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Nonlinear Coherent Phenomena in
Continuous Media
E.A. Kuznetsov
V.E. Zakharov

ABSTRACT This review is devoted to description of coherent nonlin-
ear phenomena in almost conservative media with applications to plasma
physics, fluid dynamics and nonlinear optics. The main attention in the
review is paid to consideration of solitons, collapses, and black holes. The
latter is a quasi-stationary singular object which appear after the forma-
tion of a singularity in nonlinear wave systems. We discuss in details the
qualitative reasons of the wave collapse and a difference between solitons
and collapses, and apply to their analysis exact methods based on the
integral estimates and the Hamiltonian formalism. These approaches are
demonstrated mainly on the basic nonlinear models, i.e. on the nonlinear
Schrödinger equation and the Kadomtsev-Petviashvili equation and their
generalizations.

1 Introduction

All real continuous media, including vacuum, are nonlinear. Nonlinearity
might be a cause of quite opposite physical effects. One of them is phase
randomization leading to formation of a chaotic state - weak or strong
wave turbulence. Wind-driven waves on the ocean surface is the classical
example of that sort. Another group of effects is spontaneous generation
of coherent structures. These structures may be localized in space or both
in space and in time. Phases of Fourier harmonics, forming the structures,
are strongly correlated.
Very often coherent structures coexist with wave turbulence. A simple

example of the coherent structure is ‘white caps’ on the crest of gravity
wave of high amplitude. Elementary visual observation shows that just
before breaking, a wave crest takes the universal, wedge-type shape. Ap-
parently, the harmonics composing this shape have correlated phases. The
wave breaking is an important mechanism of energy and momentum dis-
sipation on the ocean. A satisfactory theory of this basic effect is not yet
developed.
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A more standard example of a coherent structure is a solitary wave on the
surface of shallow water. These examples present two major types of coher-
ent structures - collapses and solitons. Solitons are stationary, spatially lo-
calized wave packets, which are very common in nonlinear media. Collapses
are almost as wide-spread phenomena as solitons. These are catastrophic
processes of concentration of wave energy in localized space domains lead-
ing to absorption of at least part of this energy. Collapses are an important
mechanism of the wave energy dissipation in almost conservative media,
in particular, they play essential roles for many methods of fusion plasma
heating.
Collapses and solitons are not all the coherent structures that can be

found in nonlinear media. Rich families of coherent structures exist in ac-
tive media, providing the balance between pumping and dissipation. Among
them there are patterns described by the Ginsburg-Landau type equations
and spiral waves in reaction-diffusion systems. Rolls and hexagons in the
Benard convection are such examples. But even in almost conservative me-
dia one can find coherent structures different from solitons and collapses.
One can mention, for instance, “black holes”, which are persistent localized
regions of the wave energy dissipation arising in some cases after the act
of wave collapse resulting in the formation of a singularity.
In this paper we shall discuss coherent structures in almost conservative

media only. We concentrate our attention mostly on collapses and solitons,
which are, in our opinion, closely related phenomena. In many important
physical situations, collapse is a result of the soliton instability (for more
details, see two reviews [1, 2] and references therein). We shall briefly dis-
cuss also the theory of black holes in the models describing by the nonlinear
Schrödinger equation (NLSE). Using the Hamiltonian formalism gives us
an opportunity to study the problem of coherent structures in its maximum
generality (see also our recent review [3] devoted to this subject). Physical
examples used in the paper are taken mostly from hydrodynamics, nonlin-
ear optics, and plasma physics.

2 Phase randomization in nonlinear media

Let as consider wave propagation in a uniform boundless conservative
medium. The wave field will be described by the complex normal variable
ak(t), satisfying the equation of motion

∂ak
∂t

= −i
δH

δa∗
k

. (1.1)

In the linear approximation

H = H0 =
∫

ω(k)|ak|2dk, (1.2)
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where ω(k) is the dispersion law. In this case equation (1.1) is trivially
integrated

∂ak(t)
∂t

+ iω(k)ak(t) = 0, (1.3)

ak(t) = C(k)e−iω(k)t. (1.4)

For a localized wave packet one should require
∫ |C(k)|2dk < ∞. For the

system of monochromatic waves the distribution of ak is a set of δ functions

C(k) =
∑

Cnδ(k − kn). (1.5)

In the linear approximation phases of each waves arg ak = φk grow linearly
in time

φk(t) = φk(0) + ω(k)t

and, respectively, the trajectory of the system winds on the infinitely-
dimensional torus. The phase φk is defined modulo 2π. Therefore for
two waves with incommensurable frequencies ω(k) and ω(k1) difference
(or sum) in phases φk(t)∓ φk1(t) = φk (0)∓ φk1(0) + (ω(k)∓ ω(k1))t with
time becomes random function on the interval 2π. Thus, for continuous
dependence ω = ω(k) (except ω(k) =const), the linear dispersion leads to
complete phase randomness for the wave distribution.
Now let us introduce into (1.1) a quadratic nonlinearity. It is enough to

replace

H → H0 +H1, (1.6)

H1 = −1
2

∫
V kk1k2

(
ak

∗ak1ak2 + akak
∗
1
ak

∗
2

)
δk−k1−k2dkdk1dk2 . (1.7)

Here V kk1k2 are coupling coefficients for three-wave interaction. The equa-
tion of motion (1.1) takes now the form

∂ak

∂t
+ iω(k)ak +

i

2

∫ {
V kk1k2ak1ak2δk−k1−k2 +

2V k1kk2ak1ak
∗
2
δk−k1+k2

}
dk1dk2 = 0. (1.8)

The Equation (1.8) describes several nonlinear effects. Suppose that the
equations

k1 = k2 + k3, ω(k1) = ω(k2) + ω(k3) (1.9)

have nontrivial real solutions, as for instance, if ω(0) = 0 and ω′′ > 0.
Suppose further that at t = 0

ak = C
(0)
1 δ(k − k1) + C

(0)
2 δ(k − k2) + C

(0)
3 δ(k − k3), (1.10)
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where k1,k2,k3 satisfy the equations (1.9). Then at t > 0, in the limit
of small enough intensities of waves, the complex amplitude ak(t) can be
sought in the form

ak =
3∑
i=1

Ci(t)e−iω(ki )tδ(k − ki) (1.11)

where Ci(t) obey the system of ordinary differential equations, the so-called
three-waves system [4]

∂C1

∂t
= iV C2C3,

∂C2

∂t
= iV C1C

∗
3

∂C3

∂t
= iV C1C

∗
2 . (1.12)

Here the coupling coefficient V = V kk1k2 .
Equation (1.12) can be easily solved in elliptic functions. The initial data

C1 = 0, C2 = C
(0)
2 , C3 = C

(0)
3

separate the solution describing growth of C1. In particular, at small time

C1 � iV C
(0)
2 C

(0)
3 t.

This is the simplest nonlinear process - resonant “mixing” of two monochro-
matic waves.
The equations (1.12) describe also another very important nonlinear pro-

cess, namely, the decay instability of the monochromatic waves. Let at t = 0

C1 = Aeiφ, C2 = q, C3 = iq∗eiφ, |q| � A. (1.13)

Now for small times
C2 � qeγt (1.14)

where γ = |v||A| is the growth rate of the so-called decay instability. This
solution describes exponential growth of the waves C2, C3. Their phases
(C2 = |C2|eiφ2 , C3 = |C3|eiϕ3) satisfy the condition

φ2 + φ3 = φ+ π/2. (1.15)

Thus, the sum of phases φ2 and φ3 is fixed. But a phase of one of the
waves in this pair (phase of q) is quite arbitrary. We found that in the
most idealized case (when due to the decay instability only one pair of
monochromatic waves is excited) this process yields the correlation for sum
of phases of the excited waves and simultaneously introduces to the wave
system an element of randomness, namely, the phase of q. In more realistic
case the instability excites a whole ensemble of wave pairs satisfying the
conditions (1.9) up to the accuracy of γ. Each exited pair adds one random
phase. The exited waves are also unstable. Multiplication of the process
of instability has to create in the system a lot of new waves with random
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phases and to cause finally complete turbulization of the wave field. We
must stress that this scenario is just a very plausible conjecture. It would
be very important to check it by a direct numerical experiment. The point of
common belief is the following. As a result of multiple events of the wave
mixing and decay instability, after some time phases become completely
random. In this case the wave field can be described statistically by the
correlation function

〈aka
∗
k′〉 = nkδkk′ . (1.16)

Here nk is the quasi-particle density (or the wave action). This quantity for
sufficiently small wave intensity satisfies the kinetic equation (for details
see [5])

∂nk

∂t
= St(n, n), (1.17)

St(n, n) =
∫ {

Akk1k2 − Ak1kk2 − Ak2kk1

}
dk1dk2,

Akk1k2 = 4π|V kk1k2 |2
(
nk1nk2 − nknk1 − nknk2

) ·
δk−k1−k2

δω(k)−ω(k1 )−ω(k2 ).

