine propagation direction.

likely to have paral!els wit_h its analog in one dimension..V\/_e While this fact is the principal result of this paper, our
have already mentioned in that case that the usual statisticghyroach lays the foundation for a systematic evaluation of
Qescrlptlon_ls inadequate both because there is no decorrelgye contribution to energy exchange that occurs at higher
tion dynamics and because shocks form no matter how weajiqer. Indeed. we expect that some of the terms found by
the nqnlmearlty |n.|t|ally is. The gqU|I|br|um statistics rgl— ‘Benney and Newell5], involving gradients across resonant
evant in that case is much more likely to be a random distriianifolds which, in the fully dispersive case, are not relevant
bution of discontinuities in the density and velocity fields hecause the resonant three-wave interaction gives rise to an

which lead to an energy distribution of E(L.10. Further, igotropic distribution, may be more important in this context.
Kadomtsev and Petviashvili argued that even in two and the paper is written as follows. In Sec. I, we derive the

three dimensions one would expect the same result, namelgquation of motion for acoustic waves of small but finite

amplitude. A second approach discussed in Sec. Il B starts
from the Hamiltonian formulation of the Euler equations,
o L ) and again makes use of the small amplitude parameter of the
a random d!str|but!on _Of statistically independent ShOCkSproblem to simplify the interaction Hamiltonian. As we will
propagating in all directions. see in Sec. Il C, both approaches are equivalent and which

However, wave packets traveling in almost parallel d'rec'approach to use is the question of taste.

tions are ngt ilndependent. Cons.ider a solid angle containing Next, in Sec. Ill we write down the hierarchy of equations
N=(k/ ki)_l_ wave packets with wave vectork(k.), o the spectral cumulants and solve them perturbatively.
wherek=1""is a typical length scale of the fluctuating field certain resonances manifest themselves as algebraic and
in the direction of the propagation, amd <k;. The shock  |ogarithmic time growth in the formal perturbation expan-
time 74, for a single wave packet would beJpN/E  sjons, and mean that these expansions are not uniformly
< (l/ce)N2, whereE is the total energy in the field. The asymptotic in time. The kinetic equation, describing the long
dispersion (diffraction) time 74s,, namely, the time over time behavior of the zeroth order spectral energy, and the
which several different paCketS have time to interact |inear|yequations describing the |0ng time behavior of the zeroth
is of the order ok /(ck?)«IN?~1/c. As we have already order higher cumulants, are simply conditions that effec-
observed, the nonlinear resonance interaction tifge for  tively sum the effect of the unbounded growth terms. Under
spectral energy transfer id/€)e” “5~9) The ration is this renormalization, the perturbation series becomes asymp-
Taisp: Tsh: T = NZ@" N2 159 In the limits totically uniform. By asymptotically uniform, we mean that
N—o ande—0, the shock time is sandwiched between thethe asymptotic expansion for each of the cumulants remains
linear dispersion time and nonlinear interaction time, and, ifan asymptotic expansion over long times. All unbounded
we chooseN(€) by equating the first two, all three are the growths are removed. While this procedure in principle re-
same. Moreover, the phase mixing, which occurs due to thquires one to identify and calculate unbounded terms to all
crossing of acoustic wave beams, occurs on a shorter timerders, in practice one gains a very good approximation by
scale, a fact that suggests that the resonant exchange of elemanding uniform asymptotic behavior only to that order in
ergy is the more important process. But even then, severdhe coupling coefficient where the unboundedness first ap-
very important questions remain. pears.

1
1+62In?Q(k)), (1.22

ki~ te(k)ock 2, (1.21
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In other words, this means that if one finds that if the first vl gt+(v-V)v=—Vp(p)/p.
two terms of the asymptotic expansion are &ty + - - -,
then the effective removal af, will remove all terms which Here v(x,t) is the Euler fluid velocity,p(x,t) the density,
are powers of ) in the full expansion. Likewise, it also andp(r,t) the pressure which, in the general case, is a func-
assumes that there appear nogworse seCl_JIar terms at a high@h of fluid density and specific entropy/[p=p(p,s)]. In
order, such as, for examplet®y,. To achieve uniformity, igeal fluids where there is no viscosity and heat exchange,
one requires an intimate knowledge of how unboundedhe entropy per unit volume is carried by the fluid, i.e., it
growth appears. This sort of perturbative analysis was firsgpeys the equatiors/at+ (v- V)s=0. A fluid in which the
done in the 1930s by Dyson. A technical innovation was tospecific entropy is constant throughout the volume is called
use graph notations, callediagrams for representing parotropic; the pressure in such a fluid is a single-valued
lengthy analytical expressions for high order terms in thefnction of the densityp=p(p). In this case¥Vp/p may be
perturbation series. It often happens that one can find thgypressed via the gradient of specific enthalpy of unit mass
principal subsequence of terms just by looking on the topoy,— g + pV anddw=\Vdp=dp/p. ThusVp/p=Vw.
logical structure of corresponding diagrams. This method of Writing the fluid densityp(x,t) aspg(1+ 7(x,t)), the ve-
treating perturbation approaches is caltbd diagrammatic locity field asv(x,t), the pressure field as=po(1+ 7)*,

technique _ , _ _ _and the enthalpy as
The first variant of diagrammatic technique for nonequi-

librium processes was suggested by Wid&] in the context dp

of the Navier-Stokes equation for an incompressible fluid. w= f ?

