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Abstract

An ensemble of weakly interacting capillary waves on a free surface of deep ideal fluid is described statistically by methods
of weak turbulence. The stationary kinetic equations for capillary waves have an exact Kolmogorov solution which gives
for the spatial spectrum of elevations asymptoticsIk = C(P 1/2/σ 3/4)k−19/4. The Kolmogorov constantC is found analyti-
cally together with the interval of locality inEK-space. Direct numerical simulation of the dynamical equations in the approx-
imation of small surface angles confirms the presence of almost istropic Kolmogorov spectrum in the largeEk region. Besides,
at small amplitudes of the pumping, an esentially new phenomenon is found: “frozen” turbulence, in which, despite the big
number of interacting waves (of the order of 100) there is no energy flux toward highEk. This phenomenon is connected with
the finiteness of the region (or, in other words, discreteness of the spectrum in Fourier space). This is believed to be universal
for different sorts of nonlinear systems. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this article we study analytically and numerically statistical behavior of an ensemble of capillary waves on a
free surface of deep ideal fluid. We have several reasons for this choice of the problem. First of all, capillary waves
are a very interesting object by itself. They are the dominating part of surface waves in the conditions of zero gravity.
On water surface at the normal gravity, capillary waves are realized in the range of wavelengths

0.5 mm< λ < 17 mm. (1)

In spite of the relative narrowness of this range, capillary waves play an important role in the dynamics of the sea
surface. Only the presence of surface tension prevents wavebreaking at arbitrary small wind [1]. Capillary waves
are pumped by gravity waves and carry the energy flux to small scales [2,3]. Generation of capillary waves was
observed experimentally [4].

Apart from this discussion, the role of capillary waves on the surface of superfluid helium has to be discussed.
Surface tension coefficient for liquid helium is smaller than for water in order of magnitude [5]. However, due
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to absence of the viscosity (superfluidity), the minimal wavelength is compatible to atomic size and the range of
capillary wave vectors reaches five decades.

On the other hand, studying capillary waves is an interesting problem from the view point of general nonlinear
wave dynamics. Capillary waves are a classical example of strongly dispersive waves with powerlike “decay” type
of the dispersion law propagating in an isotropic medium. According to the weak-turbulent theory (see, for instance
[6]), statistical property of an ensemble of weakly interacting capillary waves can be described by the kinetic
equation for squared wave normal amplitudesnEk:

∂nEk
∂t

+ γEknEk = st (nEk, nEk). (2)

Here γk is a damping (or pumping) for waves,st (nEk, nEk) is the “collision term”, describing pure resonant
three-wave interactions.

The stationary damping-free kinetic equation

st (nEk, nEk) = 0

has a powerlike isotropic Kolmogorov solution

nEk = C
P 1/2

σ 1/4
k−17/4. (3)

HereP is the energy flux to the largeEK region,σ the surface tension coefficient, andC the “Kolmogorov
constant” to be found analytically.

For the elevation correlation function

Ik = 〈|ηk|2〉 = 1

2k1/2σ 1/2
(nk + n−k) (4)

in the symmetric case, one gets

Ik = C
P 1/2

σ 3/4
k−19/4. (5)

It is assumed in Eqs. (2)–(5) that the density of fluid isρ = 1.
The spectrum (3), (5) was found by Zakharov and Filonenko in 1967 [7]. The analytical theory of weak-turbulent

Kolmogorov spectra is far advanced now (see [6]). At the same time experimental and numerical evidences, sup-
porting this theory, are rather poor. The only experimental confirmation of weak-turbulent spectra is Toda’s energy
dependence on frequency, in the experimentally measured energy spectrum, for gravity waves on the surface of
deep water [8],

Eω ' f (θ)

ω4
, (6)

wheref (θ) is a function of the angle. The Kolmogorov spectrum for a direct cascade of energy is

Eω ' 1

ω4
(7)

as found analytically by Zakharov and Filonenko [9]. This coincidence cannot be considered as a complete experi-
mental confirmation of the theoretical result (7) because the Toba spectrum (6) is essentially anisotropic.

Thus, the theory of weak turbulence essentially needs further experimental confirmations. The following questions
should be answered:
1. Are the statistical properties of a weakly nonlinear wave field described by the kinetic equation?
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2. How good are idealized isotropic Kolmogorov spectrum fits, for the description of the real anisotropic picture
of wave turbulence?

3. How important is the influence of the discreteness of the wave spectrum, stemming from the finite size of the
physical domain where turbulence is studied?

These questions can be formulated for any possible kind of weak turbulence including turbulence of capillary
waves. An alternative approach for answering these question, beside physical experiments, is direct numerical
simulation of dynamicalequations describing a wave system.

In this article we present results of such numerical experiments which have taken several hundered hours on a
CRAY-90 together with a revised theory of the Komogorov spectrum (3)–(5). We will show that this Kolmogorov
spectrum is indeed realized in the region of large wavenumbers and is applicable to essentially anisotropic situations,
as well as isotropic situations. Moreover, we perform analytic computation of the Kolmogorov constantC and define
an “interval of locality”. This allows us to estimate corrections to the Kolmogorov spectrum due to finiteness of the
inertial interval.