The kinetic equation accounts for the correlation in wave phases (1.15) in
the first order with respect to the matrix element V kk1k2 that, in partic-
ular, provides a nonzero three wave correlation function 〈aka

∗
k1a

∗
k2〉 =

Jkk1k2δk−k1−k2 .
The state of the wave field described by the kinetic equation (1.17) is

called weak turbulence. Direct numerical examination of the theory of weak
turbulence is one of the most interesting problem in computational physics
at the time.
It might happen that equations (1.9) have no real solutions. In this case

the first interacting term in the Hamiltonian has to be taken in the form

H1 =
1
2

∫
Tkk1k2k3ak

∗ak
∗
1
ak2ak3δk+k1−k2−k3dkdk1dk2dk3. (1.18)

Equation (1.8) transforms now into the form

∂ak

∂t
+ iω(k)ak =

−i

∫
Tkk1k2k3ak

∗
1
ak2ak3δk+k1−k2−k3dk1dk2dk3. (1.19)

Equation (1.8) has the natural constants of motion, i.e., the Hamiltonian
and the momentum

H = H0 +H1 and P =
∫

kakak
∗dk. (1.20)
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The Equation (1.19) has the additional invariant N =
∫
akak

∗dk. If H1 �
H0 the equation (1.19) can be considered as linear and again has a solution
(1.4), (1.5), but elementary process of the nonlinear wave interaction are
now different.
If wave vectors k1k2k3 of three monochromatic waves satisfy the condi-

tion
−ω(k1) + ω(k2) + ω(k3) = ω(−k1 + k2 + k3), (1.21)

they pump a new wave with the wave vector

k = −k1 + k2 + k3. (1.22)

This is a “resonant mixing” of wave triads. Another type of nonlinear in-
teraction is an instability of monochromatic waves. As in the previous case
they lead to excitation of wave pairs. In the case of instability of an in-
dividual wave with the wave vector k0 there excites a pair with the wave
vectors k2,k3, satisfying the conditions

k2 + k3 = 2k0, ω(k2) + ω(k3) = 2ω(k0). (1.23)

Phases of new waves φ2, φ3 are connected with the phase of the initial wave
φ0 by the relation

φ2 + φ3 = 2φ0 + π/2. (1.24)

Their difference φ2 −φ3 is again arbitrary. Hence this instability introduces
an element of chaos to the system.
Another instability taking place in the system (1.19) is instability of

wave pairs. If initially the wave field consists of two monochromatic waves
with wave vectors k0,k1, two other waves grow exponentially, if their wave
vectors k2,k3 satisfy the resonant conditions

k2 + k3 = k0 + k1, ω(k2) + ω(k3) = ω(k0) + ω(k1). (1.25)

Now
φ2 + φ3 = φ0 + φ1 + π/2.

The phase difference φ2 − φ3 is arbitrary again.
Combination of instability and wave mixing causes complete stochasti-

zation of phases. Weak turbulence in the framework of the model (1.19) is
described by the kinetic equation

∂nk

∂t
= St(n, n, n), (1.26)

St(n, n, n) = 4π
∫

|Tkk1k2k3
|2δk+k1−k2−k3

δω(k)+ω(k1 )−ω(k2 )−ω(k3 )·
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[nk1nk2nk3 + nknk2nk3 − nknk1nk2nknk1nk3 ]dk1dk2dk3.

It should be noted that the equations (1.23) not necessarily have real solu-
tions. In an isotropic medium ω = ω(|k|), the sufficient condition for their
existence is ω′ > 0; ω′′ < 0. If ω(0) = 0, ω′

k > 0, ω′′ > 0, the only solution
of (1.22) is k2 = k3 = k0. In this case stochastization is less obvious and
one has to expect formation of coherent structures. We study them in the
next section.

3 Nonlinear Schrödinger equation

In some important physical situation, for instance, for waves on the surface
of ideal fluid of finite depth Tkk1k2k3 has indeterminacies at k1 = k2 =
k3 = k. We will study only the simplest case when T is a continuous
function on this submanifold. Denote T (k) = Tkkkk. Then the equation
(1.19) has the exact solution

ak = Ae−iω̃(k0 )t, ω̃k0 = ωk0 + T (k0)|A|2. (1.27)

Here, due to the obvious symmetry relation T ∗
kk1k2k3 = Tk2k3kk1 , T (k)

is a real function.
Let us consider a solution of (1.19) that is close to the exact nonlinear

monochromatic wave (1.27). Now

ak(t) = C(κ, t)e−iω(k0 )t, κ = k − k0, (1.28)

C(κ) = 0 if |κ| � |k0|.
Expanding ω(k) in the Taylor series

ω(k) = ω(k0 + κ) = ω(k0) + κp
∂ω

∂kp
+
1
2
κpκq

∂ω

∂kp∂kq
+ ...,

one can find that the Fourier transform from C(κ, t),

ψ(r, t) =
∫

C(κ, t)eiκrdκ,

satisfies the nonlinear Schrödinger equation (NLSE)

∂ψ

∂t
+ (v∇)ψ − iωαβ

∂2ψ

∂xα∂xβ
= iT |ψ|2ψ. (1.29)

Here v = ∂ω/∂k|
k=k0

is the group velocity,

ωαβ =
1
2

∂ω

∂kα∂kβ

∣∣∣
k=k0

, T = −T (k0).
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Going to the frame of reference moving with the group velocity one can
eliminate the first space derivative. We now obtain

∂ψ

∂t
− iωαβ

∂2ψ

∂xα∂xβ
= iT |ψ|2ψ. (1.30)

The monochromatic wave is described now by the solution of (1.28)

ψ = AeiT |A|2t. (1.31)

One can study the stability of this solution, assuming

ψ = AeiT |A|2t(1 + δψe
i(Ωt−pr )).

In the linear approximation |δψ| � 1, one can obtain

Ω2 = (ωαβpαpβ)2 − 2T |A|2ωαβpαpβ . (1.32)

If eigenvalues of the tensor ωαβ have different signs, equation (1.31) yields
instability at any sign of T . The domain of the instability in the p-space is
concentrated along the cone

ωαβpαpβ = 0. (1.33)

If p � k0, this instability goes to the “second order decay instability”
obeying the resonant conditions (1.23). If all eigenvalues of ωαβ are of the
same sign, instability takes place if

Tωαβpαpβ > 0. (1.34)

This instability is called the modulation instability (for details, see [1, 6, 7]).
In this case the NLSE can be reduced to the form

iψt +∆ψ + 2|ψ|2ψ = 0. (1.35)

We will call this equation the compact focusing NLSE. The domain of the
instability of monochromatic wave is bounded now by the condition

|ωαβpαpβ + β| < |T |A2. (1.36)

If Tωαβpαpβ < 0 , the monochromatic wave is stable and the NLSE can
be simplified to the canonical form

iψt +∆ψ − 2|ψ|2ψ = 0. (1.37)

This is the compact defocusing NLSE. Among non-compact NLSE the most
interesting ones have the following canonical forms

iψt + ψxx − ψyy + 2|ψ|2ψ = 0, (1.38)
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iψt +∆⊥ψ − ψxx + 2|ψ|2ψ = 0. (1.39)

Here ∆⊥ = ∂2/∂y2 + ∂2/∂z2. Equation (1.37) describes nonlinear modula-
tions of gravity waves on a surface of deep water, while (1.38) is applicable
to propagation of electromagnetic wave packets in media with negative
(normal) dispersion. All species of the NLSE describe some coherent struc-
tures. Only for the compact cases (1.35) and (1.37) they are studied in a
proper degree.

4 Solitons in the focusing NSLE

Development of instability of the monochromatic wave (condensate) in the
framework of the compact focusing NLSE (1.35) does not lead to formation
of weak-turbulent state directly. It leads first to formation of the coherent
structures - solitons or collapses. In the quantum mechanical analogy, the
NLSE (1.35) describes the motion of a particle in a self-consistent poten-
tial with attraction, where the attraction is the main cause of existence of
the localized coherent structures. The nature of these structures depends
essentially on the spatial dimension D. The most important coherent struc-
ture in (1.35) has maximal spatial symmetry. We will discuss only these
structures.
Equation (1.35) can be rewritten as follows

iψt + ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 0, 0 < r < ∞. (1.40)

This equation preserves two basic constant of motion: number of particles

N = 2D−1π

∞∫
0

rD−1|ψ|2dr (1.41)

and the Hamiltonian

H = 2D−1π

∞∫
0

rD−1(|ψr|2 − |ψ|4)dr = X − Y, (1.42)

where we denote

X = 2D−1π

∞∫
0

rD−1|ψr|4dr, Y = 2D−1π

∫
rD−1|ψ|4dr.

The Equation (1.40) has stationary solutions of the form

ψ = ϕ(r)eiλ
2t (1.43)
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where ϕ(r) satisfies the equation

−λ2ϕ+∆ϕ+ 2ϕ3 = 0 (1.44)

Here ∆ϕ = ϕrr + (D − 1)ϕr/r. The solution (1.43) is a soliton if ϕ(r) → 0
at r → ∞ and integrals N,X, Y are finite. It is possible to show that the
solutions of equation (1.44) for D ≤ 4 decrease exponentially at infinity
and this provides finiteness of the integrals N,X, Y .
The solution of equation (1.44) is a stationary point of the Hamiltonian

for fixed number of particles N

δ(H + λ2N) = 0. (1.45)

The solution of (1.44) can be rescaled: ϕ(r, λ) = λϕ0(λr), where ϕ0(ξ)
satisfies the equation

−ϕ0 +∆ϕ0 + 2ϕ3
0 = 0. (1.46)

Hence N = λ2−DN0 with N0 = 2D−1π
∞∫
0
rD−1ϕ2

0(r)dr. Let us perform the

transform
ψ(r) → a−D/2ψ

( r

a

)
(1.47)

preserving the number of particles. As a result, the Hamiltonian takes a
dependence on the parameter a

H(a) =
X

a2 − Y

aD
. (1.48)

According to (1.45) at the soliton solution ∂H/∂a|a=1 = 0. Using (1.46) it
is easy to get that at these solutions [1, 6]

Xs =
D

4− D
N2

0 /Ns, Ys =
2

4− D
N2

0 /Ns, Hs =
D − 2
4− D

N2
0 /Ns. (1.49)

Here the index s denotes values of the integrals on the soliton solution.
Since X,Y are positive, soliton solutions exist only if D < 4. Formulas
(1.49), (1.58) make it possible to solve easily the question of soliton stability.
If D < 2, Hs < 0, and the value a = 1 realizes the minimum of the
Hamiltonian (1.48). Hence in this case one can assume that the soliton is
stable. This result occurs to be true not only for scaling perturbations but
also for the general ones that can be proved rigorously (see, for instance,
[1],[8]).
This proof is based on the integral estimates of the Sobolev type. These

inequalities arise as sequences of the general imbedding theorems between
the spaces Lp and W 1

2 with the norms,

‖ψ‖p =
[∫

|ψ|pdr
]1/p

, (p > 0), ‖ψ‖W 1
2
=

[∫
(|ψ|2 + |∇ψ|2)dr

]1/2

.
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respectively. Namely, there exists such a constant B > 0 so that the fol-
lowing inequality between norms is valid (see, e.g., [9, 10]):[∫

|ψ|pdr
]1/p

≤ B

[∫
(|ψ|2 + |∇ψ|2)dr

]1/2

if D <
2
p
(p+4) and r ∈ �D.