This technique was later generalized by Martin, Siggia, and
Rose[13], who demonstrated that it may be used to investi- CS
gate the fluctuation effects in the low-frequency dynamics of =1
any condensed matter system. In fact this technique is also a K
cla_ssic_al Iimit_ of the Keldysh di_agrammatic technio[dsﬂf] ._one can write Eq(2.1) to third order in amplitude in the
which is applicable to any physical system described by 'n'following forms:
teracting Fermi and Bose fields. Zakharov and L'\jdb] '
extended the Wyld technique to the statistical description of

(k=1)(n—2) 2,

1+(p—1) 7+ 5 P,

Hamiltonian nonlinear-wave fields, including hydrodynamic (9—77 + @ =— i i, (2.2
turbulence in the Clebsch variablgss]. In Sec. IV, we will gt ox; oXi
use this particular method for treating acoustic turbulence. )
Note that in such a formulation, unbounded growths ap- Wi 20 i C (v=2) 4
pear as divergencédsr almost divergencgslue to the pres- ot ax Umaxm 2 X 7
ence of zero denominators caused by resonances—the very )
same resonances, in fact, that give rise to unbounded growth _(p=2)(p—3) 4 4 2.3
in our more straightforward perturbation approach. More- 6 ax; " '

over, diagrammatic techniques are schematic methods for
identifying all problem terms and for adding them up. If one Let us introduce new variables as

uses the diagram technique only to the first order at which

the first divergences appear, this is called the one-loop ap- _ iKextise
proximation, and is equivalent to identifying the first long ”(X’t)_f ES ea’(k,pelt itk
time nonlinear effects. This is exactly analogous to what we

will do in our first approach in this paper, although we will

also display the diagram technique. The one loop approxima- vj(xt)= f E
tion will give the same long time behavior of the system for s
times of r defined earlier. In Appendix C we analyze two- .
loop diagrams, and show that some of them gives the sam#here 0<e<1, w(k)=c|k| and =4 connotes summation
order contribution toy, as two-loop diagrams. Nevertheless overs=*1. From Egs(2.2 and(2.3),

one may believe that even the one-loop approximation gives

a qualitatively correct description of the dynamics of the sysJa*(k,t) _. E

(2.9

_Czkj

S ik-x+isw(k)t
s0(K) ea’(k,t)e dk, (2.5

fdkpquLS’SF”Sqasp(kp,t)aSQ(kq,t)

tem. at s..s k.Kp kg
Section V is devoted to some concluding remarks and the P
identification of the remaining challenges. We now begin X 8(kp+kq—k)

with deriving the basic equations of motion for weak acous-

tic turbulence. X expli[spw(kp) +sqw(kq) —swo(k) ]t}

IIl. BASIC EQUATION OF MOTION +e? D f dkpdkgdk, L, P ase
FOR WEAK ACOUSTIC TURBULENCE SpSq St Ceran
A. Straightforward approach X (kp,t)aa(kq,t)a% (k. ,t) 8(kp+Kkq+ ke —k)
Consider the Euler equations for a compressible fluid: Xexpli[syw(kp) +8qw(kg) + S w(k)

dpldt+V - (pv)=0, (2.1 —sw(k)]t}, (2.6
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where the summation is done over all signsspf s,, and Here the energy2.1]) is expressed in termsp(®) and
s, , and we use the shorthand notatiop= w(kp). The cou-  (\,»), so that Eq.(2.14 becomes the Hamiltonian of the

pling coefficients are system. As seen from Ed2.14), the case withA=0 or
_ p=const corresponds to potential fluid motions which are
LS'SP’Sq=E k'kp+ k'kq+ SO defined by a pair of variablesp(®) according to Egs.
kko kg 4 \spw,  Sqwq  SpwpSqwq ¢ O (2.12. It is convenient to transform in thle representation

from the real canonical variable®,(k),p(k) to the complex

+%(M—2)5w (2.7 ©onesb(k) and b*(k),
. @ (k)=—iv(c/2pok)[b(k)—b*(-k)], (2.19
S,Sp,Sq St _ I_w . _
Lk bk~ 12(H 2 (M 3). 28 Sp(K)=(poki2[b(K)+b*(—K)]. (2.1

These coefficients have the following important properties: Heresp(k) =[p(k) — po(k)] is the Fourier transform of den-
(i) Ly is symmetric under the interchange pfand  sity deviation from the steady state.
pq

q. _— .
. .S, = \Sp s 2. Hamilt f tic turbul
(“) LE’; ’i,_squ: (Spwp/Sw)L;SkZ ’T(q . amiltonian 0- acc?us IC turbulence .
(iii) ON the resonant manifolt, given by Let us expand the Hamiltonia2.11) (expressed in terms
' of b, b*) in power series
1
Ehzsp|kp| +q|lk—kp| —s|k|=0, (2.9 H=Ho+ Hint- (2.19
ics HereH, is quadratic inb andb*, giving the Hamiltonian of
Liisk':)’,iqq: T(/'LJF 1)K, (2.10 noninteracting waves:
where|k| =K. Note that ifk=(K,0,0), the resonant manifold H0=j ckb(k)b* (k)dk, (2.18

is not of codimension 1, but degenerates Kg=K,=0,
where k,=(Ky,Ky,K,), Kq=(K=K,,=K,,—K,). There
are three cases.(1) For K,;<0<K, [ky|=—K,,
[kgl=K+Ky, sy==s, sq=s. (2) For O0<K,<K,
[kp| =Ky, [kq=K—Ky, sp=s4=s. (3) For 0<K<K,,
[kp| =Ky, [kq| =Kx—K, sp=8,5,=—s.

with linear dispersion relationwg(k) =ck. In the Hamil-
tonian of interactiori;,;, we take into account only three-
wave processes:

’HimZ%f (V(k,kq,ko)b} bybs+c.c)
B. Hamiltonian description of acoustic turbulence
1. Equations of motion and canonical variables X 8(ky—ky—kg) dkidkadks. (2.19
Consider again the Euler equations for a compressiblgiere we neglected© 3 processegprocesses described by
fluid, Egs.(2.1). The enthalpy of a unit mas8=E+pVis  p*p*p* andb,b,b, terms, because they are nonresonant.
equal to the derivative of internal energy of unit volume this' means that if we take into account thes@ term, it is
e(p)=Ep with respect to fluid densityw=35e/5p. As & ot going to change our final results; thus we can neglect it
result of direct differentiation with respect to time, it is fom the very beginning. We also neglected contributions
readily evident that equatiori@.1) conserve the energy of fqm four-wave and higher terms, because three-wave inter-
the fluid action is the dominant one.
The coupling coefficient of the three-wave interaction a