Numerical simulation of surface waves must include solutions of the boundary problem for the Laplace equation
at every time-step. Even in two-dimensional geometry, it is an extremely time-consuming procedure, which be-
comes unrealistic in the three-dimensional case. We can essentially shorten time of computation usingapproximate
dynamical equations, obtained by expansion of the Hamiltonian in powers of nonlinearity (characteristic angle to the
horizontal plane), up to second order terms. It is most economical to perform this expansion in canonical variables
which are the shape of the surface and the hydrodynamical potential on the surface. Even in such formulations the
problem is rather time-consuming. Moreover, the mathematical models of free surface obtained by expansion of the
Hamiltonian in powers of nonlinearity, are very unstable numerically. This fact was established by many authors
(see [11–13]).

To overcome the numerical instability we introduce “low-pass filtration” equivalent to including artificial damping
in the system. As a result, we are able to reach only a moderate level of nonlinearity (characteristic angle of the
surfaceθ ' 2× 10−2) and to widen the inertial interval only to the scale of a half-decade(kmax/kmin ' 3). In spite
of these strict conditions we positively observed the Kolmogorov spectrum (3) in the inertial interval 8< k < 23.

The Kolmogorov spectrum is robust with respect to anisotropy of pumping. If the level of nonlinearity is high
enough, it is even robust with respect to discreteness of the wave system as well. Thus, we can be sure that
weak-turbulent Kolmogorov spectra are actually adequate for description of wide classes of physical situations, in
situations where the kinetic equation (2) actually applies.

The last point is far from trivial. In all our calculations the Kolmogorov spectrum coexists with the spectrum of
another, “frozen” type, concentrated in the region of low wavenumbers and fastly decreasing to large wavenumbers. If
the level of nonlinearity is low enough, such “frozen” regimes are dominant. In our opinion such spectra are sustained
due to nonresonant wave interaction–generation of high-order intensively absorbing beatings. If the pumping is an
external force (instead of instability), nonresonant spectra are just Kolmogorov–Arnold–Moser (KAM) tori. Thus,
in the case when wave domain is restricted, applicability of the pure kinetic equation (2) is questionable and has to
be specially justified. We explain “frozen” regimes of turbulence with the help of maps of quasi-resonances.

A brief description of the results of this article was published in [10].

2. Dynamical equations

The potential flow of an ideal incompressible fluid with free surface is described by the Laplace equation

∆φ = 0 (8)
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with boundary conditions on the surface and bottom of the fluid

∂η

∂t
+ ∇⊥φ∇⊥η = ∂φ

∂z

∣∣∣∣
z=η

, (9)

∂φ

∂t
+ 1

2
(∇φ)2

∣∣∣∣
z=η

+ gη − σ div
∇⊥η√

1 + (∇⊥η)2
= 0, (10)

∂φ

∂z

∣∣∣∣
z→−∞

→ 0, (11)

whereη = η(Er, t), φ = φ(Er, t) are the shape of the surface and velocity potential,Er = (x, y), Ev = ∇φ and
∇⊥ = (∂/∂x, ∂/∂y); g andσ are the gravity acceleration and surface tension.

The solution of the three-dimensional Cauchy problem (8)–(11) is possible, in principle by numerical integration
of the Laplace equation at each time step. This becomes an extremely time-consuming computational problem,
especially for simulation of long-time evolution of surface waves turbulence.

It is possible, however, to reduce this problem to a two-dimensional system of two dynamical pseudo-differential
equations, using some simplifying assumptions motivated by actual observations of the ocean surface. That simpli-
fication tremendously eases the computational aspects of the problem, while keeping all major nonlinear effects.

We introduce the velocity potential, evaluated on the free surface:ψ(Er, t) = φ(η(Er, t), Er, t). Then in terms of
the functionsη,ψ , the fluid is a Hamiltonian system:

∂η

∂t
= δH

δψ
, (12)

∂ψ

∂t
= −δH

δη
, (13)

whereH is total energy of the fluid consisting of the kinetic and the potential components

H = Hpot +Hkin, Hpot = 1

2
g

∫
η2 dEr + σ

∫ (√
1 + (∇η)2 − 1

)
dEr, Hkin = 1

2

∫
dEr⊥

∫ η

−∞
dz(∇φ)2.

(14)

Now we make the above mentioned simplifying assumption: steepness of the surface is small, i.e.|∇η � 1|. It
is important to mention that many measurements of the ocean surface steepness give the mean square value of the
characteristic angle of the surface as〈θ2〉 ' 10−2–10−3.

