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Optical solitons and quasisolitons are investigated in reference to Cherenkov radiation. It is
shown that both solitons and quasisolitons can exist, if the linear operator specifying their
asymptotic behavior at infinity is sign-definite. In particular, the application of this criterion

to stationary optical solitons shifts the soliton carrier frequency at which the first derivative of the
dielectric constant with respect to the frequency vanishes. At that point the phase and group
velocities coincide. Solitons and quasisolitons are absent, if the third-order dispersion is taken into
account. The stability of a soliton is proved for fourth order dispersion using the sign-

definiteness of the operator and integral estimates of the Sobolev type. This proof is based on the
boundedness of the Hamiltonian for a fixed value of the pulse energyl998 American

Institute of Physicg.S1063-776198)02405-9

1. INTRODUCTION the quadratic approximatiofi.2), although it remains small
in the sense of the criteriofl.1). It is noteworthy that the

Solitons in nonlinear optical fibers have been very pOpu‘existing experimental possibilitigsee, for example, Ref.) 6

lar objects of investigation since the early nineteen seventie%ake it possible to obtain very short pulses, for which
i.e., since the s_tructural stability of the solitons for the Swlwy<1. On the other hand, the efficiency of optical fibers
gorr]t%\{eg—de Vr|e§ %Kdv) éaquatloﬁ an(;i thde nonllnsar as media for transmitting information is inversely propor-
chralinger equatioh was demonstrated and since a5€-tional to the soliton width. Thus, practical considerations call
gawa and Tappefsubsequently proposed the use of Optlcalfor reducing the soliton width as much as possible.
solitons as data bits in fiber communications. The interest in In this paper we show that the properties of “short” and
optical solitons has increased dramatically in the last decadqong,, solitons can be very different. For short solitons the

due to the practical achievements from the use of solitons i'&xpansion(l.Z) is largely incorrect and should be replaced
modern optical communication systefitsHowever, despite by the more general formula

the great practical significance of optical solitons, the theory
for them is far from complete. 1
When reference is made to optical solitons, it is assumed 6k— — Sw=—F(dw). 1.3
that their spectrum is concentrated within a certain transpar- Ugr
ency window, where the linear damping is small and disper;

sion effects dominate. The width of the soliton spectréun Her\_"-;F(g) Is a certain function, which should be _taken from
) ; : a microscopic treatment or extracted from experimental data.
is assumed to be fairly small compared with the frequenc

Y, .
band Aw of that window, i.e.,60<Aw. In real systems, Although F(¢{) can be far from the parabolic dependence

however, the band\w is always narrower than the mean (1.2), averaging over the fast timej can be performed,
' providing a description of slow soliton dynamics by means

frequency of the windows, i.e., Aw<w. Thus, we have the ot 5 generalized nonlinear Schtiager equationGNLSE.
following hierarchy of inverse characteristic times: This averaging also leads to the appearance of an additional
Sw<Aw<o. (1.0 integrgl of motion, viz., an adiabatic ir!variant, yvhich hgs t.he
o ' _ _ meaning of the pulse energy. Accordingly, owing to this in-
These criteria permit consideration of the slow {~6w)  variant, the GNLSE allows a soliton solution for the enve-
dynamics of soliton propagation in terms of amplitude enve4gpe of the electromagnetic fiel(x,t) in the form a propa-

lopes. In particular, to derive a nonlinear Safirmer equa-  gating pulse with the additional phase multiplih*;
tion (NLSE), i.e., the basic model for describing optical en-

velope .solltons, the wave number is approximated by a E(X,t—X/vg) =M y(t—x/v gt BX), Ug}l>,3-
guadratic polynomial

1 1w The main result of this paper is as follows. Solitons can

k= -——d0—7 — (dw)?. (1.2 exist, if L({)=\—B{+F({) is a positive(or negative defi-

or Ugr nite function for all{. This criterion is the basic selection
Here sk=k—kgq, dw=w— g, vg=dw/dK is the group ve- rule for solitons. If this criterion is not satisfied, the soliton
locity, andky and w are the wave number and frequency of loses its energy through Cherenkov radiation and ceases to
the soliton carrier wave. However, in the frequency intervalexist after a certain time. This occurs, for examplé; (t) is
Aw the dispersion of the wave can differ significantly from a third-degree polynomial.
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Even if L(¢) is positive definite and a soliton exists, the Aw, within which the imaginary part of the dielectric con-
guestion of its stability is far from trivial. In this paper we stant is small enough that it can be neglected.
establish that a soliton is stablelif ) is a positive definite Let us consider the propagation of a wave packet with a
fourth-order polynomial. The proof of its stability is based spectrum lying within this transparency window, assuming
on the boundedness of the Hamiltonian for a fixed adiabatithat the frequency width of the pulse spectrum is small com-
invariant. We assume that the same conclusion regarding thgared withAw. A solution in the form of an isolated pulse,
stability will be valid for any positive definite polynomial i.e., a soliton, can be expected only under such conditions.
L(Z)>0 of even degree. However, if we have As was noted in the Introduction, two types of solitons
@ are possible. The solitons of the first type are stationary in a
[F(OI<CIZ|* for |¢[—ee (1.4 moving frame. They propagate with a constant velocity with-
anda=<1/2, stability of the soliton is doubtful, and it is more out changing their form. A classical example of solitons of
likely unstable. this type is provided by the solitons for the KdV equation,
There is one more important point on which we would which, in particular, describe solitary waves in shallow wa-
like to focus attention in this article. The objects which haveter. The solitons of the other type are called quasisolitons.
traditionally been called solitons in nonlinear optics are notThey have internal dynamics and propagate with a constant
such in the strict sense of the word. They are quasisolitonsselocity only on the average. The classical quasisolitons in-
i.e., approximate solutions of Maxwell's equations, whichclude breezers, which are described by the sine-Gordon
depend on four parameters. Real stationary solitons, whicbquation(for further information, see, for example, Refs. 8—
propagate with a constant velocity without changing their10).
form, are exact solutions of Maxwell's equations, which de-  Stationary solitons are exact solutions of E2.1). We
pend on two parameters. The latter exist, if the dielectricshall seek these solutions in the form
constants(w) has a maximum in the frequency range under
consideration for a focusing nonlinearity or a minimum, if E=E(x-vt), 2.3

the medium is defocusing. In a purely conservative mediunyyherey is the constant velocity anBl tends to zero at in-
quasisolitons exist for a finite time owing to radiation as afinjty. The substitution 0f2.3) into (2.1) makes it possible to
result of multiphoton processes. In reality, however, this timgntegrate the equation twice:

is much greater than the lifetime resulting from the linear

damping, and the difference between solitons and quasisoli- LE(x)=aE3(x), a=xv?/c? (2.4
tons is insignificant. N
where the operatdr equals