(1.50)
In this formula each integral is assumed to be convergent. Making in (1.50)
the transform r →αr, it becomes∫

|ψ|pdr ≤ B1

[
αq

∫
|ψ|2dr+αq−2

∫
|∇ψ|2dr

]p/2
with q = d

(
1− 2

p

)
.

Calculation of the minimum of the r.h.s. of this inequality with respect to
scaling parameter α gives the multiplicative variant of the Sobolev inequal-
ity [9, 10],∫

|ψ|pdr ≤C

(∫
|ψ|2dr

)(2−q)p/4 (∫
|∇ψ|2dr

)qp/4

, (1.51)

where C is a new constant.
In particular, for p = 4 we have (compare with [11])∫

|ψ|4dr ≤C

(∫
|ψ|2dr

)(4−D)/2 (∫
|∇ψ|2dr

)D/2

(1.52)

This inequality can be improved by finding the best constant C in (1.52).
For this aim consider the functional

J{ψ} = N (4−D)/2XD/2

Y
, (1.53)

so that
C−1 = minJ{ψ} . (1.54)

To find C consider all extremals of the functional J{ψ} and take among
these the one which gives a minimal value for J . Note, this functional is
invariant with respect to two independent dilatations: ψ → αψ and r →βr.
Therefore the corresponding Euler-Lagrange equation for the functional
extremum leads to

−ψ +∇2ψ + 2|ψ|2ψ = 0,

coinciding with Eq. (1.46) for the soliton solutions. A minimal value of
J{u} is attained on radically-symmetric distribution without nodes and
simultaneously satisfied by Eq.(1.46). This distribution is the ground state
soliton for the stationary NLSE. Hence, with account of (1.49) the best
constant is equal to

C =
2

N0d(4− D)

(
4− D

D

)d/2

. (1.55)
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Here N0D is the number of particles in the ground state soliton Ns depend-
ing on the dimension D. For example, in the 1D case N01 = 2, at D = 2,
according to [14] N02 = 5.84 and for D = 3, N03 = 9.47 [2]. As a result,
the inequality (1.52) reads (see, for instance, [1] and [12])

Y ≤ CN (4−d)/2Xd/2. (1.56)

This inequality allows immediately to get a proof of 1D soliton stability.
Substituting (1.56) at D = 1 into expression (1.42) for the Hamiltonian and
taking into account relations (1.49 ) we arrive at the following estimate (see,
for instance, [13])

H ≥ X − CX1/2N3/2 = Hs + (X1/2 − X1/2
s )2. (1.57)

Thus, a 1D soliton realizes the global minimum (in the given class!) of
the Hamiltonian and therefore is stable not only with respect to small
perturbations but also against finite ones1.
If D > 2, the stationary point yields a positive value of H, so that,

instead of being a minimum in the one-dimensional case, solitons realize
the maximum of the Hamiltonian, which is now unbounded from below and
can take (at a → 0 ) arbitrary large negative values. On the other hand,
transformations of the type

ψ(r) → ψ(r)eisr
2

(1.58)

increases the integral X, leaving integrals N and Y unchanged. Hence the
soliton solution is a saddle point, leading to the conjecture about instability
of the soliton for 2 < D < 4. This fact can be proved rigorously too.
The case D = 2 is special. Now N = N0 and H ≡ 0. This result should

be discussed separately. The parameter λ characterizes an inverse spatial
size (width) of the soliton. Independence of λ of the basic constants of
motion for D = 2 means that the soliton is “soft” - it can be compressed or
inflated without changing its energy and number of particles. In the linear
approximation the soliton is marginally stable [15]. More detailed study
shows that the soliton is unstable with respect to perturbations of finite
amplitude.
The application of the procedure (1.57) at D = 2 gives

H ≥ X

(
1− N

N02

)
.

1These inequalities were first used for the stability study of ion-acoustic soli-
tons in magnetized plasma [73] based on the proof of the boundedness of the
Hamiltonian. Later this approach was widely applied for the stability proof of
the different kinds of solitons (see, for instance, [1]). The acknowledged best use
of these inequalities for the collapse problem was presented by Weinstein [12].
Later more general results are reviewed in the paper [2].
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From this estimate one can conclude that the Hamiltonian is bounded
from below, taking non-negative values if the number of particles does not
exceed the number of particles Ns at the ground state soliton solution. Its
minimal value, equal to zero, is retained for distributions with vanishing
mean square value of the wave number,

〈
k2〉 = X

N
→ 0.

Thus in this region of the phase space asymptotic states of any initial
condition will be dispersively spreading distribution, i.e., asymptotically
free fields.
In the three-dimensional case the analogous integral estimate for H [19],

H ≥ X − CX3/2N1/2, (1.59)

does not allow us to make any conclusion about soliton stability (note that
maximum of the r.h.s. of (1.59) corresponds to a 3D soliton). Recall that
the linear stability analysis predicts the instability of three-dimensional
solitons [1, 15].
For D = 1 equation (1.40) is integrable [16] and has infinite number of

extra constants of motion [16]. In this case a soliton can be found in the
explicit form

ϕ0(x) =
1

coshx
. (1.60)

For D = 4 at λ = 0 the equation (1.46),

ϕ′′
0 +

3ϕ′
0

r
+ 2ϕ3

0 = 0, (1.61)

has the exact solution
ϕ0 =

2
r2 + 1

. (1.62)

This is a limiting case for the soliton solutions. Now ϕ0 vanishes powerfully
at r → ∞, that results in the logarithmical divergence of N0 at r → ∞.

5 Collapses in the NLSE

ForD ≥ 2 solitons are either unstable or do not exist. In this case the major
coherent structure is a collapsing cavity (the region of higher wave intensity)
leading to the formation of localized singularities of wave amplitude in a
finite time.
One of the main reasons for the wave collapse existence is the Hamilto-

nian unboundedness. In such systems, like the NLSE, collapse can be rep-
resented as a process of falling down of some “particle” in a self-consistent
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unbounded potential. Indeed, the picture is more complicated than consid-
ered above. From the very beginning we have a spatially-distributed system
with infinite number of degrees of freedom and therefore, rigorously speak-
ing, it is hard to describe such a system by its reduction to a system of
ODEs. The NLSE is a wave system and wave radiation plays a very essen-
tial role for blow-up.
Let Ω be an arbitrary region with a negative Hamiltonian HΩ. Then

using the mean value theorem for the integral YΩ,∫
Ω

|ψ|4 dr ≤max
r∈Ω

|ψ|2
∫

Ω
|ψ|2dr,

one can get (compare with [6] and [72]) the following inequality

max
x∈Ω

|ψ|2 ≥ |HΩ|
NΩ

. (1.63)

Here the expression in the r.h.s. of the inequality has the meaning of the
mean energy per one quasi-particle. From this inequality, valid also when
Ω = �3, it follows that max |ψ|2 as a function of t always is majorized by
the conservative value. So, vanishing or yet some sufficient decreasing of
the initially existed maximum of |ψ|2 are impossible.
Let the Hamiltonian be negative initially in some separate region Ω,

HΩ < 0, and the radiation emerge from this region. In the outer region,
far from Ω, radiative waves will have small amplitudes. Consequently, their
nonlinear interaction will be negligible with respect to their dispersion and
they will have a positive Hamiltonian. Therefore due to the wave radiation,
the Hamiltonian of the region HΩ will become more and more negative in-
creasing its absolute value, that is possible only due to the unboundedness
of the Hamiltonian. Simultaneously, NΩ as a positive value will decrease so
that the ratio in the r.h.s. of the inequality (1.63) will increase. It automat-
ically leads to the growth of the maximal value of |ψ|2. Thus, radiation, as
a dissipative process promotes the wave collapse.
The occurrence of wave collapses can be proved by use of the virial

theorem. From (1.40) one can derive the relation

d2

dt2

∫
r2|ψ|2dr = 4[2H − (D − 2)Y ]. (1.64)

At D = 2 this relation can be integrated twice

〈r2〉 =
∫
r2|ψ|2dr∫ |ψ|2dr = 4

H

N
t2 + C1t+ C2, (1.65)

where the constants C1, C2 are defined from the initial conditions. Hence it
is seen that for H < 0, in spite of the values C1,2 there always exists a finite
time when the right hand side of (1.65) vanishes. Thus, H < 0 represent a
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sufficient condition for the collapse, which was found by Vlasov, Petrishchev
and Talanov (the VPT criterion [17]). For D = 3 the equality (1.65) can
be replaced by the inequality

〈r2〉 < 4
H

N
t2 + C1t+ C2. (1.66)

from which follows the same sufficient criterion H < 0 [6]. This estimate,
however, is rather rough and can be improved. As was shown in a recent
paper [19], the collapse threshold is defined by the unstable ground state
soliton solution which in some sense plays the role of separatrix between
collapsing and noncollapsing solution. It was proved in [19] that at D = 3
the equality (1.64) can be changed to the inequality

d2

dt2

∫
r2|ψ|2dr < 8(H − HN ). (1.67)

Here HN = N2
0 /N is the value of the Hamiltonian of the ground state

soliton (compare with (1.49)). Hence the equation (1.67) gives the sharper
criterion for collapse [18, 19]

H ≤ HN . (1.68)

What is the scenario of the collapse? For D > 2 NLSE (1.40) has the
self-similar solution

ψ(r, t) =
1

(t0 − t)1/2+iκ(D) g(ξ), ξ =
r√

t0 − t
(1.69)

where g(ξ) satisfies the equation

gξξ +
(
D − 1

ξ
+

iξ

2

)
gξ +

(
i

2
− κ

)
g + 2|g|2g = 0, (1.70)

gξ|ξ=0 = 0, g(∞) = 0.