H=J [pv2/2+e(p)] dr. (2.1  9iven by[1]

ckkgk, |2
One can shov(see, for exampld,1]) that Eqs.(2.1) may be V(ko,kl,k2)=(F%)2) (3g+ €0+ CoHpy+ CcoH1,),
0

written in the Hamiltonian forms
(2.20

dplot=6HI 8P, IDlit=— SHISp, 2.1 , . . ,
P p (212 whereg is some dimensionless constant of the order of unity,

INot=SHISu,  duldt=— SHISN, 2.13 and 6;; is the a_ngle k_)etweehi_ andk;. Since we have an
almost linear dispersion relation, only almost parallel wave
vectors can interact; therefore éjswith high accuracy can

if the velocity v(r,t) is presented in terms of two pairs of
yviry is p P be replaced by 1, and EQ.20 reduces to

Clebsch variablesg,®) and (\,») as follows:

Vi Vikg ko k)= | SKkakz 1/23 1 2.2
v=)\T+V(I). (2.14 (ko,kq,ko)= A7, (g+1). (2.21



396 V. S. L'VOV, YU. L'VOV, A. C. NEWELL, AND V. ZAKHAROV 56

3. Canonical equation of motion Here @ is velocity potentialv=V®. This gives
The Hamiltonian equations of motig@.12 for the com- . -
: . exd —iw(k)t]| dp(k,t) . w(k)
plex canonical variablels andb* have the standard forpi] + = _
a’(k,t) 2e(2m)? o |‘I’(k,t)—2—c ,
_b(k,t) oH exdio(k)t][ s
= _ p(k,t) . Wy

" kD (222 a (k)= 5| e +|<I>(k,t)?}.

(2.27

Note thata® anda™ are dimensionless variables.
Now we can easily express’ (k) anda(k) in terms of
b(k) andb*(k), and thereby relate the two alternative ap-

For the acoustic Hamiltonian@.17—(2.19, this equation
takes the form

. . proaches presented in this paper,
| —ck|bik.)=} [ Vik.a.pb(@b(p) /
1 k 1/2
+ _ = -3/2 i *(_
dq dp a“(k,t)= G(ZCpo) (27) " exd —iw(k)t]b* (—k),
><5(|<—CI—IO)WsT (2.28
* * 1 1/2
+fV (k,q,p)b(a)*b(p) a(k,t)z;(ﬁ) (2m) " ¥2exdiw(k)t]b(K).
0
wotkrqop TIIP oo 229
(2m)* " ' To check that the two approaches are consistent, we rewrite

the equation of motiok2.6) for a} , neglectinge? (four-wave

It is sometimes convenient to concentrate attention on steadfteraction terms,
state turbulence, which may be described in khe repre-

S
sentation. After performing a time Fourier transform, one 92 (k,H) _ $,5.8q 45, s
has, instead 0f2.23), ot e%q dkpquLk’kp'kqa P(kp @k, 1
X 8(Kp+Kkq—K)
[w—ck]b(k,w)=%f V(k,k1,kz)bibyo(k—k;—ks) X expli[spw(Kp) +Sqw(Kg) —Sw(K) ]t}
X 5 dkldwldkzdwz (23()
(0= w1~ wp) (2m)* Now we substitute Eq$2.28 and(2.29 into Eq.(2.30, and
obtain
+J V*(k,kq,kp)bT byd(k+ky—kj) P rioto b J, o kpqc)llz
—+tiw JB)=—i
dk,dw,dk,dw, at Peal 2730,
Xo(w+wi— wz)T .
(2m) X[(u—2)+Ccoshy p+ COHy q
(2.24 +cost 4]

* |k *
Hereafter we will refer to this as theasic equation of motion X[o(k+p+a)bybg +28¢+p-qbp by

for the acoustic turbulence normal variableg,band b, + 8(k—p—q)bybg]. (2.3D

and use it for a statistical description of acoustic turbulence.

Now one can see that Eq2.31) looks exactly like Eq.
(2.22, with Hamiltonian (2.19 and coupling coefficient
(2.20. Thus one concludes that the two approaches are
equivalent, and that a choice between them is a question of
Comparing Eqs(2.4) and(2.5), we obtain taste.

Sp(k,t)=poefa® (k,t)exfd i w(k)t]

C. Relations between wave amplitudea*(k), a~(k) with
normal variables of acoustic turbulenceb(k), b* (k)

Ill. LONG-TIME ANALYSIS OF STATISTICAL

+a (k,t)exd —iw(k)t]}(2m)%? (2.25 BEHAVIOR
The analysis proceeds by first forming the hierarchy of
ic2e equations for the spectral cumulaf¢errelation functions of
d(k,t)= w(k){a+(k,t)exp{iw(k)t] the wave amplitudgsdefined as follows. The mean is zero.

—a~(k,t)exd —io(K)t]}H(2m)%2 (2.26 (a%(k)a® (k"))=8(k+k")q> (k,k"), (3.0
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s S" (e’ VaS (") — 1 LSS s” rogen c?
(as(k)a® (k")a® (k"))=a(k+k’+k")g>* *(k,k ’k()é_z) |m:)<povj(x)vj(x+r)+%n(x)n(x“) (3.7

2
(a%(k)a® (k")as'(k")a®" (k™)) + %(u— 2) 7(x) p(x+ r>>

! M

:5(k+ k'+ K"+ k///)qsss S (k,k/,k",k"')

2.2
. poC-e )

, o =lim, o> (1—5;5,)9%%2(k)e' " dk

+o(k+k") 8(k"+k")g* (k,k")g*s" (K" k™) ) 2 2

+5(k+ k")5(k’+k"')qsgl(k,k")qslsm(k’,k"') zlimrHOJ' poczez((ﬁ*(k)+q*+(k))eikfdk
+5(k+ km)b‘(k/+k/l)qss’"(k’km)qs’s"(kr,k/r),