1)2

2. STATIONARY SOLITONS L=1- 2E (2.9

. In this section we demonstrate hqw to find a solilton SO the Fourier representatidn is written in the form
lution directly from Maxwell's equations. We consider a
very simple model of the simultaneous propagation of v2e(w)
pulses, assuming that the polarization is linear and that the L(w)=1- cz
electric fieldE(x,t) is perpendicular to the propagation di-

rection. In this case Maxwell's equations can be reduced t§here the frequency and the wave numbér are related by

(2.6

the wave equation for the fiel(x,t): the equalityw =kv. The second term ifR.6) is the square of
) ) the ratio betweem and the phase velocity of an electromag-
Q _ 25_ netic wave of small amplitude:
5 5 =0, (2.1
at Ix
vph=Cl/\e(w). (2.7

where the electric displacemebtis assumed to be related to A
the electric field by the expression Hence it is easily seen that the operatobecomes positive

A 3 definite if and only if
D(x,t)=ge(t)E(X,t) + xE°(x,t). (2.2

, o , Vo) >v?, (2.9
In this expressiom is an integral operator; the Fourier trans-

form of its kernel ise(w), i.e., the dielectric constant. The for all w, and it accordingly becomes negative definite in the

second term if2.2) corresponds to the Kerr effect, ayds  opposite case:

the Kerr constant. ) )
The functione(w) is analytically continuable into the Uph( @) <v*. (2.9

upper half-plane ofw (see, for example, Ref.)7For real e now show that a soliton solution is possible only when
values of w the magnitude ofe(w) obeys the Kramers— condition (2.8) or (2.9) is satisfied. Let us assume that the

Kronig relations. It particular, it follows from these relations gpposite is true, i.e., let the conditiof&8) and(2.9) not be
that on the real axis the imaginary part of the dielectric consatisfied. In this case the equation

stante”, which is responsible for the dissipation of electro- )
magnetic waves, cannot be equal to zero at all frequencies. UV e(w)

. . =1 (2.10
Below we shall assume that there is a certain frequency band c
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has a solution(for simplicity we assume that it is unique: The existence of a solution for E(R.14) is indicated by the
w=wg). Then Eg.(2.3) can be rewritten in the following intersection of thes= w(k) curve by the straight lines. This
manner: assigns a complete cone of angleswhere stationary soli-
ton solutions are impossible. Cofie which is complemen-
tary to (), corresponds to possible soliton solutions. On the
(2.19 boundaryd() between the cones the straight lines are tangent

E(x—uvt)=Eg(x—vt)+L 41— P)aE3(x—vt).

Here to the w=w(k) dispersion curve, and at the points of tan-
) gencyk; the group and phase velocities coincide:
Eo(x—vt)=RegA exd —iwg(t—x/v)])
: . . . w(k) Jw (k)
is the solution of the homogeneous linear equation | T | (2.16
ki ki
For the dispersion law2.15) this relation is written as
and P is a projector onto the statEy(x—ut), so that (1 de(w)
—P)xE3(x—ut) is orthogonal tcE, and, therefore, the op- io —O (2.1

@i

eratorL is reversible in this class of functions. To find the

explicit solution of Eq.(2.11), we can use, for example, an It is natural to assume that the soliton amplitude van-

lterative scheme,_ taIg_nEo as the zeroth approximation. ItIS jshes at these critical pointsince there should not be any
of fundamental significance that, by proceeding in this man-

ner, we must arrive at nonlocalized solutions, which depengtatlonary soliton solutions outsid@). As will be shown

on two parameters, viz., the imaginary and real parts of th elow, the behavior of a soliton solution near these critical
complex amplitude& H.e’nce the following conclusion can points is universal. We demonstrate this fact in the case of

be drawn: the stationary equatig@.3 can have a soliton f[he stationary equat|o(2..3). It is, however, fundamentally
s . . important that the result is general and can be used for other
solution if L is sign-definite. If Eq.(2.12 has a nontrivial

. . ) . models. This fact was first investigated for capillary-
solutlpn, or, equwale.ntly,.lf the phase velocity, and the gravitational solitons in deep watkr;'3 The spectrum of
velocity v are equal, i.e., if capillary-gravitational waves is known to have a minimum

Vpn=0, (2.13 phgse velocity for wave nqmbers lying in the intgrmediate

region between the gravitational and capillary portions of the

there is no stationary soliton solution. We note that this conspectrum.
clusion relies heavily on the fact that the singularity on the  For simplicity, we assume that E(R.17 has only one
right-hand side of Eq(2.11) (E®),/L(w) is not removable. positive solutionw = w, [because of the parity af(w) there
As will be shown below, singularities of this type can be s gne more rooto= — w,], and let the cone of anglé? lie
removed, if the matrix element of the four-wave interactionpe|ow the critical velocity:
(x in the present cagdnas a frequency dependence.