Here κ = κ(D) is the eigenvalue of the nonlinear boundary problem (1.70).
It is easy to show that as ξ → ∞

g(ξ) � ξ−(1+2iκ), (1.71)

hence |ψ|2 → 1/r2 as t → t0. For D > 2 the singularity (1.71) is inte-
grable.
There is a plausible hypothesis: the self-similar solution (1.69) describes

collapse in a general position. So far, the only way to check this conjecture
is by a numerical experiment. Two series of experiments performed by two
independent groups confirmed the hypothesis with a very high accuracy
[20, 23]. This problem was also discussed in many other papers. We would
like to draw attention to some of them - [74] and [30].
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A generic case D > 2 can be called supercritical. The case D = 2 is
critical. This case is especially interesting because it describes stationary
self-focusing of electromagnetic waves in a nonlinear Kerr dielectric.
For D ≤ 2 the singularity (1.71) is non-integrable, and the boundary

problem (1.70) cannot have regular solutions. In the critical case D =
2, Ns = N0, Hs = 0, and one can guess that the collapse is the compressing
soliton [24]

|ψ|2 = 1
f2ϕ

2
0

(
r

f

)
+ ..., f = f(t0 − t), f(0) = 0. (1.72)

In the strictly self-similar case f(ξ) =
√
ξ. As far the divergence at D = 2

is very weak (logarithmic) one can conjecture that now

f(ξ) =

√
ξ

b(ξ)
.

Here b(ξ) is a “slow” function and b(0) = ∞. It was shown [27, 28] that

b(ξ) � ln ln
(
1
ξ

)
.

This result is confirmed by numerical experiments with satisfactory accu-
racy [21, 34, 33, 22] and also analytically [29].
At the end of this section we want to discuss the possibility of collapse in

the non-compact NLSE (1.37) and (1.38). First of all, it is easy to show that
solitons are absent in this case. The explanation of this fact is very sim-
ple. In the transverse plane, equation (1.38) describes attraction between
particles, but, in contrast, along the x-axis repulsion. Moreover, from the
virial identities for mean transverse size and mean longitudinal size one can
show that collapse of the wave packet as a whole is impossible at the stage
of the compression of the wave packet in all directions ([35]). Numerical
integration of these equations (as it was published in the first paper [36],
devoted to this subject, as well as in the recent one [37]), demonstrates
the fractal behavior of the system. The initial distribution with sufficiently
large amplitude at the beginning demonstrates compression in the trans-
verse plane; at the later stage the wave packet undergoes waving instability
that results in splitting of the packet into two packets. At the next stage
dynamics of each secondary packet repeats the fate of the original one.

6 Weak, strong and superstrong collapses

The central problem of the physical theory of collapse is the estimate of
the efficiency of collapse as a nonlinear mechanism of wave energy dissipa-
tion. To achieve that we must include the nonlinear dissipative terms into
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equations describing the collapsing medium. The nonlinear Schrödinger
equation could be modified as follows

i(ψt + β|ψ|mψ) + ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 0. (1.73)

Here for β > 0 the second term is responsible for the nonlinear dissipation.
For a sufficiently large degree of nonlinearity m, the equation (1.73) has
regular solutions for some small β. The amount of absorbed energy during
the collapse is characterized by the integral

I ≡ dN

dt
= βπ

∫
dt

∞∫
0

|ψ|m+2(2r)D−1dr. (1.74)

Our aim now will be to estimate integral (1.74) at β → 0. When approach-
ing the collapse, there are two possibilities. In the critical case, D = 2, a
strong collapse occurs when a finite amount of energy is accumulated at a
collapse point and, as a result, the δ-type singularity is formed. The direct
numerical solution of the equation (1.73) confirmed that idea. It was found
that the part of energy absorbed during the collapse is about 15% to 25%
from the value of Ncr [21, 22]. This part practically does not change with
the decreasing of β, and slightly reduces when m is increased. In the su-
percritical case, the integrable singularity of wave energy density is formed
in the collapse point. We have

|ψ|2 ∼ 1/r2. (1.75)

Let the characteristic size of the collapsing cavity be of the order of r0 then
the characteristic formation time of that scale is ∆t ∼ r2

0. Substituting into
(1.74), we obtain

I ∼ β(∆t)(D−m)/2 ∼ βrD−m
0 . (1.76)

From (1.76) it is clear that the nonlinear damping is efficient if m ≥ D.
If we agree that all energy in the collapse zone, ∆N ∼ rD−2

0 (D − 2), is
absorbed, we have

r0 ∼ [β(D − 2)]
1

m−2 , I ∼ (D − 2)−
m−D
m−2 β

D−2
m−2 . (1.77)

So, I → 0 at β → 0. Such a collapse can be called weak [8]. From (1.77) we
can see that for D → 2 the weak collapse becomes a strong one.
The previous considerations were based on the assumption that only

the energy arrived at the collapse moment of time t = t0 dissipates in
the collapse point. That is not always true. In the point of collapse there
could be formed a zone of energy dissipation that absorbs the energy from
the surrounding area. In this case the life time of the collapse τ � ∆t,
and one must solve the problem of the entire wave packet to estimate the
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absorbed energy. We suggest calling such a black hole regime a “superstrong
collapse”, because for a sufficiently large τ the full absorbed energy can
exceed the absorption energy for the strong collapse regime. To describe
the superstrong collapse it is necessary to obtain solutions of the stationary
equation

iβ|ψ|m + ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 2|ψ0|2ψ (1.78)

with boundary conditions

ψr|r=0 = 0, ψ → ψ0 as r → ∞.

The existence of the black hole also means that at the limit β → 0, the
equation

ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 2|ψ0|2ψ (1.79)

has a singular solution with a constant energy flux to the collapse point at
r = 0

P = lim
r→0

π(2r)D−1 Im(ψψ∗
r ). (1.80)

Let D > 2. Then the equation

ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 0 (1.81)

has the exact solution [23]

ψ = A0/r, A0 =
(
D − 3
2

)1/2

. (1.82)

This solution can be used as a first step to construct a singular solution of
the equation (1.81). Indeed, the solution near zero could be found as

|ψ| = A0

r
(1 +A1r

µ + ...), ψ → ψ0, µ = 2(4− D) > 0. (1.83)

Here A1 is an arbitrary constant, and A1 = qP 2, where q is some multiplier.
By the selection of P one can obtain the asymptotic solution of the equation
(1.83) for r → ∞. The numerical integration of (1.78) showed that in the
interval 3 < D < 4 the solution describing the superstrong collapse really
can be constructed. Such solutions exist in a rather important physical case
at D = 3, which corresponds to a 3−D nonstationary self-focusing. In this
case the main asymptotic term at zero is a stationary solution [31, 32]

|ψ| = 1
2r| ln r|1/2 .

Superstrong collapse can exist also for power nonlinearity |ψ|2nψ where
nD > 4. Thus, at D = 4 the equation (1.81) has an exact singular solution

|ψ| = B/r,
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whose amplitude is defined by the flux P from the equation

B4(B2 − 1) = P 2.

Finally, when D > 4, equation (1.81) has quasi-classical stationary solu-
tions with an asymptotic expansion at zero

|ψ| =
c

rγ
(1 + c1r

ν + ...), c = P 2, γ = α(α − 1),

ν = α(2D − 8) > 0, α =
1
3
, c1(D) > 0.

It is important that the quasi-classical criterion for this solution improves
while approaching the singular point (r = 0).
The existence of such solutions was also confirmed by the numerical

integration of equation (1.78) at ψ0 = 0 [23, 21].

7 Anisotropic black holes

As we saw in the previous section the black hole regime becomes quasi-
classical starting from D = 4. In this section we want to present an example
showing how, due to the medium anisotropy, the “effective dimension D′′

can be greater than 4 and, as a consequence, the black-hole regime can be
realized.
We consider the upper-hybrid waves Langmuir waves in a plasma with

sufficiently small magnetic field (ωpe � ωce) when all changes in the dis-
persion law are expressed in the form of the additive term

ωk = ωpe

(
1 +

3
2
k2r2

d +
1
2
ω2
ce

ω2
pe

k2
⊥
k2

)
, (1.84)

where ωce, ωpe are electron gyrofrequency and electron plasma frequency,
respectively, rd = vTe/ ωpe is the Debye radius, k⊥ is the component
transverse to the external magnetic field B0, directed along the z axis. In
the dispersion law (1.84), the first term describes the potential electron
plasma oscillations with a plasma frequency. Other terms are due to slower
processes. In isotropic case (ωce = 0) (1.84) transforms into the dispersion
law for the Langmuir waves.
The nonlinear effect, in a small-amplitude region (E2/8πnT � m/M),

m and M being the electron and ion masses, respectively, corresponds to
the nonlinear frequency shift due to the interaction with slow adiabatic
plasma flows induced by high-frequency plasma oscillations. In this limit,
the equation for the envelope of high-frequency oscillations in dimensionless
variables can be written as follows [38]

∆(iψt +∆ψ)− σ∆⊥ψ +∇(|∇ψ|2∇ψ) = 0, (1.85)
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where ψ is the envelope of high-frequency waves and σ = ω2
ce/2ω

2
pe. Re-

spectively, the low-frequency plasma fluctuations follow adiabatically the
pondermotive pressure of high-frequency waves,

n = −|∇ψ|2.
The equation (1.85) at zero magnetic field transforms into the Zakharov
equation describing collapse of Langmuir waves [6] in the so-called static
approximation.
The equation (1.85) can be further reduced under additional assump-

tions. It is known that due to weak turbulent processes, such as induced
scattering of ions or four-wave interaction, the energy transfer by cascade
to the region ωk → ωpe. If one studies these processes in more details, it is
possible to find that they lead, in the first stage, for waves with (krd)2 < σ,
to a rapid decrease of k⊥, and only subsequently, to a reduction of kz up to
a zero value. This means that the wave condensate will have characteristic
longitudinal scales smaller than the transverse ones. Under this assumption
Eq. (1.85) reads as follows