3.3 = f 2poc?e’q ™t (k)dk,

sinceq* ~(k)=q~ " (—Kk). The spectral energy is therefore
where(- - -) denotes average and the presence othenc-  2,c2¢2q*~ (k). For convenience we denote™ (k) as
tion is a direct reflection of the spatial homogeneity. Indeede(k)_

the_ property of spatla_l homogeneity affords one a way of To leading order ine, g% (k,k’) and g% (k,k’ k")
defining averages, which does not depend on the presence of . s , ss's” . )

a joint distribution. We can define the average[Which we may callgs” (k,k’) andgg”” (k.k’,k")] are in-
(n(X) p(x+r)) as simply an average over the base coordi-dependent of time. Anticipating, however, that certain parts
nate, namely, of the higher order iterates in their asymptotic expansions
may become unbounded, we will allow bag§® (k,k’) and
qgs's"(k,k’,k") to be slowly varying in time,

1 L
(n(X)n(XH)):WLLW(X)n(XH)dX- (3.4

ss’ ’
do” (Kik') _ g
dt 20
To derive the main results of this paper, it is sufficient to d SS'S”(k K’ K")
write the equations for the second and third order cumulants. Yo A 62,:35'5" 3.9

They are dt

and we will choose~, andF; to remove those terms with

dqss’ unbounded growth from the later iteration. We will find that
k-k' _ $,5p.,Sq S SpS for s'=—s, F35 °is given by the right-hand side of the
——=¢€Pyy dk,dkgL," P pea v P2 g y g
dt € s%p f PO kg kg Tk acoustic KE,
Xexgi(syw,+ Sqwq—Sw)t]d(k—p—0Qq), , , S.S
e P —ag (ki tm 3 [ 22 (1%,
2_,0%% [ prta
k+k'=0, (39 X A(Spwp+Sqwq—S©) 8(Ky+kq—K)dkdkg
. qup $,Sp1Sq\2~S S S,,—S,

ss's” + lim E — | (L2 ) (K, —kg)ge %
qu K'K" rn 2 Squ Sw “prig

S = ePoyor | dkpdkgLy S, P 0

dt €Fooo p q k‘kp‘kq k’,k”,kp,k

a X (Kp) A (Sp@p+ Sqwq—Sw) 8(Kp+Kq— k) dkpdKq,
X S(k—p—q)exdi(sp,w,+ Sqwg— Swi)t] y
TP T “ and thatF3° andF3®°® have the forms

S$,Sp .S, s',s s.s,
+2€P0010772 L pa P q q

& K~k ,— kT~ dier, —er iqgs(k,k’)(iTﬁJr(Ti,) (3.9
Xexgi(sp0’ +sqw"—sw)t], and
k+k'+k"=0, (3.6

iqgs’s”(k,k,,kﬂ)((?li_’_(i;_'_(Tli,:/)’ (31@

respectively. It is clear theﬁﬁ can be interpreted as a com-

where the symboPoy (Pooor) means that we sum over al plex frequency modification. Its exact expression is given by

replacements ©:0’, 0'—0 (0—0’,00—0", 0"—0, 0

—0",0—0, 0"—0). .

i s . SqSp 5,50\ 2.5 s

The total energy of the system per unit volume can be r=—4i lim > == (LySa)2g% ~Se(ky)
written as 2055 Sw Kp Kq
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A(Sp@p+ Sqwq—S©) 8(ky+Kq—k)dk kg, G S

i i
Vikaq,p)= * = =
w2 Vikan= pR; (a)

and, when calculated, is precisely equalk{e—c|k|)e? in 3 !

Eq. (1.17. Note that, in Eq(3.11), t=Te? and T is finite. TN b)

The In(1€?) coefficient comes from the term tlnor
In(T/é)=InT+In(1/€?) in the asymptotic expansion. For fi- m
nite T, the dominant part is In(&f). : ing d
The perturbations method has the advantage that it is rela
tively simple to execute. However, there is a@riori guar- - e
antee that terms appearing later in the formal series canno
have time dependencies, which mean they affect the leadinc +% + higher order terms
approximations on time scales comparable to or less thar
€ ? (e.g., a terme*t® should be accounted for before the o _ _ _
term ezt)_ To check this, one must have a systematic ap- FI_G. 1. (a) B'a3|c objects o_f diagrammatic pertubation approach.
proach for exploring all orders in the formal perturbation(b) First terms in the expansion of mass operaigk, ).
series, and removingrenormalizing in groups those reso-
nances which make their cumulative effects at time scales do
e N(In(1/e) ™M), N,M=1,2,3,. ... Thediagram approach, n(k)=J n(k,w)5—. (4.5
which requires some familiarity to execute, is designed to do
this and, both for completeness and the fact that we will have i . . .
to proceed beyond the one-loop approximation to resolve the The Green’s and correlation functions together with the

questions of the angular redistribution of spectral energy, w@are vertexV(k,q,p), Eq. (2.20, are the basic objects of
include it here. diagrammatic perturbation approach which we are going to

use[see Fig. 19)].

IV. DIAGRAMMATIC APPROACH TO ACOUSTIC
TURBULENCE B. Dyson-Wyld equations

A. Objects of diagrammatic technique In the diagrammatic series for the Green’s function, one
may perform the partial Dyson’s summation over one-
particle irreducible diagrams. This results in the Dyson equa-
tion for the Green’s functions,

Let us define the “bare” Green’s function of E.24) as

Go(k)= (4.1

w—ck+i0’ 1

G(k,w)= - ,
One may see from Eq2.24) that this function describes the ® = wo(K) 10— (K, »)
response of the system of noninteracting acoustic waves on

some external force. In the denominator we added the terfyhere the “mass operator3.(k,w) gives the nonlinear cor-
+i0 by requirement of causality. We remark that causalityrection to the complex frequenay,(k)+i0 due to the in-
(the arrow of timg s introduced in the perturbation approach teraction(2.19. This is an infinite series with respect to the
by the limitt—cc, and the fact that sgrappears in EQ.1.7).  bare amplitude/(k,q,p), Eq. (2.20, dressed Green's func-
Next we introduce the “dressed” Green function, which is tjon (4.2) and double correlation function(k, ), Eq. (4.3).
the response of interacting wave systems on this force:  All of the contributions of the second and fourth orders in
Sb(K,w) V are shown in Fig. ().
4 L o @ We have not specified the direction of arrows in Figh)1
(2m)Gk.w)ok—k) ow=w’) <5f(k',w')>' each diagram should be interpreted as a sum of diagrams
(4.2 with all possible directions of arrows compatible with vortex
V(k,q,p), describing the three-wave processes:4. For
example, diagramd) in Fig. 1(b) corresponds to three dia-
grams shown in Fig. 2. The diagrara4) on Fig. 2 describes
(27)*n(k, ) S(k—k') 8(w— ") =(b(k,w)b* (K',")). the nonresonant process+B, which is not essential for our
4.3 Cons!deratlon. o _
With the help of the similar Dyson’s summing of one-
The simultaneous double correlator of the acoustic field?article irreducible diagrams, one can derive Wyld's equa-
n(k) is determined by tion for n(k, w):