Equation(2.13 can also be regarded as a condition for C
Cherenkov radiation by a moving object. The nature of the U<Ucr:ﬁ-
object itself is not important here. It can be a charged par- #lwo
ticle, a ship, or, for example, a soliton. In any case the movThus, the functiore(w) has two identical maxima at sym-
ing object loses energy as a result of Cherenkov radiation. Ifetric points, and
the case under discussion this means that if the velocity of an 5
electromagnetic soliton satisfies the conditid®®), it must d% (+ wo)
emit waves, and, therefore, such a pulse cannot exist as a dw?
stationary object. Thus, we arrive at the following condition ) . ) _
for the existence of solitons: a soliton solution can existn this caseL is an invertible operator, and E.4) can be

when the equation written in the form
o(K)=kv (2.14 _1 3
E, L(w) a(E%),. (2.18

does not have &real) solution. Herew= w(Kk) is the disper-
sion law. For electromagnetic waves(k) is determined Near the critical velocity ¢ ,—v<v,) the plot ofL(w) as a

from the equation function of w is close to zero in small vicinities of the two
s 2o points w = * wy because of its symmetry with respectdo
w*=kc/e(w). (2.19 Therefore, according t¢2.18 the distribution ofE(w) is

The relation(2.14 has a simple interpretation in the—k determined to a considerable extent by the functidr(@j.

plane. The right-hand side (2.14) corresponds to a straight Accordingly, in thet_-represent_at!on the solution will be close
line emerging from the origin of coordinates, and, accord-0 @ monochromatic wave. It is important that the monochro-

ingly, the velocityv in this plane equals the slope tan maticity of the wave improves as approaches.,. There-
fore, E(t') (t'=t—x/v) will be sought in the form of an
v=tan ¢. expansion in the harmonicswg:
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> _ , where, as befores, S, anda are given, respectively, by Egs.
E(t)= 2, [Eopiq(r)e @ Deot’ fc e, (2.19  (2.20, (2.22, and (2.4 taken atw=0. The localized solu-
n=0 tion of EqQ.(2.24) has the form of a soliton for the modified

Here we have formally introduced the small parameter ~ Korteweg-de VrieYMKdV) equation:
— 1= 2€ e(t—x/v—t
e=V1-vlvg (2.20 E(t—x/v)=— sec{ ( o
and the slow timer=e€t’, so that theE,,  1(7) are the en-

Va Vs
velope amplitudes of each harmonic. The representation
(2.19 means that the width of each harmonic along the fre3 QUASISOLITONS; HIGHER-ORDER DISPERSION
guency scaledw~ €, is small compared with the frequency In this section we discuss the difference between solitons
wg, i.e., the Fourier spectrur®.19 is a series of narrow and quasisolitons in the case of a generalized nonlinear
peaks. The main peaks correspond to the first harmoniGchralinger equatiofGNLSE). The GNLSE has a more ex-
Therefore, the action df on (2.19 can be expanded into a tensive class of soliton solutions than does the original Max-
series in powers of. Assuming thaE,,, ;~€>""! and sub-  well equation. Unlike the stationary solitori2.23, these
stituting (2.19 into the stationary equatio(2.4), with con-  solutions are approximate and depend on four parameters.
sideration of(2.17) in the first order we arrive at a stationary However, the mechanism for selecting the soliton solutions

nonlinear Schrdinger equation: remains the same as for the stationary solitons considered in
2E. 3 the preceding section.
E,—S 21 — 2 a|E4|?E;=0, 2.21) ' The transparency window must be small compqred
at 2 with the mean value of the frequenay: wy>Aw. In this

case an envelope can be introduced for the entire region. The

where most convenient and systematic approach for obtaining the
v? d?e(wp) equation for the envelopes is based on the Hamiltonian
S=—g73—7 >0. (222 formalism*
4c® dow . . .
Let us consider Eqg2.1), which we present in the form
Equation(2.21) has a soliton solution only if>0: of a system of equations:
ap PP dp 1 [. 4wy
, 2e e(t—x/v—tp) _p+_= AT + 253 =
Ea(t')= a secr{ NG : (2.23 x Tz =0 Tzt =0 @D

The potential¢p and the “density” p introduced here are

This solution is unique to within a constant phase multiplier.;g|ated to the electric fielg and the magnetic fielti by the
It is the universal asymptote of the soliton solution. As expressions

approachesv.,, its amplitude vanishes according to a
square-root law~ yv,—v, and the soliton pulse widtAt Va4 @

increases in inverse proportion to this factor: E= ¢ P H=Vam ot (3.2
At=/Ye. Equations(3.1) can be written in Hamiltonian form:
For times greater thaht we must take into account the &_p: 5_7/ %: _ oK (3.3
following expansion terms, particularly the third-order dis- X ¢ " X op '
persion and the corrections to the cubic nonlinearity. In thisqere x plays the role of the time, and the Hamiltonian has
time range the soliton behavior is no longer universal. the form of an integral with respect to time:
It is noteworthy that Eq(2.21) does not have solitonlike 5
solutions whene?=1—1v/v<0. 7,/_f E(% + 1. + X alg
When the tangent approaches the dispersion curve from =~ ) |2 | at 202PEPT EP
above, S becomes negative. For this reason solitons exist 1 1
only for defocusing mediaq<<0). =_ f H2+EsE+ = yE*|dt. (3.4)
The case where the point of tangency satisfigs=0 8 2

calls for a special treatment. Near the critical velocity theThe quadratic part of defines a linear dispersion law for
stationary equation2.3) does not require the expansion k=k(w), which coincides witi{2.15. We can go over to the

(2.19. It is sufficient to expand(w) nearw=0: normal variables,(x) using the replacements
1 d?g(0) w?
= — 2 _ *
e(w)=¢(0)+ 5 do? @ Po=\ 3k(0) (a¥+a_,),
According to this expansion, the stationary equation takes on = [k(w)
the form bo="1\ 5.7 (a,—a_,), (3.5
w
1 . .
e _e2e_ T o3 wherep,, and ¢, are the Fourier transforms of the density
€E-SHE 2 «B*=0, (2.24 and the potential, andk(w) is understood in these formu-
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las as a positive root of the dispersion relati@l5. The T
substitution of these relations into E@®.3) gives the equa- T wp050,= T0T &—a)l(ﬂﬁ Qo+ Q3+,