∂2

∂z2

(
iψt +

∂2

∂z2ψ

)
−∆⊥ψ +

∂

∂z

(∣∣∣∣∂ψ∂z
∣∣∣∣
2
∂ψ

∂z

)
= 0. (1.86)

where we put, without any restriction, the constant σ = 1, that corresponds
to a simple rescaling.
The equation (1.86) can also be written in the Hamiltonian form

i
∂2

∂z2ψt =
δH

δψ∗ , (1.87)

where the Hamiltonian

H =
∫
(|ψzz|2 + |∇⊥ψ|2 − 1

2
|ψz|4)dr ≡I1 + I2 − I3. (1.88)

The possible stationary solutions of this equation should correspond to the
soliton-like solution

ψ = ψ0 exp(iλ2t),

where ψ0 satisfies the equation

∂2

∂z2

(−λ2ψ0 + ψ0zz
) −∆⊥ψ0 +

(
|ψ0z|2 ψ0z

)
= 0. (1.89)

Localized solutions of this equation simultaneously represent stationary
points of the Hamiltonian for a fixed number of particles N =

∫ |ψz|2dr
(coinciding up to a constant multiplier with the energy of high-frequency
waves),

δ(H + λ2N) = 0. (1.90)
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Performing now the scaling transformation retaining N ,

ψ → a1/2

b
ψ

(z

a
,
r⊥
b

)
,

instead of (1.47) for the NLSE, H (1.88) becomes a function of two scaling
parameters,

H(a, b) =
I1
a2 +

I2
b2
a2 − I3

ab2
. (1.91)

The variational problem (1.90) now yields two relations between integrals
Il (l = 1, 2, 3) on the solution ψ0

−2I1 + 2I2 + I3 = 0, −I2 + I3 = 0. (1.92)

Another relation follows after multiplication of (1.89) by ψ0 and integration

λ2N + I1 + I2 − 2I3 = 0. (1.93)

After a simple algebra based on (1.92) and (1.93), one can show that

I1 = −2λ2N < 0,

contradicting the sign of I1 which is positive definite. This contradiction
implies that for (1.86) stationary soliton solutions do not exist [39]. This is
possible to understand considering the NLSE (1.40) as an example. Accord-
ing to (1.49), soliton solutions in the NLSE exist for D ≤ 4 and are absent
for D > 4 that corresponds to the well-known general fact, i.e., to increase
of the role of nonlinear effects with growth of dimension D. Consider now
the parabolic family b = γa2, where γ is a constant. For this kind of curve,
the first two terms in H(a, b) (1.91) have the same (self-similar) behavior
(dependence)

H(a, γ) =
1
a2

(
I1 +

I2
γ2

)
− 1

a5

(
I3
γ2

)
. (1.94)

Hence, firstly, one can see that the Hamiltonian is unbounded from below as
a → 0 that is one of the necessary conditions for the existence of collapse.
Secondly, the comparison of (1.94) with (1.48) shows that the equation
(1.86) is equivalent to the NLSE with D = 5. According to our classifica-
tion presented in the previous sections, the dimension D = 5 corresponds
to superstrong collapse providing existence of quasi-stationary black-hole
regime. Moreover, this regime can be described in terms of semi-classical
approach. The latter assumes solutions of the equation (1.86) in the form
ψ = AeiΦ where we impose the following (semi-classical) restrictions on
the phase Φ and the amplitude A

|Φt|T � 1, |Φz|Lz � 1, |∇⊥Φ|L⊥ � 1. (1.95)
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Here T is the characteristic time of the amplitude variation, Lz and L⊥ are
characteristic longitudinal and transverse scales of the amplitude, respec-
tively.
Under these assumptions, in the leading order we have the Hamilton-

Jacobi equation for the eikonal Φ

Φt +Ω(∇Φ)− n = 0 (1.96)

where Ω(k) = k2
z + k2

⊥/k
2
z is the dispersion relation for small-amplitude

waves describing by the linearized equation (1.86), k = ∇Φ is the wave
vector and n = |ψz|2 � A2Φ2

z is the wave intensity. At the next order we
arrive at the continuity equation for n

nt + div(nV ) = 0. (1.97)

Here V = ∂Ω/∂k is the group velocity. Eqs. (1.96), (1.97) retain the Hamil-
tonian structure

nt =
δH

δΦ
, Φt = −δH

δn
,

H =
∫ [

Ω(∇Φ)n − n2

2

]
dr.

It is possible to show that Eqs. (1.96) and (1.97) have the whole family
of collapsing solutions starting from semi-classical strong collapse up to
the weakest collapse corresponding to self-similar solution of the equation
(1.86) (for details, see [40, 39]). All semi-classical collapsing regimes occur
to be unstable. Therefore at the initial stage of a collapse we have the
formation of a weak singularity which later on serves as the origin for the
appearance of a black hole. To find a structure of a black hole, it is enough
to take semi-classical equations (1.96), (1.97) and to seek for solutions in
the form of an anisotropic funnel

Φ =
1
z
φ(η), n =

1
z4 g(η). (1.98)

Here η = r⊥/z3 is a new self-similar variable and the function g(η), as it is
easy to show, obeys the ordinary differential equation

gg′ + 3η(g + 3ηg′)4 = 0. (1.99)

Solutions of this equation only depend on the constant

P =
∫ ∞

0
(1− 3ηg′g−1)g′dη,

which is the energy flux into the singularity. Numerical calculations of (1.99)
showed the existence of monotonically vanishing solutions with the asymp-
totics g ∼ η−1/3 at η → ∞. It should be added that the semi-classical
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criterion (1.95) for the solution (1.98) improves as r approaches the singu-
lar point.
The similar situation arises for lower-hybrid waves near the lower-hybrid

resonance ωLH . In the case, when ωce � ωpe, the dispersion law of waves
is

ωk = ωLH

(
1 + k2

⊥R
2 +

1
2
m

M

k2
z

k2
⊥

)
,

where R = [3/4+(3Ti/Te)]rce, rce is the electron gyro-radius, while m and
M are the electron and ion mass, respectively. For low wave intensity, as
for UH waves, the low-frequency plasma-density variation is related to the
high-frequency pondermotive force through [41, 42]

n = i[∇ψ × ∇ψ∗]z . (1.100)

Here, as in a previous case, we write (1.100) in dimensionless variables,
ψ stands for the envelope of the high-frequency electric potential of LH
waves.
The evolution equation for the envelope is obtained by usual average over

the high-frequency ωLH [41, 42]

∆⊥(iψt +∆⊥ψ)− α∂2
zψ − ∇⊥([∇⊥ψ × ∇⊥ψ∗]z[n × ∇⊥ψ]) = 0. (1.101)

Here n = B0|B0| and α is a constant. This equation can be written in the
Hamiltonian form

∆⊥iψt =
δH

δψ∗ , (1.102)

H =
∫ (

|∆⊥ψ|2 + |ψz|2 + 1
2
[∇⊥ψ × ∇⊥ψ∗]2

)
dr ≡I1 + I2 − I3.

The same analysis as it was done for UH waves demonstrates that soli-
tons are absent for the model (1.101). The Hamiltonian under scaling
transformations, ψ(z, r⊥) → a−1/2ψ(z/a, r⊥/b), regaining the wave energy
N =

∫ |∇⊥ψ|2dr, behaves as follows [39]

H(b, γ) =
1
b2

(
I1 + γ2I2

) − 1
b4

(
I3
γ

)
,

where H(b, γ) is taken along the parabolas a = γb2. Thus, for the effective
dimension D = 4 weak collapse forms initially a singularity, which eventu-
ally transforms into a black hole. It is interesting to note that the effective
dimension D for the black-hole regime corresponds to a lower boundary of
the semiclassical black holes [45].
At the end of this Section we would like to note the recent experimental

observations of quasi-stationary localized structures in the auroral iono-
sphere (at altitudes near 800 km) [43]. The wavelet analysis of these mea-
surements by the plasma wave interferometer aboard the AMICIST rocket
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demonstrated in the region of lower-hybrid frequency the existence of long-
life-time solitary structures possessing rotating eigenmodes [44]. These ob-
servations are consistent with the results of three-dimensional numerical
experiments which showed the presence of a cavity density. In our opinion,
these objects are the first candidates for black holes.

8 Structure in media with weak dispersion

Let us consider another situation where phase stochastization plays a less
important role than coherent structures. This is propagation of waves in a
media with weak dispersion. Suppose first that dispersion is absent entirely.
In an isotropic medium

ω(k) = c|k| (1.103)

where c has a meaning of sound speed.
Now resonant conditions (1.9) can be satisfied only if all three vectors

k1,k2,k3 are parallel. In particular, they are satisfied, if k2 = k3 = k,k1 =
2k. It means that the monochromatic wave cannot exist for a long time; it
produces second harmonic, then zero and higher harmonics. Phases of all
harmonics are correlated. This creates favorable conditions for the forma-
tion of coherent structures. This family is especially rich, if the dispersion
relation is not exactly linear

ω(|k|) = c(|k|+ L(k)), |L(k)| � k, L(0) = 0. (1.104)

If L′′(k) > 0, the resonant conditions (1.9) are satisfied when all three
vectors ki are almost parallel. Then it is possible to consider the situation
when the support of the function a(k) is concentrated on an almost one
dimensional set. In other words, one can present the wave vector in the
form

k = (p, q)

and consider the complex amplitude a(p, q) �= 0 only if |q| � p, p > 0. Here
p, q are components along and across the direction of the wave propagation.
Now

|k| =
√
p2 + q2 � p+

1
2

q2

p
, (1.105)

and one can put approximately

ω(p, q) � c

(
p+

1
2

q2

p
+ L(p)

)
, L(−p) = −L(p). (1.106)

The most natural model of acoustic waves is compressible ideal hydro-
dynamics with dependence of internal energy of both density ρ and its
gradient. In particular, ion-acoustic waves in isotropic plasma relate to this
kind of waves and can be described in terms of ideal hydrodynamics with
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dispersion. We can use this model for calculation of the coupling coefficient
for three-wave interaction. Skipping the details (see [3], e. g.), we present
the result of these calculations