Under this assumption the Hamiltonian can be expanded, using small parameter|∇η|:
H = H0 +H1 +H2 + · · · ,

H0 = 1

2

∫ [
|k||ψEk|2 + (g + σ |k|2)|ηEk|2

]
dEk,

H1 = −1

2

1

2π

∫
L Ek1 Ek2

ψ Ek1
ψ Ek2

η Ek3
δ
(

Ek1 + Ek2 + Ek3

)
d Ek1 d Ek2 d Ek3,

H2 = − 1

4(2π)2

∫
MEk Ek1 Ek2 Ek3

ψEkψ Ek1
η Ek2
η Ek3
δ
(
Ek + Ek1 + Ek2 + Ek3

)
dEk d Ek1 d Ek2 d Ek3,

L Ek1 Ek2
= Ek1 Ek2 + | Ek1|| Ek2|,
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M Ek1 Ek2 Ek3 Ek4
= | Ek1|| Ek2|

[
1
2

[
| Ek1 + Ek3| + | Ek1 + Ek4| + | Ek2 + Ek3| + | Ek2 + Ek4|

]
− | Ek1| − | Ek2|

]
,

where we have used the following normalization of Fourier transforms and theδ-function:

ψk = 1√
2π

∫
ψx e−ikx dx,

ψx = 1√
2π

∫
ψke

ikx dk,

δ(x) = 1

2π

∫
eikx dk.

Dynamic equations are

∂ηEr
∂t

= [|k̂|ψ ]Er − div(η∇ψ)− |k̂|[[ |k̂|ψ ]Er × ηEr ]Er

+|k̂|[|k̂|[[ |k̂|ψ ]Er × ηEr ]Er × ηEr ]Er + 1
2∆Er [[ |k̂|ψ ]Er × η2

Er ]Er + 1
2|k̂|[∆Erψ × η2

Er ], (15)

∂ψEr
∂t

= −gηEr + σ div
∇η√

1 + (∇η)2
+ 1

2[−(∇ψ)2 + [|k̂|ψ ]2Er ] − |k̂|[[ |k̂|ψ ]Er × ηEr ]Er × [|k̂|ψ ]Er

−∆ψ × [|k̂|ψ ]Er × ηEr (16)

corresponding to Hamiltonian

H = 1

2

∫
[[ |k̂|ψEr ] × ψEr + gη2

Er + 2σ

(√
1 + (∇ηEr )2 − 1

)
−

(
[|k̂|ψEr ]2 − (∇ψEr )2

)
× ηEr

+[|k̂|ψEr ] × ηEr ×
(
|k̂|[[ |k̂|ψEr ] × ηEr ]

)
+∆ψ [|k̂|ψEr ] × η2

Er ] dEr.

Brackets [· · · ]Er denote an expression inR-space. The action of the operator|k̂| on the functionψEr is defined by

[|k̂|ψ ]Er = 1

2π

∫
|k|ψEke

iEkEr dEk.

3. Weak-turbulent approach

Introduction of normal canonical variables

ηEk =
√

ωk

2(g + σk2)

(
aEk + a∗

−Ek
)
, ψEk = −i

√
g + σk2

2ωk

(
aEk − a∗

−Ek
)

diagonalizes the HamiltonianH0 and reduces the system of equations (15) and (16) to one complex equation

∂ak

∂t
+ i

δH

δa∗
k

= 0. (17)

For the capillary-dominating limitk � √
g/σ , Eq. (17), in linear approximation, describes capillary waves with

the dispersion relation

ωk = √
σkα, α = 3

2
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which is of “decaying” type, which means that one can simultaneously satisfy the relations

ωEk = ω Ek1
+ ω Ek2

, (18)

Ek = Ek1 + Ek2 (19)

for any possible choice of vectorsEk, Ek1, Ek2. At this point the theory starts to deviate siginificantly for capillary and
gravitational waves cases (in the gravity case the system (18) and (19) has no solutions).

In capillary case, the first nonlinear correctionH1 is the dominating one in the weakly nonlinear situation and
one can use a statistical description for the stochastic wave field, or a weak-turbulent theory. According to the
weak-turbulent theory the correlation function

〈aEkaEk′ 〉 = nkδ(Ek − Ek′)

satisfies the kinetic equation for waves (2) which takes, in capillary waves case, the form [7]

∂nEk
∂t

= st (nEk), (20)

st (nEk) =
∫ [

REk Ek1 Ek2
− R Ek1Ek Ek2

− R Ek2Ek Ek1

]
d Ek1 d Ek2, (21)

REk Ek1 Ek2
= 4π |VEk Ek1 Ek2

|2δ
(
Ek − Ek1 − Ek2

)
δ
(
ωEk − ω Ek1

− ω Ek2

) [
n Ek1
n Ek2

− nEkn Ek1
− nEkn Ek2

]
, (22)

VEk Ek1 Ek2
= 1

8π
√

2σ
(ωkωk1ωk2)

1/2
[

L Ek1, Ek2

(k1k2)1/2k
−

LEk,− Ek1

(kk1)1/2k2
−

LEk,− Ek2

(kk2)1/2k1

]
, (23)

L Ek1, Ek2
= Ek1 Ek2 + k1k2. (24)