tions of motion in the variables,, :
2

17T 2 2 2 2
da, . OH 552 (Q1+ Q5+ 03+ Q))
=i 29
x| sar’ (3.6 @1
where the HamiltonianZ takes the standard forcompare Yo (Q210,+050,)
Ref. 14 w1002
1 + al (Q,95+0,0,+0,0
=] k(w)|a,’do+= | T a* a* a_a dwidwg T3 TTIRTAT RS
w 2 wlw2w3w4 (A)l (x)z 0)3 (4)4
+Q,0)+... . 3.1
X5 Hidwi. (37) 2 4) ( 2

wl+w2—w3—w4
. ) o ) In the expression fok(w) we have retained the terms up to
The matrix element appearing therein is assigned by the ¢y 1th order in Q, and in the matrix elemenT we have

formula retained the terms that are quadratic(inIn expanding the

3y 0202wl 112 matrix element, for simplicity, we considered it to be real
T = 172734 (3.9 and utilized its symmetry properti€8.9). Accordingly, the
W WoWW 4
1r2va®s 4mct [ K(wy)k(wz)k(wz)k(w,) coefficients in(3.12 are
If the fourth-order susceptibilityy depends on the frequen- T
cies, the constang in the matrix element3.8) is replaced by T 9T IT ) wywgo,
X(wiw030,) with the necessary symmetry propertisee 07 T wguowower 5, dw, oo
Refs. 7 and 1 which ensure the following symmetry rela- ko
tions for T: 2
&ZT _ (? Tw1w2w3w4
— — —T* =
Tw1w2w3w4_ Tw2w1w3w4_ Twlw2w4w3_ Tw3w4wlw2 . (39) (90)i r?wj &wiﬁw]— o= wg

In the Hamiltonian(3.7) we retained only the terms respon- Next, performing the inverse Fourier transformation with re-

sible for the scattering of waves, neglecting all the other . ) i N
processes, which make a contribution in the rigitth) or- spect to(), for s we obtain the generalized nonlinear Schro

der with respect to the amplitude of the waves for nr:lrrowdmger equation

wave packets.

J 190
The Hamiltonian formulation of the equations of motion j _¢+ L + K oSt + Ba| )20
(3.6) guarantees ‘“conservation{absence of a dependence Vgr It
on x) of the Hamiltonian7, as well as of the “momentum” = — iy — i Bal 24— St + (B3 — Ba) [ (20 ),
p= f ola,*do (3.10 — (XX 1+ (Bat B Y (W)= Boldl®y. (313

) o ) ) ) The left-hand side of this equation corresponds to the classi-
which coincides exactly with the Poynting vector integrated.5| nonlinear Schidinger equation: the second term in it

over time: describes the propagation of a wave packet as a whole and,
c [ therefore, can be eliminated by going over to the local coor-
P= yp J EHdt. dinate frame. The next term~<S) is responsible for qua-
77- —oC

dratic dispersion. Now, fode(wg)/dwy=0 the coefficienS

Let us now proceed to the derivation of the equation 1:c)rcoincides with the expression {@.22). The last term on the

the envelopes by introducing the packet envelope amplitudé.eft'hand side defines a nonlinear correction to the frequency
of the monochromatic wave. The first two terms on the right-

1 _ _ hand side are- (dw/w)®. It is important that there are only
P(t,x)= N f a,e (07 wot-ikolwoXd g, two such terms. In this case the coefficight= 27T/ dw is
2m nonzero even for a constant fourth-order susceptibility

. X _ - - — 2
Here we assume that the spectrumagfis concentrated in a YWhen x=const holds,3, can vanish only ik~ The
narrow intervaldw nearw, and thatwy> dw. Accordingly, ~ fémaining terms are-(éw/w)”. Among them we took into

4 .
#(t,x) is a slow function of the coordinates and the time. account the terms-|y|*y, which are of the same order of

Next, expandingk(w) and T,_,, .., into a series in Magnitude. o
O=w—wn at w~ We have 1rareta The coefficientsB; appearing in Eq(3.13 take on a
= 0 0

very simple form for the matrix elemei8.8):

1
K(Q):k(w)_k(wo)zU—Q_kosflz_'yﬂ3+5ﬂ4+, ﬂ 3k2 (Uph)4 B :Bl (1 Uph)
ar 1= 5 KoX ' 2= ’
2

(3.1 c wo |7 2vg
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k1/2 (92 wo Bl v 2
=g - = Q.= _ _ph k
Bs=p1 oo Eg(k—m) Ba=PBs gg(l ngr) :
(3.19
According to its derivation, Eq.3.13 should be classified as !
a Hamiltonian equation: \
4 31
| 5— —5¢* . (3.15
Here the HamiltonianZ can be represented in the form of a /%
sum of Hamiltonians: o)
T= 1+ Hoo+ Tog+ Tyt ..., R
— A =
where
~, [ FIG. 1. Dispersion curv€3.23 for negativex. Any straight line emerging
'%1:U_gr f ‘/f* ‘ﬂtdtv (3.16 from the origin of coordinates intersects the dispersion curve.
o= —f (koS| AR %M“)dt, (3.17  sified as quasisolitons. To find the corresponding solutions,
we should setE(x,t)=e™y(t+ Bx), where ¢ obeys the
& f (v g i B2(9* = )| wlPdt, (318 eauatior
S03= | Y e T 152 t , . . .
t L(id) =~ Bt Np— = 2| 2. (3.2
Bs Ba In the case under consideration the conditions for Cherenkov
oy — 2_P3y 120, x _Pa 242
']J“'_f (5| Y 2 |[1% (g +c.c) 2 (g radiation(2.14) are written in the following manner:
roo)- &lﬂ*zé’zl/lz-f- &|l/1|6 it (3.19 BA=k(Q) or L(Q)=0, (3.22
2 t 3 ' ' where the dispersion relation for E(®.21) takes the form
Here .7, corresponds to the classical NLSE, and the next  k(Q)=\+0Q?2. (3.23