(4.6

We will also be interested in the double correlation function
n(k,w) of the acoustic field,b*,

(277)3n(k)5(k—k’)=<b(k,t)b*(k’,t)>. (44) n(k,w)z|G(k,w)|2[D(k,w)+(I>(k,w)]. (47)

This is related to the different-time correlators in therep-
resentatiom(k,w) as follows: HereD(k,w) is the correlation function of the white noise,
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As a result, the Green’s function has a sharp peak in the
2 s X )
k vicinity of w=ck, and one mayas a first step in the analy-
= > sis) neglect thew dependence ak (k,w) and put
1
2 2 S(k,w)=3(k,w=ck). (4.10
m &m& The validity of this assumption will be checked later. Under
* 1 -+ 1 this assumption the Green'’s functi¢h2) has a simple one-
pole structure,
a4/ -
; R R £ A
where
arrcl)zvlv(i: 2. Diagrams 4) from Fig. 1 with specified directions of 0(K) = wo(K) + R (K, , ), (4.12
y(k)=—=Im%(K,w,). (4.13

(2m)*D(K,w)8(k—K")8(w—w")={f(ko)f* (K ")),
(4.8 Now we have to decide how to choos€ “in the best
way.” The simplest way is to pub, = wg(k)=ck, as was
and the mass operatdr(k,w) describes the nonlinear cor- stated in Eq.(4.10. As a next step we can take a “more
rections toD(k,w). This is an infinite series with respect to accurate” expressiomw, = w(k), i.e., to take into account
the same object&(k,w),n(k,w), and V(k,qg,p). All dia- the real part of correction teq(k). But later we will see that
grams of the second and fourth orders are shown in F&. 3 a better choice is
We also have not specified arrow directions in the dia-
grams for3(k,w) and ®(k,w). In complete analogy with
diagrams forG(k, ), one diagram in Fig. @) corresponds
to two diagrams 1) and @2) in Fig. 3b). All the rest
diagrams for®(k,w) reproduce in the same way—one
chooses all possible directions of arrows, and discards thos¥
which are incompatible with the definition of vert&k[see

Fig. 1(@].

w, = o(k)+iy(k), (4.149

which is consistent with the position of the pole of
G, (k,w). We will show that this choice is self-consistent,
hile deriving the balance equation in Sec. V C.

2. Double correlation function

The same type of approximation may be performed for
the correlation function. That is, in the Wyld equatigh?)
one may replacés(k,w) by G(k,w), and neglect thav

1. Green’s function dependence of d(k,w) by putting ®(K,w)—Dd(K)
We have assumed from the beginning that the wave am= P (K, w, ), or

plitude is small. Therefore, - ~ ~
n(k,w)=|G(k,»)|’[D(k)+D(k)], (4.15

C. One-pole approximation

2(K, ) <wo(K). (4.9 We will call this one-pole approximation for the correlation

function
(I)(k,m)= | =
Q D. One-loop approximation
C

®
b
+;_ % + Let us begin our treatment with the simple one-ldop
direct interactioi approximation for mass operatoks and
d ®. This approximation corresponds to taking into account
% + -qié:it!-» just the second ord¢m bare vertex/, Eqg. (2.20] diagrams
for the mass operators and®. The two-loop approxima-
R f tion will be considered in Appendix C. We will estimate
.+ two-loop diagrams, and will show that some of them give the
same order contribution tg, as one-loop diagrams. There-
fore, the one-loop approximation is an uncontrolled approxi-

mation, but we believe that it gives qualitatively correct re-
sults. Note that these diagrams include the dressed Green’s

®
’ a al a2 function, in contrast to the approximation of the kinetic
2 =s +m equation which is nothing but a one-loop approximation with
the bare Green'’s function inside. We will see below that this

difference is very important in the particular case of acoustic
FIG. 3. First terms in the diagrammatic pertubation expansiorfurbulence. The KE for waves with a linear dispersion law
for mass operatoW (k, ). forbids the angular evolution of energy because conservation

L
2

3=
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laws of energy and momentum allow interaction only for 1. Calculations of3 (k, )
waves wi;h parallel wave vectors. In the one-loop approxi- In the one-loop approximation, the expression for
mation with a dressed Green’s function, the conservaumz(k’w) has the form
laws w (k) = w(k4,) = w(k* k,) are satisfied with some accu-
racy|of the order ofy(k)]. As a result, there exists a cone of S(k,w)=2 (K 0)+3 0k o) +3 5k o), (4.17
allowed angles betweek andk; in which interactions are
allowed. Therefore one has to expect some angle evolutiowhereX (k,®) is given by Eqs(A1)—(A3). Our goal here is
of wave packages within this approximation. Combining Eq.to analyze these expressions in the one-pole approximation,
(4.11) with Eqg. (4.15, one has the following expression: by substituting in it “one-pole’ expressions(k,w) and

_ G(k,w) from Egs.(4.11) and(4.16). In the resulting expres-
2y(k)n(k) sion one can perform the integration oveanalytically. The

n(k,w)= [w—w(k)]2+72(k)' (4.16 result is

dgkldakz/ [V(ka,k,kp)|?8(k+ky—kp)[n(ky) —n(kx)] V(Ko Ky kp)|?8(k—ky—ka)n(ka)