We are looking for the solutions of kinetic equation (20) symmetrical with respect to rotations in wave vector space
Ek [6]. To get these solutions, we should average the kinetic equation over the angles of wave vectors inEK-space.
This averaging consists in calculation of the integrals of products of|V |2 and theδ-function over the angles in
EK-space and can be trivially done due to the fact that matrix element (23) depends only on products of functions of

absolute values of wave vectors and trigonometric functions of the angles.
Multiplying Eq. (20) byk(dk/dω) and averaging over angles inEk-space one can get, after variables transformation

k(ω) = ω1/α/σ 1/2α:

∂ηk

∂t
= 1

k(dk/dω)

∫ [
Sωω1ω2δ(ω − ω1 − ω2)(nω1nω2 − nωnω2 − nωnω1)− Sω1ωω2δ(ω1 − ω − ω2)(nωnω2

−nω1nω2 − nωnω1)− Sω2ωω1δ(ω2 − ω − ω1)(nωnω1 − nω1nω2 − nωnω2)
]

dω1dω2, (25)

S(ω, ω1, ω2) = 1

32πα3σ 3/α+1
(ωω1ω2)

2/α〈|UEk, Ek1, Ek2
|2δ(Ek − Ek1 − Ek2)〉, (26)

where

〈
|UEk, Ek1, Ek2

|2δ
(
Ek− Ek1− Ek2

)〉
=

∫ 2π

0

∫ 2π

0

[
L Ek1, Ek2

(k1k2)1/2k
−

LEk,− Ek1

(kk1)1/2k2
−

LEk,− Ek2

(kk2)1/2k1

]2

δ
(
Ek − Ek1 − Ek2

)
dφ1 dφ2

= 2

k2

[(
1 + 1−ξ2/α

1 −ξ2/α
2

2ξ1/α
1 ξ

1/α
2

)
(ξ1ξ2)

1/2α −
(

1 − 1+ξ2/α
1 −ξ2/α

2

2ξ1/α
1

)
ξ

1/2α
1

ξ
1/α
2

−
(

1 − 1+ξ2/α
2 −ξ2/α

1

2ξ1/α
2

)
ξ

1/2α
2

ξ
1/α
1

]2

√
4ξ2/α

1 ξ
2/α
2 −

(
1 − ξ

2/α
1 − ξ

2/α
2

)2
, (27)
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whereφ1 andφ2 are the angles of vectorsEk1, Ek2 in EK-space,S(ω, ω1, ω2) is a homogeneous function of the power
γ = 8

3:

S(εω, εω1, εω2) = εγ S(ω, ω1, ω2). (28)

Suppose that the stationary solution of Eq. (20) has the form of a power function

nω = Aωx. (29)

To determine this form, one can make a conformal transformation in the second term of the right-hand side of
Eq. (25)

ω1 = ω2

ω′
1
, ω2 = ωω′

2

ω′
1

(30)

and in the third term

ω1 = ωω′
1

ω′
2
, ω2 = ω2

ω′
2
. (31)

Taking into account that Jacobians of the transformation equations (30) and (31) are|(ω/ω′
1)

3| and|(ω/ω′
1)

3|,
the collision integral (21) can be reduced to

st [n] = A2

k(dk/dω)

∫
Sω1,ω2,ω3δ(ω − ω1 − ω2)

[
(ω1ω2)

x − (ωω1)
x − (ωω2)

x
]

×
[
1 −

(
ω

ω1

)y
−

(
ω

ω2

)y]
dω1 dω2,

wherey = γ + 2x + 2. In dimensionless form, this can be written as

st [n] = A2

16πα2σ 1/α+1
ωy−2/αI (y), (32)

I (y)=
∫
(ξ1ξ2)

2/α[1 − ξ
−y
1 − ξ

−y
2 ][(ξ1ξ2)

x − ξx1 − ξx2 ]δ(1 − ξ1 − ξ2)

×

[(
1 + 1−ξ2/α

1 −ξ2/α
2

2ξ1/α
1 ξ

1/α
2

)
(ξ1ξ2)

1/2α −
(

1 − 1+ξ2/α
1 −ξ2/α

2

2ξ1/α
1

)
ξ

1/2α
1

ξ
1/α
2

−
(

1 − 1+ξ2/α
2 −ξ2/α

1

2ξ1/α
2

)
ξ

1/2α
2

ξ
1/α
1

]2

√
4ξ2/α

1 ξ
2/α
2 −

(
1 − ξ

2/α
1 − ξ

2/α
2

)2
dξ1 dξ2.

(33)

The collision integral is finite or interaction is local (i.e., only scales close to each other contribute to the integral)
when the integralI (y) is finite. This integral converges for−5< x < 5

6 and becomes zero atx = −1 andx = −17
4

(see Fig. 1). Both solutions are obvious — one appears as a requirement of the first bracket in the integrand to be
zero(y = −1). The second appears from the requirement of the second bracket to be zero(x = −1).

Solutionx0 = −1 is the thermodynamically equilibrium Rayleigh–Jeans distribution corresponding to the fluxless
regime of turbulence and is not physically important. Solutiony = −1, orx1 = −17

6 corresponds to the finite energy
flux from the pumping region at large scales to the damping region at small scales.
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Fig. 1. Collision integralI as a function of power solution indexx: it is finite within the locality interval−5< x < −5/6 and has two zeros at
x0 = −1 (thermodynamical spectrum) andx = − 17

4 (Kolmogorov solution).