Hamiltonian corr nds to th mplex MKdV tion. It - o
riamiitonian correspo ds to the co piex d equatio -Hence it is seen that for<0 the resonance conditid.22
is important that each of the successive Hamiltonians is . -
. o is satisfied for any value of the velocit¥ig. 1), and hence

smaller than the preceding one. However, this situation can . N . o o .
; . g . no solitons exist in this case. This is verified directly by
change, if any of the expansion coefficients introduces addi-

tional smallness. As is seen frof@.23, the soliton width soIvmg E.q.('3.2]): for A<0 f"l" the solutlops are periodic or
decreases as the quadratic dispersion coeffiSatecreases. quasiperiodic. Soliton solutions are possible only for positive

Therefore, whers is small(such a situation arises near the \;a;u\%s ((I):f')\. 2-;- hi'tr tKGIOC'F'e,[S Q“’i Ln \/’;\_hethran?% Zh\t/xl'geﬁ
so-called zero-dispersion pojnthe cubic dispersion-y) - '9. ). € points=L= = € straight fin

must be taken into account with neglect of all the higher-_:'gch Is tangent to th&=k({2) dispersion curve. Accord-

order terms, as well as the term that is proportionao If ing to the results of Sec. 2, the soliton solution should vanish
B, is small, the nonlinear dispersion, which is proportionalat these points, as follows directly from the solution of Eq.

to B,, must be taken into account with neglect of the cubic(3'ZD'
linear dispersion.
Let us now turn to an analysis of the solitonlike solutions \
for the generalized Schadinger equation. k
To illustrate how the mechanis(@.23 operates, we first
consider the nonlinear Schiimger equation with quadratic
dispersionwhich corresponds to the Hamiltoni&8.17)]:

0E
|5+Ett+2|E|2E=O. (3.20

Here we have used dimensionless variables, and the nonlin-
earity is assumed to be focusingg>0.

It is noteworthy that, unlike the wave equati¢hl), a
generalized NLSE, particularly the NLSE with quadratic dis- Y
persion, has an additional symmetry, vie-—~E€'¢, which o)
app_ear_s as a result of the averaging Of.the equa.tions of fasItG 2. Dispersion curvé3.23 for positive\. The dashed lines which are
oscillations. _Therefore, the enYeIOpe soliton solutions form anderﬁ to the dispersidn curve corresbond to the critical velocities
more extensive class of solutions than does the wave equ@= . > /x. These straight lines specify the boundary of the soliton cone of
tion (2.1). According to our definition, they should be clas- angles.
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’ how cancellation of a singularity occurs. For a soliton mov-
X ing with the velocityv,
L(k)=ik(v+k?).

For v>0 the equatiorL(k)=0 has one real rodk=0. In

Y this case the analog of E(R.18) is
/ k=3ik(U2)k
{ o T a Lo
) which clearly does not contain a singularity le=0. The

i situation is similar for other equations of the KdV tyfsee,
‘ for example, Ref. 16
Solutions of the soliton type were recently obtaitfdr
a generalized Schdinger equation, which simultaneously
FIG. 3. Third-order dispersiok=S0?+ yQ3. The dashed straight line is tak'es into ,accoym,the third-order dispersiqn and corresponds
tangent to the dispersion curve @t=Q,, but intersects it afl=0. to its nonlinearity[in the present paper this corresponds to
consideration of the Hamiltonian8.17) and (3.18]. If the
relations betweery and B, are arbitrary, the soliton solution
found in Ref. 17 has a spectrum concentrated at the frequen-
@A B? ciesQ~1/y, 1/8,, i.e., at frequencies comparabledq. In
E:emxma AQ=\A=7 (324 the unique case where the relation between the coefficients

has the form
Hence, the region for the existence of solitons is given by the

inequality A\>2%/4. The upper bound in this inequality KoS_ 3y

specifies the critical velocity B1 4_,32

Ber= i2\/x- the soliton spectrum is displaced by a small amount. This
It is important to note that the operatorin Eq. (3.21) is case is special, i.e., E3.13 (written in dimensionless vari-
positive definite forn > 8%/4. ables,

Let us now turn to the third-order dispersion. We as- iE, + Ey+2|E|2E=ie(E+ 6|E|2E)), (3.29
sume, as before, that the soliton solution contains an expo-
nential multiplier allows application of the inverse scattering problem tech-

- , , nigue (see, for example, Ref.)8In this case the Hamilto-
E(x)=e™y(t’), t'=t+px. (3.29 nians (3.17) and (3.18 are conserved independently. They
The corresponding operatblid;) has the form are both created by the6same associated operator, viz., the

Zakharov-Shabat operatoihe parametee in this equation

L(Q)=~BA+N+S0%+ Q7. (3.26 is of order dw/w, andE takes values of order unity. Soliton
This operator is sign-definite for any values)afB, S, and  solutions for this equation were first pointed out in Ref. 18.
v#0. This means that the equatitfQ2)=0 or the equiva- The simplest of them is the solution
lent equation

_ aipx ~

BQZ)\'FSQZ""}’Q?', E=e* Ch/,L(t—G,LLZX)'
has at least one real solution: the dispersion curvek6r)
=\+S02%+ yQ2 always intersects any straight line emerg-
ing from the origin of coordinates. For example, for-0
andB= B,=— S?/(4v) all the straight linek= B() intersect
the k=Kk(Q) dispersion curve twice. FgB< B, the straight

which transforms into a stationary soliton of the NLSE
(3.24 whene=0.

One conclusion which can be drawn from the foregoing
material is that the existence of soliton solutions for the
lines have one point of intersection, and for 8, tangency f[hird-order_ operatort is due to t_he presence of derivatives

' in the nonlinear term or, stated differently, the dependence of

occurs(Fig. 3). However, one point of intersection is suffi- . )

: . the matrix elements on the frequency. If there is no such

cient for the absence of solitons. On the other hand, the ex: e e .
. ) . —dependence, or if it is insignificant, as is the case, for ex-

ample of the KdV equation, which simultaneously has cubic

: ; ) : . ample, near the point of zero dispersion, there are no reasons
dispersion and solitons, apparently contradicts the foregom%r cancellation of the singularities in the equation of the
statement. Actually, there is no contradiction here. Every- ; .

o X . form (2.18. Therefore, the results in Ref. 19 of the numeri-
thing is explained by the dependence of the matrix element

] : : cal observation of solitons for the NLSE with cubic disper-
on the wave vector, which provides for cancellation of the”. . :
. . . sion should be revise@ee also Ref. 20, which was devoted
singularity in the equation of the forii2.18).