2(k,w)=

2m® | etek)—wky)+i(yityo) w—w(ky) — (ko) +i(y1+72)
(4.18
|
Next we introduces (k) =3 (k,w, ), with w, given by Eq. Ymax 2
(4.14), and consider Eq4.18 in the limit of smally, which L(a)=Ing =|nq7(k) : (4.29
allows us to perform analytically integrations over perpen- kka
dicular components of wave vectors. The result for theafter substitutingy(k) from Eq.(4.22), one has
damping frequencyy(k) may be represented in the follow-
ing form (for details, see Appendix)B L(q)xInpg /gN(Q). (4.2
A2K2 (o 22 The main contribution to integrd#.23 over g comes from
(K =7 fl/Ln(q)Qqu: 2 Q). (4.19  the infrared regiom=1/L. This gives the estimate
2
Here we introduced a cutoff for smatl at 11, wherel is 3 (k)= —==tLE(Q), (4.26
7T°C

the size of the box. We also introduced “the density of the

number of particles™N({2) in the solid angle according to  \yhere we have defined the density of the wave energy in
solid angle as

N(Q)=f k?n(k)dKk, (4.20
E(Q)=f wo(k)n(k)k?dk. (4.27
such that the total number of particles
This value relates ttN((2) as follows:

N:f N(Q)dQ. (4.20) c
E(Q)= N(Q). (4.28

After substitutingA from Eq. (B11), one has the following
estimate fory(k): Equation (4.26 together with the expressiofB1l) for A
may be written as
y(K)=K*N(Q)/po, (4.22
° 3" (k)=cke Inl/e, (4.29

Consider nows,’ (k)=Re3 (k). It follows from Eq.(B12)
that where

A2 y €= E(Q)/p002 (430}
E(k)=—f dqf "dy n(q) e
4mc 0 yZJrl“ﬁ12 is the dimensionless parameter of nonlinearity, the ratio of
2 2 2 2 energy of acoustic turbulence, and the density of thermal
X[(k*+2kag+q%) — (k"~2kq+q7) ] energy of medig,c?=nT, wheren is the concentration of
atoms.

Azk Ymax d
= ﬂf dqf 2y y2 [ca®n(q)], (4.23 Equation(4.22) for y(k) may be written in a similar form,
mC 0 y +Fk12

v(k)=ck(kL)e. (4.3)
wherel"1o,= y(Kk) + y(kq) + y(k5,) is the “triad interaction”
frequency. One may evaluate the integral with respegtas  One can see that



y(k) kL

This means that, for a large enough inertial interval,

y(k)=>3"(k), (4.33

and one may neglect the nonlinear correcti@rigk) to the
frequency with respect to the damping of the wayég).
This shows that our above calculations Bfk) is self-
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3. Balance equation

Consider the Dyson-Wyld equatio4.6) and(4.7) in the
inertial interval, where one can neglegg(k) in comparison
with Im3(k,®) andD(k) in comparison with®(k,w):

1

consistent. Later we also will take into account only dampinglt follows from Eg. (4.6) that

y(k) in the expressions for the Green’s functions, taking

(k)= wo(k)=ck.

2. Calculations of® (k, w)

In the one-loop approximation expression ¢k, w) has
the form (A4). After substitution ofn(k,) in the one-pole
approximation(4.16 one may perform analytically integra-
tion over frequencies:

d3k,d3k
¢Wm0=f-zi§§nWﬂnWﬂ
V(K ka ko) Pr(kn) + (ko)) 8k — ks — ko)

[w— (K1) — w(Ky) 1P+ [ y(ky) + y(Ko)]?

[V(ka kg, K)[2(y(ky) + y(kp)) S(k+ kl—kz)}
[w+o(ky) = o(ko) 1+ [y(ky) +v(kp)]?
(4.39

We will analyze this expression in Sec. IV D 3.

d(l) dkldk2 1

IV(k,kq,ko)|?8(k—ki—kj)

Glko)= - S (K w)’ (4.39
n(k,w)=|G(k,w)|?®(k,0). (4.36
IMG(k,0)=|G(k,w)|?ImZ (ko). (4.37

By comparing Eqs(4.36 and (4.37), one may see that the
combination

L(k,0)=®(k,w)ImMG(k,w)—n(k,w)ImZ(k,w)
(4.38

is equal to zero. In particular,

do
L(k)EJ L(k,w)ﬁzo. (4.39

Together with Eq(4.38), this gives

dw _
|mf 5[ ®(k,0)G(k,w) ~n(k,w)X(k,0)]=0.
(4.40

Let us now compute the first term in E@.40. By substi-
tuting Eq.(4.34 for ®(k,w), and Eq.(4.11) and integration
over w, one has

|V(k21klak)|25(k+kl_k2)

—G(k,0)®P(k,w)=

5 ——3 n(ky)n(ky) >

(2m)

wo(K) — wo(Ky) —wg(kp) =i,

wo(K) + wo(ky) — wo(kp) =il
(4.41)

Next we will perform integration ovew in Eqg. (4.40. Remember thak (k,w) is an analytical function in the upper half

plane ofw, while n(k,®) has one pole there. Therefore,

dw B
Imf Zn(k,w)i(k,w)—n(k)ImE(k,w*)

(4.42

wherew, is given by Eq.(4.14). This is the justification of our choice, .

Now let us put everything together to obtain

dk,dk
0=L(k)= 12

1 |V(K Ky, ko) *{n(ky)n(kz) —n(K)[n(ky) +n(ky) 1}

eru‘ o(k—ki— kZ)E

IV(ky,kq,k)[2{n(kp)[Nn(ky)+n(k)]=n(k)n(k,)}
(wo(K) + wo(K1) — wo(K2))?+ iy,

(wo(k) — wo(Ky) — wo(k2))2+ T2,

+ 8(k+ky—Ky)

(4.43
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This is the main result of the diagrammatic approach: thequestion is, do the spectra of acoustic turbulence depend on
balance equation for stationary in time acoustic turbulence the features of pumping or they are univergatlependent of
In the nonstationary case one can similarly obtaingbeer-  details of energy influ? We intend to answer these ques-

alized kinetic equatiofn the form tions (in the framework approximations we made in that pa-
pen in our next project. It is an exciting challenge to try to

an(k,t) —L(k,t) (4.44) go beyond the approximations made here in order to under-

ot e ' stand whether the scaling index of the interaction vertex in

the system of acoustic waves in two- and three-dimensional
where L(k,t) is given by Eq<443) with a correlator de- media must be renormalized or not.
pending on timen(k;)—n(k;,t).. In the limit y(k)—0, this
expression turns into the well knowf. [1]) collision inte-
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+8(k+ k1 —K2)| V(K Ky ,K)|?
APPENDIX A: RULES FOR WRITING AND READING OF
x{n(ky)[n(ky)+n(k)]—n(k)n(ky)} DIAGRAMS FOR MASS OPERATORS

X S wo(k)+ wo(ky) — wo(ky)]- (4.49 Here we state without proof the set of rules for writing

wn diagrammatic series.