One should note that indexx0 of thermodynamical solution lies inside the locality interval and the Kolmogorov
solution indexx1 is located not exactly at the center of the locality interval.1

The continuity equation for the spectral energy densityεω = ωNω is

∂εω

∂t
+ ∂P

∂ω
= 0, (34)

whereNω is the spectral density of the number of particles.
Using the integral relation

∫
Nω dω = ∫

nEk dEk, which becomes in the axial-symmetrical caseNω = nk2πk(dk/dω),
we get for energy fluxP corresponding to power solution (29):

P = −
∫
ωNω dω = − A2

8α3σ 2/α+1

ωy+1

y + 1
I (y). (35)

The last expression contains, however, the signgularity0
0 at the pointy = −1, which can be resolved by the

L’Hopital rule:

P = − A2

8α3σ 2/α+1

∂I

∂y

∣∣∣∣
y=−1

. (36)

From the dimensional estimate

nk = C

√
P

σ 1/4
k−17/4,

whereC is the dimensionless universal Kolmogorov constant. Comparing this relation with the power spectrum
nk = Aωx0 = Aσx0/2kαx0, we get the expression for the Kolmogorov constant:

C = 2
√

2α3/2√
− ∂I
∂y

|y=−1

, (37)

1 In [6] is mentioned that “. . .Kolmogorov exponent always lies exactly in the middle of the locality interval”, which is not always true: it is
realized only in the case when thermodynamical index does not belong in the locality interval.
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where

∂I

∂y

∣∣∣∣
y=−1

=
∫ 1

0
dξ (ξ(1−ξ))2/α[ξ logξ + (1−ξ)log(1−ξ)] ×

[
(ξ(1−ξ))−17/6 − ξ−17/6 − (1 − ξ)−17/6

]

×
[(

1+1−ξ2/α−(1−ξ)2/α
2ξ1/α(1−ξ)1/α

)
(ξ(1−ξ))1/2α −

(
1−1+ξ2/α−(1−ξ)2/α

2ξ1/α

)
ξ1/2α

(1−ξ)1/α −
(
1 − 1+(1−ξ)2/α−ξ2/α

2(1−ξ)1/α
)
(1−ξ)1/2α
ξ1/α

]2

√
4ξ2/α(1 − ξ)2/α − (

1 − ξ2/α − (1 − ξ)2/α
)2

Evaluating the last integral numerically, we get

C = 9.85. (38)

4. Numerical model

Our model of gravity–capillary waves is based on the system of equations (15) and (16) supplied with damping
(viscous) termDEr and forcing termFEr :

∂ηEr
∂t

= [|k̂|ψ ]Er − div(η∇ψ)− |k̂|[[ |k̂|ψ ]Er × ηEr ]Er + |k̂|[|k̂|[[ |k̂|ψ ] r̂ × ηEr ]Er × ηEr ]Er + 1
2∆Er [[ |k̂|ψ ]Er × η2

Er ]

+1
2|k̂|[∆Erψ × η2

Er ], (39)

∂ψEr
∂t

= −gηEr + σ div
∇η√

1 + (∇η)2
+ 1

2[−(∇ψ)2 + [|k̂|ψ ]2Er ] − |k̂|[[ |k̂|ψ ]Er × ηEr ]Er × [|k̂|ψ ]Er −∆ψ

×[|k̂|ψ ]Er × ηEr +DEr + FEr . (40)

The Fourier-component ofFEr was chosen in two different forms,

F1Ek = fEk cos((1 + R(t))ωkt) (41)

and

F2Ek = Γ (Ek)ψEk, Γ (Ek) > 0, (42)

whereωk =
√
(g + σk2)k is the local linear frequency,R(t) is a function of time, taking values randomly distributed

between−1 and+1; Γ (Ek) > 0 is the growth rate of forcing.
The Fourier-component of physical damping, or viscous term is defined by

DEk = γkψk, γk < 0 (43)

and is not important for our purposes for the reasons explained below.
Eqs. (39) and (40) constitute a Hilbert-differential system of equations, which was solved numerically in operator

form, using pseudo-spectral technique based on fast Fourier transform (FFT) algorithm. This choice of spatial
solution of the system was defined by preference of FFT, as an economical algorithm for calculation of integrals of
convolution type. The idea of this algorithm can be illustrated on the example of calculation of the term [|k|ψ ]2Er :
1. Calculateψ(Ek) = FFT(ψ(Er)).
2. Multiply ψ(Ek) by |k| in EK-space.
3. Calculate [|k|ψ ]Er = FFT−1[|k| × ψ(Ek)].
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4. Calculate [|k|ψ ]2Er : Using this approach one can calculate all necessary nonlinear terms in the right-hand side
of Eqs. (39) and (40) from known functionsψ(Er) andη(Er) at each time-step.