V (k,k1,k2) � V (p, p1, p2) = µ(pp1p2)1/2; pi > 0 (1.107)

where µ is a constant expressing through the characteristics of the media:
mean density, sound speed and internal energy.
Let D be the space dimension. One can introduce a new unknown func-

tion

u(x, r, t) = − 1
(2π)D

∫
p>0

√
p(ap,q + a∗

−p,−q)e
ip(x−t)+iqr dpdq. (1.108)

After simple transformation one can find that in this case (1.8) takes the
form

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
+

∧
L u − ν

∂2u

∂x2

)
= −∆⊥u. (1.109)

Here
∧
L

(
∂

∂x

)
= i

∧
L

(
−i

∂

∂x

)
= − ∧

L

(
− ∂

∂x

)
(1.110)

is the operator responsible for dispersion and ∆⊥ is the Laplacian with
respect to r. In the two dimensional space ∆⊥u = uyy, in the three-
dimensional case r = (y, z) and ∆⊥u = uyy + uzz. In equation (1.109)
we introduced the dissipative (viscous) term νuxx.
If ω2 = ω2(k2) is an analytic function of k2 L(p) is an odd function:

L(p) = −L(−p). In the simplest case

L(p) = ±p3,
∧
L

(
∂

∂x

)
= ∓ ∂3

∂x3 . (1.111)

In the 2D case for ν = 0 we obtain now the Kadomtsev-Petviashvili equa-
tions [46, 47]:

the KPI equation -

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− ∂3u

∂x3

)
= −∂2u

∂y2 (1.112)

and the KPII equation -

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
+

∂3u

∂x3

)
= −∂2u

∂y2 . (1.113)

The KPI equation describes acoustic-type waves with positive disper-
sion. These are magneto-acoustic waves in strongly magnetized plasma
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with propagation angles not close to transverse and parallel directions of
an external magnetic field, phonons under some conditions [48], gravity-
capillary waves for the shallow water limit.
The KPII equation corresponds to the negative dispersion. Gravity waves

for shallow water, ion-acoustic waves in isotropic plasma, magneto-acoustic
waves for perpendicular to magnetic field propagation belong to such type
of waves.
The general equation (1.109) can be called the generalized KP equation.

We note that this equation is written in a frame moving with the sound
speed c, which coincides with the group velocity of the waves at k = 0.
All other terms describe slow process with respect to this propagation: the
second term represents the nonlinear renormalization of the sound speed,
the third one is responsible for weak dispersion and, finally, the term in the
r.h.s. of (1.109) refers to transverse diffraction of acoustic waves.
In many interesting cases, L(p) is not an analytic function in the vicin-

ity of p = 0. In this case L (∂/∂x) is a pseudo-differential operator. For
instance, among the operators

L(p) = ±p|p|2s, s > 0,
∧
L= ∓ ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

(1.114)

the choice s = 1/2 , ∆⊥u = 0, ν = 0 corresponds to the well-known
Benjamin-Ono equation applicable for description of internal waves. The
generalized KP equation (GKP) describes the wide spectrum of coherent
structures including solitons, collapses and black holes. Let us consider the
simplest examples of such structures.
Neglecting by dispersion, dissipation and diffraction, one arrives at the

Hopf equation
∂u

∂t
+ u

∂u

∂x
= 0. (1.115)

The general solution of this equation is given in the implicit form

x = ut+ F (u) (1.116)

where F (u) is arbitrary function. Let F (u) = −ut0+u3. The corresponding
solution has a self-similar form

u = (t0 − t)1/2g
(

x

(t0 − t)3/2

)
. (1.117)

Here g(ξ) is the solution of the cubic equation

g3 = g + ξ. (1.118)

The solution (1.117) describes self-similar wave collapse. As a result, the
first derivative of u becomes infinite in a finite time. Indeed, according to
(1.117)

∂u

∂x
|x=0 � 1

t0 − t
.
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At the moment of collapse (t = t0) u = x1/3. This example of the wave
collapse is known as the wave breaking.
Let us consider the influence of the neglected factors to the process of

collapse. Taking into account the dependence of the diffraction term we
have the dispersionless KP equation

∂

∂x

(
∂u

∂t
+ u

∂u

∂x

)
= −∂2u

∂y2 . (1.119)

In 3D media one has to replace ∂2u/∂y2 by ∆⊥u. Weak dependence on
the perpendicular coordinate in the solution (1.116) might be taken into
account by replacing in the solution (1.116) t0 → t0 + εy2. In this case,
comparing competing terms in (1.119) ,

∂

∂x

(
u
∂u

∂x

)
� 1

(t0 − t)2
;

∂2u

∂y2 � ε

(t0 − t)3/2
, (1.120)

one can see that weak dependence on the perpendicular coordinates does
not arrest the wave breaking.
On the contrary, both dissipation and dispersion arrest the collapse. In

the presence of dissipation the equation (1.109) transforms (in the one-
dimensional case) into the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 . (1.121)

As soon as for the wave breaking uux � 1/(t0 − t)1/2 and the dissipation
term can be estimated as uxx � 1/(t0−t)5/2 , collapse is seen to be arrested
even by an infinitesimally small viscosity ν. To estimate the dissipation
efficiency one can exploit the identity

∂

∂t

∫ ∞

−∞
u2dx = −ν

∫ ∞

−∞
u2
xdx. (1.122)

As soon as u2
x � 1/x4/3, the integral in the right hand side of (1.122)

converges as t approaches t0

ν

∫ ∞

−∞
u2
xdx � ν

(t0 − t)1/2
.

Similarly, the total amount of absorbed energy is

∆E =
∫ t0

0
dt

∂

∂t

∫ ∞

−∞
u2dx � 2νt01/2.

Note that ∆E → 0 as ν → 0. By definition this is weak collapse.
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What is the remote results of the collapse in this case? The Burgers
equation (1.121) has a solution in the form of a stationary propagating
shock wave

u =
2s

1 + exp[s(x+ st)/ν]
. (1.123)

Calculating now the rate of dissipation for this solution, one can get

ν

(
∂u

∂x

)2

=
s4

4ν cosh4[s(x+ st)/ν]
.

Thus, dissipation is concentrated in a very small domain near x = −st.
The shock wave is a moving sink of energy, i.e. a black hole of codimension
1. It can be compared with the black hole of dimension zero (codimension
three) which can arise after the formation of weak singularity in the 3D
NLSE (see Section 6).
Another fundamental effect, arresting the collapse of gradients, is the

wave dispersion. Suppose that

L

(
∂

∂x

)
u = − ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u, (1.124)

where |∂/∂x|2s is the operator with symbol |k|2s. Then the equation (1.109)
in 1D case takes the form of the generalized Korteweg-de-Vries equation
(GKDV).

∂u

∂t
+ u

∂u

∂x
− ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = 0 (1.125)

For s = 1 this equation transforms into the classical KDV equation. At
s = 1/2 (1.125) coincides with the Benjamin-Ono equation.
Comparison of linear and nonlinear terms in (1.125) shows that the col-

lapse of gradients (wave breaking) is impossible for any s > 0. The equation
(1.125) can be presented as follows

∂u

∂t
=

∂

∂x

δH

δu
(1.126)

where

H = T − U, T =
1
2

∫ ∞

−∞

(∣∣∣∣ ∂

∂x

∣∣∣∣
s

u

)2

dx, U =
1
6

∫ ∞

−∞
u3dx. (1.127)

The equation (1.125) preserves the Hamiltonian H and the momentum
P = 1

2

∫ ∞
−∞ u2dx.

Let us look for soliton solutions of (1.125) in the form of a stationary
propagating wave u = u(x − V t). After one integration we obtain

−V u+
1
2
u2 −

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = 0. (1.128)
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This equation follows from the variational problem

δ(H + V P ) = 0, (1.129)

demonstrating that soliton solutions are stationary points of the Hamilto-
nian for fixed momentum P. As far as the operator |∂/∂x|2s, it is positive
definite. Therefore solitons (as localized objects) can exist only for V > 0.

Only in this case the linear operator
∧
R= V + |∂/∂x|2s in the stationary

equation (1.128) is positive definite and reversible. Otherwise the solution
of (1.128) has oscillating asymptotics at infinity.
By multiplying (1.128) by u/2 and integrating with respect to x one can

get the relation

3
2
U − T = V P. (1.130)

Let u(x) be a solution of (1.128). Consider the functions u(x, a) =
a−1/2u (x/a) depending on the scaling parameter a. Then

H =
T

a2s − U

a1/2 (1.131)

(here U, T are calculated on the solution u(x)). For this kind of deformation
the condition (1.127) now reads as ∂H/∂a|a=1 = 0 or

1
2
U − 2sT = 0, U = 4sT,

which in combination with (1.130) gives

T =
V P

6s − 1
, U =

4sV P

6s − 1
, H =

1− 4s
6s − 1

V P. (1.132)

Here both functionals U and T are positive definite for s > 1/6. For the
model (1.125) this defines the region of the soliton existence. For s > 1/4
the Hamiltonian on the soliton solutions is negative, Hs < 0. In this case
it is possible to show that the stationary point u(x) is not only the local
but the global minimum of the functional H that, in accordance with the
Lyapunov theorem, provides the soliton stability.
For s < 1/4 Hs > 0. Letting a → 0 in (1.112) one can see that in this

case H can be made arbitrary negatively large. Solitons in this region of
the parameter V represent saddle points and one may expect that they are
unstable.
For any s the equation (1.124) allows the self-similar substitution

u = (t0 − t)1+1/2sF (ξ) , ξ =
x

(t0 − t)1/(1+2s) . (1.133)

For this family of self-similar solutions we have

P � (t0 − t)
1−4s
1+2s . (1.134)
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Hence one can see that a localized solution can exist only for s > 1/4,
coinciding with the interval for soliton stability. The solution (1.133) at 0 <
s < 1/4 describes weak collapse leading to the formation of an integrable
singularity: u ≈ 1/|x|2s. At s = 1/4 we have the regime of strong collapse
corresponding to the critical NLSE considered in Section 6.
The results of this Section can be easily extended to a more general equation

∂u

∂t
+ up

∂u

∂x
− ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = 0. (1.135)

We now consider reference [50] where for the critical KDV equation at s = 1
and p = 2 the corresponding theory for strong collapse was developed. In
particular, it was shown that the asymptotic form of the collapsing distri-
bution approaches the soliton form at the collapse time, and the absorbed
energy into singularity corresponds to the soliton energy. For p > 2 (s = 1)
collapse becomes weak. Stable solitons appear for p < 2 [49].
Very interesting coherent structures are described by the dissipative gen-

eralized KDV equation

∂u

∂t
+ up

∂u

∂x
+

∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = ν
∂2u

∂x2 . (1.136)

For s > 1/4 this equation describes the so-called collisionless shock waves
discovered by R.Z. Sagdeev [51]. For the unstable case s ≤ 1/4 the coherent
structures have not been studied yet.