. . to this equation
We can show in the example of the KdV equation We shall henceforth confine ourselves to consideration

Ui+ U,y 6UU, =0, (3.27 of the case where there is no dispersion of the nonlinearity or
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it is insignificant. In such a situation third-order dispersion 0.15
cannot provide for the existence of solitons, i.e., the next o 010 :
expansion terms must be taken into account. )
. . . 2 0.05
For fourth-order dispersion the corresponding operator 5 A /’\ /\1 /\ /\ A
has the form § 0.00 \jvvfu VVV
c
L(Q)=— BO+\+S0%+ yQ3+ 504, (3.29 2005 \ ‘U J ‘
: - . . . D _0.10f
The sign-definiteness @f is now determined by the sign of 015
6. the operator is positive definite fa¥>0 and negative "230 -20 -10 0 10 20 30
definite in the opposite case. Time

The cubic term can always be eliminated frdmby
means of an appropriate frequency skilft-Q + v. Further-
more, using simple scaling and sign rever$dl{)) can be
brought into the following two canonical forms:

L(Q)=—BQ+k(Q)=—BQ+\+(Q2—v3)?,

FIG. 4. Dependence of the soliton amplitu@e units of vS) on the time(in
units of vgl) for u/vy=1/3. The soliton envelope has the form of the
function sech to good accuracy.

(3.30
L(Q)=—BQ+k(Q)=—BA+N+(Q%+v5)% (3.3))

Then, applying the criterior(3.22 to the dispersion law
(3.30 with A <0, we can easily see that the resonance con- (3.39
dition (3.22 is satisfied for all values o8 and that the ex- ’
istence of solitons is, therefore, impossible in this region ofThey are all complex. This means, in particular, that all sta-
parameters. tionary solitons should have an oscillating structure ulf

For positive =pu* solitons are possible in the region ~ v holds, the real and imaginary parts of the exponent
— Bo= =P, Where are of the same order. Critical tangency occurs when0.
Near this point the real part of is small for a finite value of
the imaginary part:

The roots of this equation are assigned by the expressions

1 1 1/2
E(\//.L‘l‘f‘ Vg_ V%) E(\/,ufl-l— VS_VS)

12
*i

v==

1
Bor=4Q0(Q5—vf)  and Qf=c(2vg+ V16rg+12u%).
(3.32

Near the critical velocity(3.32 the dispersion is positive;
therefore, localized solutions of the soliton type can existthis limit.

only for focusing @x>>0) nonlinearity, while nonlinearity For largeu (u>vo) the roots have the asymptote
with respect to the quadratic dispersion would be defocusing.

The form of the soliton in this case is determined from the ;=4
equation V2

L(ia0)y=20]|?y, (3.33

whereL(id;) is given by Eq.(3.30 or (3.31), o=sgn@y)
specifies the character of the nonlinear interaction: dor
=1 it is attractive, and fow=—1 it is repulsive. Soliton
solutions are possible only for a focusing medium.

The simplest solutions of3.33 are stationary solitons.
Their form is found by integrating the equation

i+ (97 + vg) 2y —2|y|>y=0. (3.39

It is significant that a moving soliton for fourth-order disper-

(3.39

Envelope solitons of the universal for(®.23 appear in just

v=""*ullvy*+ivg.

1=

Figures 4—6 show the solitons for different valuesuoénd

vg. In the limit u—0 (Fig. 4) the soliton has a clearly ex-
pressed envelope soliton form, and at laygéu>vy) the
soliton has only one oscillation on its scdk&g. 6). At large
distanceglarge timeg the solitons for all the values qf and

vy have exponentially decaying, oscillating tails. As the ratio
ulvg increases, the amplitude of the soliton increases, and its
width decreases. The solitons obtained here, like the real

sion has a profile which differs from a soliton for the NLSE 20
with quadratic dispersion. It cannot be deformed into a sta- g L5y / .
tionary soliton by simple scaling and phase transformation. 2 0} \

To find the solution, Eq(3.34 must be supplemented by % o5k
the boundary conditions c

Liummavanva

¢, P—0 ast—xw, B o4l \/ \/
The symmetry of Eq(3.34 allows real symmetri¢relative -10 .
to t) solutions:(t) = (—t)=¢* (t). At infinity (t— = ») -15 -10 -5 TQ 5 10 Is

ime

these solutions should decay exponentially~e"'—0,

where the exponent is determined from the equation FIG. 5. Form of a soliton whep/v,= 1. The amplitude of the solitofin

units of VS) increases, and its widtfin units of vgl) decreases. Oscillations

4 2 2\2 4_
v+ (vt VO) tupt= 0. are still observed on the scale of the soliton.
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3.0 , » ©
25 | - | ptarzmaguiz [ Jupat
220t / ] !
s 2
£ 1.51 , \ b _ tmax d|l,//| *© 2
g 1.0 / : _J_m dt dt _mllM dt
5 0.5 /
n / tmax i
0 <oN [ "lylludde=an [ lullwat
0.3 — o0 — o0
-2 -1 0 1 2
Time 5 o ) 1/2
<2N |yl 2dt] . 4.2
FIG. 6. Form of a soliton whem/vy=10. The oscillating tail is scarcely -
visible. This inequality can be enhanced by finding the best constant

[instead of 2 in(4.2)]. The maximum value of the functional

2
solutions of Eq.(3.34), are simultaneously solutions in the Gly]= —IZNs/zﬁ
form of stationary solitons for Eq2.1) with the dielectric

constant clearly solves this problem. To find the maximumG@ify] it

is sufficient to consider all the stationary points of this func-
g(w)=80—a(w2—w(2))2 and ya>0. tional and then to select the one which has the maximum
value of G. All the stationary points o[ /] are determined

As for the dispersior3.31), here the situation is similar 5 the following equation, which coincides with the equa-
to what occurs for the NLSE with quadratic dispersioniign for a stationary soliton:

(3.20. Solitons are possible fax>—vg. The only differ- 2 o wl2u=0
ence from quadratic dispersion is the change in the value of ~ # Yt dut 2]yl ‘ﬂf ' _ _
the critical velocity. Near these points the structure of thewvherex=u?>0. Hence it can easily be seen that the maxi-

solitons has the universal for2.23. mum of G[ ] is achieved in a real soliton solution, which is
unigue(to within a constant phase multipljer
. m
Y=
4. STABILITY OF SOLITONS cosh ut)

Let us examine the stability of the solitons obtained inAﬁer this, all the integrals irG[ /] are easily calculated:

the preceding section. We first show how stability can be N=2 | :E s :‘_1 3
proved for the NLSE with quadratic dispersi¢®.20. The R L - Tl
Hamiltonian for it has the form and the inequality4.2) ultimately takes the form
) 1 ) 1/2
H=f ([?= gl Hdt=1,-15, (4.1 f |w|4dts‘7N3’ZU thlzdt} : 4.3
— o0 3 — 00
and the soliton solutiof3.24) has the form of the stationary The substitution of this inequality int@t.1) gives the follow-
point of the Hamiltonian for a fixed momentum ing estimate:
p:—ifw*dt H=Ho+ (V1= 119)%,
! whereH = —2u°%/3<0 is the value of the Hamiltonian in

the soliton solution. This estimate becomes exact in the soli-

ton solution, proving the stability of the solitons with qua-
S(H+BP+AN)=0. dratic dispersion in the sense of Lyapunov. We stress that

_ o this proof provides for the stability of solitons not only with

Following Ref. 21, we shall prove stability in the sense of ,ggpact to small perturbations, but also with respect to finite

Lyapunov, i.e., we shall show that the soliton has a MINIMUNy ey rhations.

for H at fixedP andN. For this purpose, it is convenient to Now let us turn to fourth-order dispersion. We represent

represent\ in the form of a sum of?/4 and the positive e corresponding function&l=H + 8P+ \N in the form of

. 2 . . _
quan2t|ty pn“. We next consider the function®=H+BP 5 gm of the mean value of the operatgia,) (3.29 and the
+(B14)N, which, as can easily be seen, is the same Hamily,;hjinear term:

tonian in a moving coordinate frame: the replacement of the

and a fixed number of particldenergy N= [||2dt:

wave functiony— ye'#? transformsF into H (4.1). Thus, F:j o+ L(iﬂt)iﬂdt—J | y|4dt. (4.4)

for stability it is sufficient to establish th&t has a minimum

in the stationary soliton. To prove the stability of solitons, we must find the analog of
Let us consider the integrahb=[|]*dt. It is easy to  the inequality(4.3) for the mear(L(idy)).

prove that the following chain of inequalities hol@se also Let L(Q)) be the positive definite polynomial) e

Refs. 21 and 2P (—o0,0) of degreeN=2I. ThenL({2) can be expanded as
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| p—1

La(Q)=2 Ly Q) I] (-0, 4.5 H’=n2f |(iat+V0)¢|2dt+f I(85+VS)¢|2dt—f || *dt
p=0 =1

(4.10

where (); and the polynomiald , _,,({)) are constructed

from L, according to the following rule. Le®2 = be the

minimum point of L, (Q): min Ly(Q)=Ly(Qp). The latter S(H'+ u*N)=0. (4.1)

allows us to writel ,(€2) in the form

when the number of particled is fixed:

If the HamiltonianH’ is bounded from below for a fixed
Ly (Q)=Ly(Qg)+(Q—Qg)%Ly_»(Q), value ofN, and its lower bound corresponds to a soliton, the
soliton will be stable.

In terms of the new Hamiltonian the soliton solution
obeys the equation

wherelL, _»(£}) is a nonnegative polynomial of degre¢ 2
— 2. The expansion of the polynomil}, _»({)) gives a new
nonnegative polynomial of degred 24. Further recursion
leads us to formuld4.5). It is important that all the coeffi- Wit 72(1 0+ vo) 2hs+ (924 v3)2hs— 2| thgl hs=0.

cients in this expansion are nonnegatilg; _,,({2,)=0. It (4.12
's also clear that o((2)=Cy . Next, multiplying this equation by and integrating ovet,

Expansion(4.5 generate.s the corresponding EXpansion e arrive at the following relation between the integrals ap-
for the mean value off 5 (i d,):

pearing inH':
Ly(id))= * Ly (i 9,) dt .
(Catiay= | v Latas piN 7 [ (ot v pldts [ 124 gt
=L2(Qo)No+ Lo —2(Q21)Ny+...+Lo(Q)N,
(4.6) _Zj |’/’s|4thHé+M4Ns_f |l,03|4dt20.
where Another relation follows after the multiplication ¢4.12 by
p—1 to,s and integration:

Np=f|¢p|2dt; vo=I1 (ia+Qgy, p=1;
4=0 4, 2.2, 4 2 2 2
(u+ 72+ vONG+ (23— 7 >f |2t

Vo=
_ 2 24+ 444 —
This representation shows how the square of the norm of the 3f |9t | dit f || *dt=0.
positive definite polynomial operator expands in the norms o ) )
N, with the nonnegative coefficientsy _,p(€2p). Combining these two relations, we obtain

For the positive definite fourth-order dispersi($129

L(Q)=\—BQ+DO%+y03+ 04 Hs=(7°vo 0N+ (205 nz)f [t

the expansiori4.5) reads as _3J' |02w |2dt
t¥s .