The most unpleasant surprise of numerical simulation of surface waves consists in the fact that a wide variety
of numerical schemes approximating the system (39) and (40) easily become nonlinearly numerically unstable.
In other words, short-wave perturbations to long-wave flow start to grow if the long-wave flow is strong enough.
In particular, among the numerical schemes we tried, is the one-parameter family of implicit numerical schemes
exactly preserving the Hamiltonian.

Observed numerical instability is not new: the same type of instability, we believe, was observed in previous
publications [11–13]. This instability can be, however, suppressed up to certain amplitudes of background flow,
using low-pass filtering of the functionηEk,ψEk, which suppresses the high-wavenumbers part of the spectrum while
keeping the small-wavenumbers part of the spectrum unchanged. In other words, at each time-step, these functions
are multiplied by

Rk = e−(k/k0)
n

, n = 10, k0 = 0.7–0.9kmax,

wherekmax is the maximum wavenumber in the problem.
This filtering is equivalent to introducing extra damping termsεkηEk andεkψEk in the right-hand side of Eqs. (39)

and (40) respectively, where

εk = 1 − R−1
k

τ
. (44)

It is possible to show that this damping is much stronger than the physical damping. As confirmed by numerical
experiments, this is responsible for the major part of energy absorption in the system. Therefore we resist using the
physical viscous term (43) in equations. Another way of diminishing the instability effect is decreasing the time-step
of integration.

To advance in time, the predictor–corrector numerical scheme of the second order was used as a computationally
low-cost alternative to implicit schemes. Calculations were carried out on the grid 256×256 in the region ofER-space
2π × 2π with periodical boundary conditions.

5. “Frozen” turbulence regime

A series of experiments were carried out with the pumping (41) localized at small wavenumbers. These showed
that at low levels of nonlinearity,(H1 +H2)/H0 ≤ 10−3, there is a stationary regime of “frozen” turbulence in the
small-wavenumbers region of pumping with exponentially decaying spectrum toward highEk. The wave spectrum
consists of several dozens of excited low-wavenumber harmonics, possibly exchanging energy between each other,
without generating energy cascade toward high-wavenumbers. There is virtually no energy absorption associated
with high-wavenumbers damping in that case.

We interpret this regime as generic, associated with wave spectrum discreteness due to the periodicity of boundary
conditions and explain it in Section 7. The characteristic feature of this regime is formation of ring structures around
Ek = 0 (see Fig. 2).

We think that such frozen regimes of turbulence can be realized in nature in bounded systems like lakes and
finite-size laboratory resonators and could be detected experimentally by testing for the presence of ring structures
in the spectrum of surface elevations.
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Fig. 2. One half of the spectrum of spatial elevation in the case of frozen turbulence.

Fig. 3. Logarithm of the spectrum of spatial elevations of the liquid surface as a function of the logarithm of wavenumber.

It is tempting to identify the frozen turbulence with the KAM regime in Hamiltonian systems of many degrees
of freedom. This comparison can be done only with caution because in our case the system is not conservative and
is pumped in a random way.

6. Kolmogorov turbulence

A different regime of turbulence occurs at higher levels of nonlinearity(H1 + H2)/H0 ' 10−2. The sta-
tionary spectrum is angular isotropic in this case and transfers a finite energy flux to the large-EK region (see
Fig. 3).

The plot of the logarithmic derivative (see Fig. 4) shows that in the interval 8< k < 23 the spectrum can be
considered as powerlikeIk = qk−x . The exponential value is close tox ' 4.8, q ' 0.03.

From weak-turbulent theoryq = Cexp
√
P (σ = 1), whereCexp is an experimental value of the Kolmogorov

constant. Once we have measured the energy fluxP , we can calculateCexp and compare its value with Eq. (38).
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Fig. 4. The derivative of the logarithm of the spectrum of spatial elevations with respect to logarithm of the wavenumber as a function of the
logarithm of the wavenumber (the local value of the Kolmogorov index).

Energy absorption, or flux is given by

P = ∂E

∂t

∫
1 − R−1

k

τ

(
|k||ψk|2 + σ k2|ηEk|2

)
dEk, (45)

whereτ is the time-step of the numerical scheme andRk is a low-pass filter. The fluxP measured according to
these formulae isP ' 3 × 10−4 which gives the experimental value of the Kolmogorov constant

Cexp = 1.7.

The strong deviation between the experimental value of the Kolmogorov constant from its theoretical value
can be explained by the narrowness of the inertial interval realized in numerical simulation: a significant part
of waves born in the small-wavenumber region of the pumping is absorbed directly at the large-wavenumber
region.

Let us consider this point in more detail. Eqs. (15) and (16) describe, in particular, four-wave nonresonant process
in which three waves with wavenumbersEk1, Ek2, Ek3 generate nonresonant beating, with wavenumber

Ekb = Ek2 + Ek3 − Ek1.

If all Eki (i = 1,2,3) are inside the ring|ki | ≤ ka , the maximum value ofkb is kb ' 3ka . In the case whenkb is
placed in the zone of strong damping, dissipation ink ' kb can provide an intensive flux of energy away from the
domaink ' ka .