9 Singularities on a fluid surface

For sea surface waves, the wave breaking leads to an infinite second deriva-
tive of the surface profile (so that angles or cones appear on the surface).
In this field, the first important results date back to the middle of the last
century and belong to the famous Stokes [52]. Using the apparatus of com-
plex analysis, Stokes discovered that the critical angle for the surface slope
of stationary gravity waves for the deep water case was equal to 120◦. For
larger angles stationary gravity waves were assumed to be absent. Check-
ing analyticity violation is the most sensitive tool for studying that set of
collapses. Loss of analyticity of vortex sheets at the nonlinear stage of the
Kelvin-Helmholz instability [53] is such an example. Various aspects of the
singularity formation for vortex sheet motion have so far been studied in
a number of papers, both numerically and analytically [53]-[58]. The pa-
per [56] should be mentioned in particular, which provides a considerable
numerical evidence of arising of the infinite surface curvature in a finite
time. The root (in space) character of the arising singularity has also been
checked in [56].
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Below we present some recent results [59, 60] devoted to the free surface
hydrodynamics of an ideal fluid. Adopting only the small slope approxima-
tion, in absence of both gravity and capillarity, this system was effectively
examined. In particular, it was shown that for two-dimensional flows the
velocity component v, tangent to the free surface, obeys the equation, for-
mally coinciding with the Hopf equation (1.115),

∂v±

∂t
+ v± ∂v±

∂x
= 0. (1.137)

Here v± is analytical continuation of v(x, t) to the upper (+) and lower
(−) half-planes of the variable x. On the real axis v = 1

2 (v
+ + v−) and

functions v(±) are complex conjugate. The free surface elevation η(x, t) in
this approximation (|∇η| � 1) is defined from integration of the equation

∂η

∂t
= − ∧

H v. (1.138)

Here

(Ĥf)(x) =
1
π
V.P.

∫ +∞

−∞

f(x′)
x′ − x

dx′.

is the Hilbert transform. Both equations for v and η are integrable. The
integrability of these equations originates from the solution of the Laplace
equation in the fluid bulk.
Autonomy of the equation for the tangent velocity component from ele-

vation η is one of the main features of this system2. It admits, as for (1.115),
the standard method of characteristics, but the analyticity requirement for
functions v± leads in comparison with solution (1.116) to some changes in
the form of general solution. Omitting all details of the general solution
analysis ( see [60, 59]), we present here only the main results.
The formation of singularities on the free surface for small angle ap-

proximation can be considered as the process of the wave breaking in the
complex plane to which the solution can be extended. This results in the
motion of both branch points of the analytical continuation of the velocity
potential and singular points of the analytical extension of the surface ele-
vation. When for the first time the most “rapid” singular point reaches the

2Equation (1.137), after separation of imaginary and real parts, transforms
into a system of the gas dynamic type with negative pressure,

ut + (uv)x = 0,

vt + vvx =
1
2
(u2)x

where u is normal component of the velocity. It is interesting that this system
also follows from the quasi-classical limit of the fifth NLSE.
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real axis it just indicates the appearance of the singularity. Respectively
three kinds of singularities are possible. For the first kind at the touching
moment, the tangent velocity on the surface has an infinite first derivative
and simultaneously the second space derivative of the surface coordinate
z = η(x, t), i.e. ηxx, also tends to infinity. These are weak singularities of
the root character ( ηxx ∼| x |−1/2). This kind of singularities turns out to
be consistent with an assumption about small surface angles. It is shown
that the interaction of two movable branch points of the tangent velocity
can lead under some definite conditions to the formation of the second
type of singularities - wedges on the surface shape. Close to the collapse
time the self-similar solution for such singularities is compatible with the
complete system of equations describing arbitrary angle values. The third
type is caused by the initial analytical properties of η0(x), resulting in the
formation of strong singular surface profile.
As was shown in [61], the equation of motion for free surface hydrody-

namics with finite depth in the absence of capillarity can also be integrated
effectively in the small angle approximation. Of course, the root singulari-
ties, as well as all others have the same asymptotic behavior as for the deep
water case. Another interesting effect is connected with the possibility to
integrate the free surface hydrodynamics in the limit of large surface gra-
dients. In this case, as it was shown in [62], the equation can be reduced to
the so-called Laplacian growth equation (LGE)3 which allows application
of the pole decomposition. The latter means that a system of equations has
an exact solution in the form of finite sum of poles, residues of which are
constants and pole positions (in complex plane) obey a closed dynamical
system of ordinary differential equations. In the case of the LGE this dy-
namical system allows complete integration. Similarly, the solution can be
written in an implicit form (for more details see [65, 66, 62, 61]).

10 Solitons and collapses in the generalized KP
equation

Let us take into account the diffraction term, that corresponds to con-
sideration of the dependence on perpendicular coordinates in the GKDV
equation. Assuming maximum symmetry in the perpendicular plane we

3At first this equation was derived in 1945 by Polubarinova-Kochina and Galin
[63, 64] for boundary flows in porous media. Later it became clear that this
equation is applicable for description of the boundary motion for phase transition
of the first kind.
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will study the following version of the equation (1.109)

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u

)
=

α

rd−1

∂

∂r
rd−1 ∂

∂r
u. (1.139)

Here α = ±1, d is the dimension of the perpendicular plane, r is the radius
in this plane.
The equation (1.139) can be written in the Hamiltonian form (1.126)

H = T − U +W (1.140)

where

T =
1
2

∫ (∣∣∣∣ ∂

∂x

∣∣∣∣
s

u

)2

dxdr, U =
1
6

∫
u3dxdr, (1.141)

2W =
α

2

∫
(∇⊥w)2dxdr w =

∫ x

−∞
udx. (1.142)

This equation conserves the Hamiltonian and the momentum

P = 1/2
∫

u2dxdr. (1.143)

Soliton solutions of the equation (1.139) have the form

u = us(x − V t, r) (1.144)

with the boundary condition us → 0 in all directions at infinity,
√
x2 + r2 →

∞, and requiring finite momentum P < ∞.
Solitons are solutions of the stationary KP equation

R̂w =

[(
V +

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

)
∂2

∂x2 +
α

rd−1

∂

∂r
rd−1 ∂

∂r

]
w =

∂

∂x

(
u2

2

)
, (1.145)

which can be presented as the variational problem (1.129) where H and P
are given by (1.141) and (1.143), respectively. Soliton solutions exist only
for α = +1 and positive V. For all other cases the operator R̂ is not sign
definite and it cannot provide a vanishing soliton solution at

√
x2 + r2 → ∞

(for more details see [67, 72, 68, 13]).
Multiplying now (1.145) by w/2 and integrating with respect to x and

r, one obtain

−V P − T − W +
3
2
U = 0. (1.146)

Let us take a trial function for the variational problem (1.129) with H and
P given by (1.141) and (1.143) in the form, retaining the total momentum
P,

u(x, r, a, b) = a−1/2b−d/2us (x/a, r/b) . (1.147)
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As a result, the Hamiltonian becomes the function of two scaling parameters
a and b

H =
T

a2s +
a2

b2
W − U

a1/2bd/2
. (1.148)

By inserting (1.147) into (1.129) we get

∂H

∂a

∣∣∣∣
a=b=1

= 0,
∂H

∂b

∣∣∣∣
a=b=1

= 0. (1.149)

This yields

−2sT + 2W +
1
2
U = 0, −2W +

d

2
U = 0. (1.150)

Solving now the linear system (1.146) and (1.150) one can get

T =
d+ 1

6s − 1− d(1 + s)
V Ps, U =

4s
6s − 1− d(1 + s)

V Ps

W =
sd

6s − 1− d(1 + s)
V Ps, Hs =

d(1 + s) + 1− 4s
6s − 1− d(1 + s)

V Ps.(1.151)

These formulas become identical to (1.132) at d = 0. From (1.151) one can
see that on the soliton solutions T and W must have the same (positive)
sign. Hence it follows that multidimensional solitons exist only if α > 0. In
other words, multidimensional solitons exist only for the KPI equation and
its generalization. This conclusion (α > 0, V > 0) corresponds completely
to the requirement of sign-definiteness of the operator R in the equation
(1.145). In the following we shall assume α = 1.
From relations (1.151), we get the necessary conditions for existence of

solitons
s >

1 + d

6− d
. (1.152)

The sufficient condition for soliton stability is again Hs < 0, implying

s >
d+ 1
4− d

. (1.153)

In the interval
1 + d

6− d
< s ≤ d+ 1

4− d
, (1.154)

solitons are unstable.
Let us consider now the most important physical examples of equation

(1.139). For d = 1 and s = 1 (1.139) is nothing more than the classical
(2D) KPI equation (1.112) (where it is necessary to change u → −u and
t → −t). We see that the condition (1.153) is satisfied now, and the soliton
is stable [69]. The soliton in this case has the form of a lump and can be
found analytically [70]. Another example arises if s = 1 and d = 2. In this
case (1.139) is the KPI equation for a three-dimensional media. Now the
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criterion (1.154) is satisfied and the soliton exists but is unstable. This fact
was established in the paper [69]. Development of the soliton instability
results into collapse of acoustic waves confirmed by numerical experiments
[71, 72].
Consider the GKPI equation in the three-dimensional case with power

nonlinearity
∂

∂x
[ut + γ(γ − 1)uγ−2ux] = ∆⊥u (1.155)

for which the Hamiltonian is of the form

H =
1
2

∫
(ux)2dr+

1
2

∫
(∇⊥w)2dr−

∫
uγdr. (1.156)

This equation generalizes the KDV equation (1.135) with power nonlin-
earity to many dimensions. In particular, the classical KPI equation corre-
sponds to γ = 3. The case γ = 4 is possible if for some physical reason the
three-wave matrix element vanishes. For instance, such a situation takes
place for special angles of propagation of acoustic-type waves in a ferro-
magnet [75]. In this case, as it was shown at first in this paper it is possible
to write down the analog of the virial theorem.
Consider the quantity I =

∫
r2
⊥u

2dr which, because of conservation of
the x component of the momentum, Px = 1

2

∫
u2dr, has the meaning of

mean transverse size of the wave distribution. Let us find the first derivative
of I with respect to time. By means of (1.155) we have

It = −4
∫

u(r⊥∇⊥)wdr.