(1) In order to write down all diagrams f& and® of

2n order in vertices, one should draw Zertices and con-
nect them with each other by linesand G in all possible
ways. Two ends must be left free. If both ends are straight,
we will obtain a diagram for®(k,w); if one of them is
wavy, this will be a diagram fokE (k, w).

In the present paper we have begun to develop a consis- (2) The diagrams forb andX containing closed loops in
tent statistical description of acoustic turbulence based botfpreen’s functionlGF) are absent. This follows from the fact
on the long time asymptotic analysé3ec. Il)) and on the that the Wyld's diagrammatic techniquBT) appears from
perturbation diagrammatic approat®ec. IV). The first ap-  glued trees.
proach is more straightforward. The diagrammatic approach (3) There is no mass operator with two wavy ends in DT.
provides a systematic way of analyzing higher order terms in  (4) In the diagrams fo> (for X) one can pass from every
the perturbation theory. vertex along theG lines to the entrance and exit in a single

Our main result is that nonlinear corrections to the fre-way.
quency are much smaller than the nonlinear damping of the (5) In every diagram foi2, there is a single root linking
waves. We also find the balance equatiém3, which gen-  the entrance and exit along tkelines — the backbone of the
eralizes the simple kinetic equation for acoustic waves. Ondiagram. The resE lines of the diagrams may be called the
can show that the balance equati@’3 has the same iso- rips.
tropic solution(Zakharov-Sagdeev spectriiras the kinetic (6) The diagrams ford contain a basic cross section in
equation. However, the kinetic equation for acoustic turbuwhich they may be cut in a single way into two parts only at
lence does not describe the angle evolution of turbulencdines n(k,w).
any arbitrary angle distribution is the solution of KE. In con-  (7) EveryV vertex is entered by one arrow and exited by
trast, our balance equatidd.43 contains terms which de- two. TheV* vertex is entered by two arrows and exited by
scribe an angular redistribution of the energy because of thene.
nonzero value of the interaction cone, which is proportional One can showsee[12)]) that rules(3)—(7) follows from
to I' 1. However, we have yet to show that this expression(1) and(2). The rules of reading diagrams are the follows:
contains all such terms to this order. (1) Write down the product of DT object&louble corr-

One may imagine three very different ways of the angleelator, Green function, or vertgxwith corresponding argu-
evolution of anisotropic acoustic turbulence. The first one isnentg corresponding to each element of the diagram.

a tendency to form very narrow beams with a characteristic (2) Write down § functions in the 4-momenta forr2- 1
width of about one interaction angle. The second one is awertices in such a way that the sum of entering the
approach to isotropy downstream from the large wave vec4-momenta is equal to the sum of exiting them. One of the
tors. The last possibility is to form a beam with a charactervertices(for, example the one corresponding to the end of
istic width of about unity, exactly as it happens in the turbu-the diagram does not contain thé function.

lence of waves with weak dispersigh7]. Another important (3) Perform an integration along all internal lines of dia-

We see that the generalized kinetic equation differs from th(—f*jo
well known collision term in the three-wave kinetic equation
by replacingé functions on the corresponding Lorenz func-
tion with the width of thel';-triad interaction frequency.

V. CONCLUSION
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gram :di=[dk;/(27)%]dw; /(27), whered is the space di- d3k,d%k, dw;dw,

mension. S sk, 0)= 2 2 o(k—ki—kp)
(4) Multiply the diagram by (2r)(@*+1),
(5) Multiply the diagram by 18, wherep is the number of X 8(w—w1— 0y)|V(K,Kq,Kz)|2Gn,.

elements in its symmetry group. For example diagrams

(al), (a2), and @3) correspond to the following analytical (A3)
expressiong: Here we defined the following shorthand notation:
G;j=G(k;,w;), andn;=n;(k; ;). In the same way one can

%k, d%k, dew;dw, find analytical expressions fab,(k,w):

Eal(k.w)=f Gm? 2n Oktki—kg) A%, 8k, doydo,[ 1 ,
§|V(k!kllk2)| nln2

& (k,w)= 3
X 8w+ w1 = wp)|V(Ky,K,K)[*Gony, (2m) 2m |

(A1) X 6(k—ki—Kky)8(w—w1— w5)
+[V(Ka,kq,K)[*niny8(k+ky—ky)

d3k1d3k2 d(l)ld(l)z
(27T)3 2 5(k+kl_k2)

X 8w+ 01— wy)|V(Ky K, k1) |2GT Ny,

Sao(k,w)=

XO(w+wi—wy)|. (A4)

Analytical expressions fos in fourth order diagramsgtwo-
(A2)  loop diagramswill be shown in Appendix C.