A detailed theory of this process (including five-and six-wave interactions) will be published in a separate article.
We just mention that these nonresonant processes of direct skipping of energy to largeEk are vanishing atkmax → ∞.
However, in our experiments, the flux of energy measured by formula (45) is overestimated, with respect to the
energy flux responsible for the Kolmogorov spectrum. Such deviation between experimental and theoretical values
for the Kolmogorov constant should also asymptotically disappear atkmax → ∞.

The experiments were also carried out for the “growth rate” pumping (42) in the isotropical case

ΓEk = Ae−((k−k0)/k0)
4
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Fig. 5. Density plot of one half of two-dimensional spectrum of spatial elevations in the case of anisotropical growth rate pumping.

and anisotropical case

ΓEk =
{
Ae−((k−k0)/k0)

4
, if − π

4 < φ < π
4 ,

0, otherwise,

whereA is real amplitude andφ is polar angle in the plane(kx, ky).
In both cases the stationary spectrum obeys angular isotropy (see Fig. 5) with the part described by the Kolmogorov

law (see Fig. 6).
Finally, one should mention that the observed picture of stationary spectra was invariant with respect to the

damping and pumping parameters change in an acceptable range.

7. Maps of quasi-resonances

The above numerical experiments have demonstrated that the theory of weak turbulence is correct in the
two-dimensional case, as well as the existence of the Kolmogorov spectrum. This result is confirmed by data
of laboratory experiments carried out in the Department of Physics, UCLA [14].

Still, there are several questions to be answered:
1. Difference of the experimental value of the Kolmogorov constant from the theoretical one.
2. Existence of fluxless or frozen turbulence regimes at very low levels of short-wave forcing.
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Fig. 6. Same as Fig. 4, but in the case of anisotropical growth rate pumping.

3. “Wedding cake” shape of the frozen turbulence spectrum (Fig. 2) which gives an oscillating one-dimensional
spectrum after angle-averaging.

Below we show that a simple kinematic consideration helps to understand the answers to these questions.
An interaction of the Fourier modes in kinetic equation for capillary waves is performed through the interaction

of triplets of waves which are solutions of the system of equations (18) and (19), usually referred by “conservation
laws” or “resonances”. This system always has solutions in the case of a continuous spectrum for dispersion relation
of capillary waves (18), known as “decay-type” dispersion relation [6].

The situation is changed, however, in the case of finite domain. Fourier harmonics of the system with periodical
boundary conditions are not continuous functions of the wavenumber anymore, like in the case of infinite domain, but
an infinite set of values defined at discrete equidistant wavenumbers. The question of existence of the solution of the
system (18) and (19) turns into a, generally speaking, nontrivial number theory problem. A significant breakthrough
in classification of existence of solutions of this system for different types of dispersion relationsωEk was obtained
by Kartashova [15]. It was shown, in particular, that the system (18) and (19) does not have solutions in the case
of capillary waves dispersion relation (18), which means that there are no interacting Fourier modes in the kinetic
equation for waves in the finite domain.

The situation is changed, however, if nonlinear dispersion correctionδk due to finite amplitude of the excited
wave is taken into account and capillary wave frequency becomes

ωk = σ 1/2k3/2 + δk. (46)

Conservation laws (18) and (19) are transformed into “quasi-conservation laws” or “quasi-resonances”:

ωk1 + ωk2 − ωk3 = ∆k1k2k3, (47)

Ek1 + Ek2 = Ek3, (48)

∆k1k2k3 = δk3 − δk1 − δk2. (49)

It is clear that the system (47)–(49) has many more degrees of freedom than the system (18) and (19) in the
sense of existence of solutions due to variability of parameter∆k1k2k3 which is the effective level of excitation of
oscillations.
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To understand the answers to the above questions, we propose two modifications of the algorithm of searching of
solutions of the system (47)–(49). Each algorithm builds the two-dimensional “map” in Fourier space which marks
solutions of this system by “0” and “1”.

The first type of two-dimensional map function represents all possible triplets:

Ek1 = (k1x, k1y), (50)

Ek2 = (k2x, k2y), (51)

Ek3 = (k3x, k3y), (52)

given fixed vectorEk3. Under this assumption quasi-resonances (47)–(49) transform into

(k2
1x + k2

1y)
3/4 +

(
(k3x − k1x)

2 + (k3y − k1y)
2
)3/4 − (k2

3x + k2
3y)

3/4 = ∆.

Map functionMε
1(kx, ky) is defined by

Mε
1(

Ek1) =
{

1, if |∆| ≤ ε,

0, if |∆| < ε.

Every mapMε
1(kx, ky) corresponds to a chosen “level” of the turbulenceε. The algorithm of building of the map

is nothing but testing if tripletEk1, Ek2, Ek3 has discrepancy∆ less thanε. If the answer is “yes” all pointsEk1, Ek2, Ek3

are assigned the value of 1, and 0 otherwise.
Fig. 7(a)–(c) representsMε

1(
Ek) for three different values ofε. The resonance curve practically disappears with

diminishing excitation levelε which means that the number of allowed triplets decreases significantly with decrease
of the level of excitation of waves.