Calculating now the second derivative of I one can get

Itt = 4
[
2

∫
(∇⊥w)2dr − d(γ − 2)

∫
uγdr

]
.

By use of (1.156) the r. h. s. of this equation can be rewritten

Itt = 4
[
4H − 2

∫
(ux)2dr+β

∫
uγdr

]
, (1.157)

where β=4−d(γ − 2). At d = 2 (the 3D case) and γ = 4 the coefficient
β = 0. In this case from the equation (1.157) one can get the following
inequality [75]

Itt < 16H. (1.158)

Hence we have the same sufficient condition H < 0, as for the NLSE.
For the classical 3D KPI equation (d = 2, γ = 3) the coefficient β =
4−2(γ − 2) > 0 and in the virial identity (1.157) the two last terms have
different signs and therefore, even for H < 0, it is difficult to get a certain
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answer about the sign of the r. h. s. of (1.157) and that is so, despite the
unboundedness of the Hamiltonian from below. But if the Hamiltonian
of some region Ω is negative, then, following to the arguments analogous
to section 3, it is possible to show that radiation of waves from this area
promotes collapse. Radiation reduces the Hamiltonian of the cavity Ω so
thatHΩ becomes more negative. Simultaneously, due to the unboundedness
of the Hamiltonian, the maximal value of the wave amplitude into the cavity
will increase, and this process continues up to the singularity formation [72].
At the moment there are no analytical arguments whether the collapse
time (for d = 2 and γ = 3) is finite or infinite. Meanwhile, the numerical
experiments performed in [71, 72] indicate that this time is finite.
One more physical example is s = 1/2, d = 1. We have now the following

equation
∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− ∂2

∂x2

∧
H u

)
=

∂2u

∂y2 . (1.159)

This equation describes two-dimensional Tolman-Schlichting waves in the
laminar boundary layer. In this case again the condition (1.154) is fulfilled
and 2D solitons are unstable.
In the case of soliton instability

s <
d+ 1
4− d

(1.160)

the equation (1.139) describes weak collapse. The corresponding self-similar
solution is

u = (t0 − t)−2s/(2s+1)F

(
x

(t0 − t)1/(2s+1) ,
r

(t0 − t)(s+1)/(2s+1)

)
. (1.161)

Collapse leads to the formation of an integrable singularity for t → t0

u =
1
x2sϕ

( r

xs+1

)
. (1.162)

More detailed structures of collapses as well as the role of dissipation in
arresting collapse and the formation of black holes have not properly been
studied so far.

11 Self-focusing in the boundary layer

Now we demonstrate how the tools considered above work for the two-
dimensional model,

ut =
∂

∂x
k̂u − 6uux =

∂

∂x

δH

δu
(1.163)
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where the Hamiltonian becomes

2H =
∫ (

1
2
uk̂u − u3

)
dr ≡1

2
I1 − I2.

Here k̂ is the integral operator, its Fourier transform is the modulus |k| =
(k2
x+k2

y)
1/2. This equation describes low-frequency oscillations of the bound-

ary layer within the high Reynolds number, Re � 1, with the mean velocity
profile v =

∧
x U(z) (0 ≤ z < ∞). The function U(z) is assumed to be a

monotonically growing function with a constant value at the infinity. The
dimensionless amplitude u is connected with the velocity fluctuations along
mean flow by means of the relation

δvx ≈ −6huU ′(z), (1.164)

where h = U(0)/U ′(0) is a thickness of the boundary layer.
Equation (1.163) was derived first by V.I. Shrira [77]. It represents the

two-dimensional generalization of the well-known Benjamin-Ono (BO) equa-
tion describing long waves in stratified liquids. One should note that for this
problem this equation was also derived in the 1D case first in the papers
[81], taking into account the small viscosity.
The simplest soliton in this model are of the form u = us(x − V t, y).

Their shape is defined from the equation

−V us − k̂us + 3u2
s = 0. (1.165)

For the 1D case the solution of this equation can be found explicitly

us =
2V

3(x2V 2 + 1)
(V > 0). (1.166)

In the 2D case the model has a ground state soliton that is a cylindri-
cally symmetric solution without nodes. Such a solution was found in [82]
numerically.
It is very important to note that the velocities of the 2D ground state

solitons as well as their amplitudes are positive quantities. In physical vari-
ables both the 1D and 2D solitons, upon applying the relation (1.164),
move in the upstream direction and have negative amplitudes. The latter
means that in the real hydrodynamic system solitons look like holes in the
mean velocity profile, therefore they move slower than the main flow. When
the soliton amplitude grows, the soliton velocity decreases and vice versa.
This physical reasoning suggests a possibility for the appearance of the
wave collapse in this system and the instability of 1D solitons with respect
to two-dimensional perturbations as well (for details, see [78, 79]). This
instability is analogous to the Kadomtsev-Petviashvili instability [46, 47].
In the two-dimensional case, as was shown in [80], it is possible to develop
a quasi-classical nonlinear theory of this instability taking a solution in the
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form of the 1D soliton (1.166) with slowly varying parameters depending
on y and t.
The soliton (1.163) in this model, as many others, represents a stationary

point of H for fixed x-projection of the momentum P = 1/2
∫
u2dr

δ

δu
(H + V Px) = 0.

A minimum of H (for fixed P ) is found in the one-dimensional case. It
follows from the estimates analogous to (1.56)

∫
u3dr ≤ C

(∫
uk̂udr

)D/2 (∫
u2dr

)(3−D)/2

,

with the best constant C attaining its value at the ground state soliton

C = I2sI
−D/2
1s (2Ps)

(D−3)/2
.

Hence it is easy to get the estimate

H ≥ Hs + 1/2(I1/2
1 − I

1/2
1s )2, (1.167)

which becomes precise on the 1D soliton. Thus, in the one-dimensional
case the soliton is proved to be stable with respect to 1D perturbations,
but optionally against small ones [83, 78, 79].
In 2D case this system demonstrates the critical behavior like the 2D

cubic NLSE. In particular, the Hamiltonian is bounded from below by
zero,

H ≥ 1
2

[
1−

(
P

Ps

)1/2
] ∫

uk̂udr,

if the total perturbation power does not exceed the critical value equal to
Ps. If initially the Hamiltonian is negative, H < 0, then it is unbounded
from below. The latter follows from the scaling transformation, retaining
P ,

us(r) → 1
ad/2

us(r/a). (1.168)

Under these transformationsH becomes a function of the scaling parameter
a,

H(a) =
I1s
2a

− I2s
ad/2

, (1.169)

and is unbounded from below as a → 0, starting from d ≥ 2. It is enough to
state that in this case the formation of a singularity is possible due to small
amplitude waves radiated from the region with negative Hamiltonian. In
this case the inequality corresponding to (1.63) is of the form
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maxx∈Ωu ≤ |HΩ|
2PΩ

. (1.170)

Numerical integration of the equation (1.163) confirmed the main theoret-
ical predictions.
For all initial conditions with P > Ps andH < 0, the significant growth of

amplitude was observed at the peak moving with increasing acceleration.
The temporal behavior of the peak velocity and of the peak amplitude
are familiar, indicating that the collapse is of self-similar nature. Upon
approaching the singularity the peak anisotropy vanishes, and the peak
distribution becomes nearly symmetric.
For the initial conditions with P < Ps (H > 0) a slow evolution took

place: the distribution of u slowly decayed near the maximum. The spec-
trum evolution for Px < Px,cr demonstrated the energy transfer to the
long-wave region, which on a qualitative level is in agreement with the
estimate (1.170).
In conclusion of this section, we would like to point out several interesting

experiments [76], summarizing the results of many years of experimental
studies of the onset of the coherent structures in the boundary layer of the
blowing plate by the mechanical vibrating system near the edge of the plate
(see, also [84], [85]). According to these experimental data, one-dimensional
solitons are exited at the initial stage, later (for larger distances from the
plate edge) one-dimensional solitons demonstrate their instability which
results “in the formation of thorns”, i.e., the localized three-dimensional
coherent structures. Self-focusing of the above structures is observed at
longer distances. A later stage of the development of the thorns-solitons
leads to the formation of vortices and to their eventual separation.
The above theory and numerical experiments as well explain all these

experimental observations, but not the formation of vortices, for which
equation (1.163) becomes inapplicable. The threshold character of the wave
collapse in the boundary layer described by Eq. (1.163) also explains why
in many other experimental studies in the boundary layer such bright phe-
nomena as self-focusing of solitons and collapse have not been observed or
have not been distinguished on the background of the turbulent noise. The
collapse is possible to observe starting from the finite energy of the pulse
as it was in experiments [76]. If the pulse amplitude is small enough then
this phenomena is absent.
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