L(Q)=u*+ 7(Q—Q0)*+(Q—Q0)*(Q—Qy)? (4.7

For both dispersions the Hamiltonidth, is bounded from
where u* replacesl 4(€)o), and 7* replacesL,(£2;). With  apove in the soliton solution by the number of particles mul-
no loss of generality, we can s@,=—Q;=v,iN EQ. (4.7 tiplied by a certain positive factor: fq#3.30
(this corresponds to the replacemeit— i exp{—i(Qq
+Q)t/2}), so that Eq(4.7) takes the form Hg$[1£2(2v3— P2+ P+ AN,
L(Q)=pu*+ 72(Q—1vg)?+(Q%—1d)2. (4.8

and for(3.31)
The difference between the dispersiof&30 and (3.31)

stems from the fact that the quantity2- »? can be positive Hi<(7?v§+v)Ns.
or negative. Fof3.30 2v2> 72, and for(3.30 2v3<72. In
accordance witti4.8), the integral expansion of the norm of
the operatoL is written as

We now prove thaH’ has a lower bound for a fixed value of
N. For this purpose we first evaluate the two integrals

<L(if9t)>:l/«4N+712f |(i(9t+V0)lﬂ|2dt ‘]1:[ |(i¢9t+V0)lﬂ|2dt and ‘JZZJ |(‘9t2+VS)¢|2dt

in terms of two other integral®y andl,= [||*dt. Itis easy
+ f [(82+ v3) y|?dt. (4.9  to see that the estimatd.3) is valid for the first integral, :

0 ) 1/2
This representation means that a moving soliton can be re- f |¢|4dtSiN3’Z[f (i 9+ vo) ¢|2dt} . (413
garded as a stationary point of the new Hamiltonian — V3 —
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Using the inequality(4.3) again, we can obtain the estimate 5. CONCLUDING REMARKS
sought forJ,, if we first perform integration by parts in

; - . In conclusion, we would lik n hat th lection
[|#]?dt using the Cauchy—Bulyakovskinequality, conclusion, we would like to note that the selectio

rules for solitons based on the criteria.8) and (2.9) are
valid for arbitrary dimensionality. It is significant that the
J |¢t|2dt:_f o (Pyt V%l//)dH'f vhlyl2dt conditions for the existence of solitons remain unchanged:
the corresponding operatar must be sign-definite. In addi-
tion, the fourth-order dispersion for all physical dimension-
alities D ensures the existence of stable solitons for the
GNLSE with cubic nonlinearitywith neglect of its disper-
sion). This follows from the estimate of the dispersion term

12
+ V%N,

le’{ (5 + vg)wdt

and then substitute the result obtained id®):

1 (312 2 of the Hamiltonian in terms of, and N. In this case the
Jo= N (W_ vSN) . (4.149  inequality (4.3) has the form
D/4| 2-Dl4
Using the inequalitieg4.13 and (4.14 we obtain an esti- f |z/;|4desC[f |Ay]?dPx f |2dPx
mate ofH’ in terms ofN andl,: (5.1)
= t(1) 312 .\ 1313 2N)2 I .15 Substituting this estimate into the Hamiltonian
=)= "y I 3~ PolN ) ~l2 '
N° NIN
A . H= [ 1agPaox= [ |ufax
Continuing this inequality, we obtain
V3l [ 312 gives its lower bound:
f(l2)>2N—22(N—§—VgN>—I2 D/4 2-DJ/4
H>f |Ay2dPx—C f|A¢|2de f|¢|2de
Finally, from this we arrive at the desired inequality, i.e., the
boundedness of the Hamiltonian: 4 4 \HO= _
=—|——1]|— N(8-D)/(4-D)
. 43N V3N]¥2 D cb
== 9 + 67/0_ (4.19 Apart from soliton stability, for media with Kerr nonlin-

earity this also proves that wave collapse ceases because of
According to Lyapunov’'s theorem, this proves the stabilityfourth-order dispersion for the physical dimensionaliti2s
of the stationary point of the Hamiltonian corresponding to=2,3.
its minimum. This minimum point is a certain soliton solu- One last remark: in the present work we confined our-
tion of Eq. (4.12. It need not be unique. It is noteworthy selves to consideration of equations with only cubic nonlin-
that, according to the estimatd.16), the Hamiltonian can earity, although in the general expansion of the electric dis-
take negative values. If initially we hawd’ <0, the maxi- placemenD (2.2) the term which is quadratic with respect to
mum value of ¢|? will be bounded from below by the con- the amplitude must be taken into account. If tangency occurs
served quantitfcompare Ref. 2t at a nonzero frequency, the quadratic anharmonic terms are
2 , not resonant near the critical velocity and can be eliminated
mta>4E| =[H'|/N. by a canonical transformatioffor further details regarding
this, see the review in Ref. 14These terms lead to renor-
Thus, an initially existing intensity maximum cannot vanish malization of the four-wave matrix eleme(8.8). Thus, the
as the pulse propagatéasx increases On the other hand, universality of the behavior of solitons near the critical ve-
small-amplitude radiation should ensure relaxation of the inidocity remains in force.
tial distribution toward a certain soliton state, which is pos- ) o o
sible owing to the lower bound on the Hamiltonian. We thank F. Dias for providing references pertaining to
To conclude this section we wish to say a few WordsgraV|tat|0naI—cap|IIary _solltons. We. also thaqk A. I'.
about the stability of the stationary solitot®23. Near the D’yachenko fqr performing the numerical calculations. This
critical velocity this question can be treated within the para-VOrk was partially supported by the INTAS program and the
bolic NLSE (3.20), for which the answer is already known. Russian Fund for Fundamental Researéhoject 97-01-
As for the stability of solitons with velocities far from the 00093.
critical value, the terms for dispersion of the next order must
be taken into account. As we saw in this section, the fourth* >E-mailr zakharov@itp.ac.ru
order terms, which ensure that the corresponding opetator BF""_"’““ kuznetso@itp.ac.ru _ _
. L . o . n dimensional variables the paramefgintroduced here, which has the
IS positive, also prowde for the Stablllty of solitons. We as- meaning of the reciprocal of the velocity, is equal to the difference be-
sume that the positive definite four-order polynomial opera- tween the soliton velocity and the group velocity divideddfy. In this
tors should ensure the stability of one-dimensional solitons. caseg is assumed to be small compared witb gL/
It is possible that the solitons will be unstable only for op-
erators which increase at infinity&'@|—>00) in proportion to 1C. s. Gardner, J. M. Green, M. D. Kruskal, and R. B. Miura, Phys. Rev.
NR Lett. 19, 1095(1967.
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