APPENDIX B: CALCULATION OF X (k,w)-DETAILS
Let us start from Eq(4.18 and introduce> (k) =3 (k,w, ) with w, given by Eq.(4.14):

E(k)=f d3k1d3k2/|V(k2,k,kl)|25(k+kl—kz)[n(kl)—n(kz)] V(Ko Ky, ka)|?8(k— ki —kg)n(ky)

- + - , Bl
2m® | e+ otk — (k) +il w(K)— (k) — (ko) Ty (8D
|
where ki=qgk/k+k, kLk. (B5)
[yao=y(K) + v(ky) + y(k2) (B2) In the first term of Eq(B1),
is the “triad-interaction” frequency and I}, is the triad ko=(k+q)k/k+x, 0=q. (B6)
interaction time. One can consider EqB1) and (B2) as
integral equations for the damping of wave(k) Inthe second term,
=—1Im2(k) and for the frequency w(k)=wq(k) k,=(k—q)k/k—rx, 0=g=k. (B7)

+Rez (k).
interaction wherel'—0, and the main contribution to the gn . Indeed,

first term in Eq.(B1) comes from the region where
2

K
oK)+ o(k)=w(k,), k+k;=k,. (B3) wo(k)+w(k1)—w(|k+k1|)20km, (B8)
These are conservation laws for three-wave confluence pro- 2
cesses 8 1—2. The main contribution for the second term wo(k)— (k) — o(|k—k;|)=—cks=————. (B9)
in Eq. (B1) comes from the region 2q(k—q)
oK)= w(k)) + o(ky), k=ki+ks. (B4) This allows us to neglect the dependence of interaction

V(k,q,p) and correlatiom(k;) in the numerator ofB1) for
These are conservation laws for decays processes-92.  estimation. The result is
For weak interaction one may replao¢k) on wy(k)=ckin 2 . _
Eqgs.(B3) and(B4). Than it follows from Eqs(B3) and(B4) (k)= oX f kszz[ f gqdkran(@—n(k+g)]
thatk,|k,|[k, with k; ,k, directed alonck. This fact makes it 87 Jo o cke[2q(k+q)]+iT2
natural to introduce new variables in integréidl): the scale ‘ (k—q)n(q)
positive variableq>0, and two-dimensional vectae, such +f dq Zq aniq i (B10)
that o —cke/[2q(k—q)]+iT )’
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where APPENDIX C: ESTIMATION OF THE TWO-LOOP
DIAGRAMS
A=3(g+1)c/am3p, (B1y Let us write down analytical expression which correspond

to one of the diagramsb) in Fig. 1(b),

dkldkzdwldwz
(k w)_jTV VpVeVan(ky, o1)

is a factor in Eq(2.20 so that, for parallel or almost parallel
wave vectorsV(k,q,p) =Avkqgp. After changing variables,
this integral becomes more transparent,

XNn(Ky,w3)G(Ky+ Ky, w1+ w))

—n(k+
(k)= quf d yoP(k+q [n(q;ﬂ# XG(k+ki+ky, 0+ w1+ w) G(K+K, 0+ wy)
k12 1)
Ymax 2(k q)zn(q) .
=it | (B12)  whereV,, V,, V., andV, are vertices,
Va:V(k1+ k2+ k,k,k1+ kz), (CZ)
One may estimatg .= Cck?/2q from the fact that our ex- B
pressions were obtained by expandingciti; therefore they Vp=V(ki+katkky k+ky), (€3
should be at least<k. _

Now let us consider the imaginary and real parts3of Ve=V(kztkkz k), (C4
separately. It is convenient to begin  with — V(K + Ko ks Kk c5
’)’(k):— |m2(k) d ( 1 2201 2) ( )

We just followed the rules of DT and integrated over &ll
A2 (o % functions. From now on, the analyses will be parallel to that
Y(k):mJ’ dYU dg ¢(k+q)? of Appendix B. Let us use Eq4.16 for n(k,w) and Eq.
(4.11) for G(k,w). Now we can easily perform integration
[n(q)—n(k+q)] overw; andw,. Now, as was done in Appendix B, introduce
FklzT 2p(k)=2p(k,w,). Since all interacting wave vectors are
y k12 almost parallel, we introduce two-dimensional vectars
kK g?(k—a)?n(g)T and k, such that
+f qq (k=ag)°n(q) klz} (813
0 y +Fk12 kl:qlk/k+Kl’ KlJ_k, (CG)
Here we changed the upper limit of integratiofya— >, Ko=02k/K+ Ky, KoLk (C7)

because the main contribution to the integral comes from th

areay=I'<<ck. After trivial integration with respect tq, %JNe use V(k,q,p) =Avkqp. Since «;<k, we can expand

resonance denominators in Eq1) with respect tok; . The

one has integrals will be dominated by regions whege<k. Putting
) everything together, one obtains
Y= | "o+ ain(a) - nik+ ) lda rddadeidnd | o
b(k):f 576 A"k*(01102)0102Ng,Ng,
k
+ f q2<k—q>2n<q>dq} (814) €8
0

C(ki+K3)
20 ay) 0%
x| < K1+ §+ )(CK +
- — | i
201 Q2 2q,

9/2

This expression fory(k) corresponds to that given by the
kinetic equatiorf1] for waves. For further progress it is nec- -1
essary to make some assumption aba(af). Let us assume (

thatn(q) vanishes with growing of| faster than I*. [Re-

member, that in the Zakharov-Sagdeev spectrafu)
xq~ %2 and in the Kadomtsev-Petviashvili spectrurtq)
«q~ 4. This assumption is true for the Zakharov-Sagdee

spectrum, and is not true for the Kadomtsev-Petviashuvili

(C9

Substituting’ﬁq—n/q‘ we see that, indeed, the dominant
\part comes from the region of smajl. We can estimate all
these integrals to obtain

one] For such spectra the main contribution to the integral A%K3L2n2
comes from smaltj<k. In this case contributions from first Sp=—, (C10
and second integrals in EqB14) coincides, and may be C™ %

represented in the form where we used the smail cutoff 1L. Finally,

L oy AK Zp_KUM® 1, (C1D)
47_rcfm_n(q)q dg= yp— N(Q). (B1hH =T = )

y(k)=
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and we conclude that the contribution from diagrams of type X (et o, — Ok Fi ke kaw)]
(b) in Fig. 1(b) is much less than the contribution from one- 2 2 T

loop diagrams. But this is not the end of the story. Let us tr o -
b clag y yLet us again introduce; andk, as above, and, substituting

to estimate contributions from diagrams of typg on Fig. == "> S5, . X SRS
1(b). Following the same guidelines, we obtain Ng=n/q""%, we obtain the following estimation:
dkik, Se ALY
X (K+ k)N Ny [ (@t 0, — ki, HT ik kerk,) Therefore we conclude that the contribution from two-loop
. diagrams is dominated by planar diagrams, and is of the
X (@t ok, + 0= Ok i T kg g kg ) order of the one-loop diagram contribution.
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