Another type of map function represents all possible tripletsEk1, Ek2, Ek3 on two-dimensional Fourier plane. The
corresponding equation for quasi-resonances becomes

(k2
1x + k2

1y)
3/4 + (k2

2x + k2
2y)

3/4 −
(
(k1x + k2x)

2 + (k1y + k2y)
2
)3/4 = ∆k1k2

and the map function is defined by

Mε
2(

Ek1) =
{

1, if |∆| ≤ ε for someEk2,

0, if |∆| > ε for all Ek2.

Similar to the previous case, mapMε
2(

Ek) corresponds to a particular “level” of the turbulenceε and is nothing but
testing if any triplet’sEk1, Ek2, Ek3 discrepancy∆ is less thanε. If it is the case, all pointsEk1, Ek2, Ek3 are assigned the
value of 1, and 0 otherwise.

It is important to note that, generally speaking, a particular map is also a function of cutoff wavenumber in Fourier
spacekcut which is the characteristic value of the starting of significant high-wavenumber damping. The bigger is
kcut, the more resonances exist on the map. This is clear from the following consideration. Suppose that the absolute
value of Ek1 is much smaller thanEk2, Ek3. It is clear that the biggerkcut, the more possibilities exist to satisfy the
condition∆ < ε for any givenε.

Fig. 8(a–c) shows the maps of quasi-resonances forε = 0.0001, ε = 0.01, ε = 1.0. White areas correspond to
allowed Fourier modes while black ones to prohibited ones. As one could expect, the richness of resonances grow
significantly with the growth ofε. The picture of resonances in Fig. 8(a) is very poor — direct analysis shows that
there are no two different tripletsEk1, Ek2, Ek3 coupling with each other. This case corresponds to the case of pure
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Fig. 7. (a) Map of quasi-resonancesMε
1(kx, ky) for ε = 0.1. Pointkx = 0, ky = 0 is located at the center of the picture and marked by a white

cross. White areas correspond to 1 (allowed modes), black areas to 0 (prohibited modes); (b) same as (a) but forε = 1; (c) same as (a), but for
ε = 10.

frozen turbulence, because there is no mechanism of energy transfer from one triplet to another, i.e. from low to
high wavenumbers.

The picture of resonances in Fig. 8(b) is significantly denser. It was found that there are coupling triplets of
wavevectors in this case able to transfer the energy from low to high wavenumbers, still not many. It is interesting
that averaging the map over the angle in Fourier space gives an oscillatory one-dimensional “wave spectrum” due
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Fig. 8. (a) Map of quasi-resonancesMε
2(kx, ky) for ε = 0.0001. Pointkx = 0, ky = 0 is located at the center of the picture. White areas

correspond to 1 (allowed modes), black areas to 0 (prohibited modes); (b) same as (a) but forε = 0.01; (c) same as (a), but forε = 1.0.

to the presence of spectral holes on the corresponding two-dimensional map. It is tempting, but difficult to compare
these oscillations with low-wavenumber oscillations in laboratory data [14], where some of the low-wavenumber
oscillations are produced by effects of parametric forcing. Still, the tendency of formation of oscillatory spectrum
is quite obvious in numerical experiments (see Fig. 2) and represents an interesting subject of investigation in
laboratory experiments.
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The map of resonances in Fig. 8(c) presents the case of well-developed coupling of resonant triplets. The result
of its averaging over the angle does not contain any oscillations. One can expect that the effect of frozen turbulence
should be minimal in this case being compared to the cases Fig. 8(a) and (b) which creates better conditions for
realization of Kolmogorov regime of turbulence.

8. Conclusion

Our work shows that weak-turbulent theory is correct in the two-dimensional case and the Kolmogorov spectrum
occurs. Stationary spectra of capillary wave turbulence are locally isotropical ones, in other words, the spectrum
structure in highEk is independent of the details of the pumping.

At small amplitudes of the pumping principally a new phenomenon takes place: frozen turbulence in which
despite the big number of interacting waves (of the order of 100) there is no energy flux generation toward highEk.
This phenomenon is connected with the finiteness of the region (or, in other words, discreteness of the spectrum
in Fourier space). It is universal for wave turbulence in limited regions for different sorts of nonlinear systems and
can be observed in natural and laboratory experiments detecting, in particular, such macroscopic exibition as ring
structures in Fourier space. The degree of equivalence of the frozen turbulence to KAM regime in conservative
dynamical systems presents principal interest.

The mechanism of frozen turbulence can be understood through the analysis of solutions of kinematic three-wave
quasi-conservation laws. This analysis is performed numerically by building the maps of quasi-resonances which
show that for small levels of excited waves, Fourier space is split into the regions of allowed and prohibited
modes, or spectral holes. Presence of spectral holes is the cause of oscillatory behavior of angle-averaged spectra
of turbulence. For very small levels of excitation, there are no coupling triplets of the wavevectors responsible for
energy transfer from low to high wavenumbers. The number of allowed Fourier modes grows significantly with the
increase of the level of excitation and inertial range in Fourier space. As a result, one can expect a Kolmogorov
regime of turbulence at relatively high levels of excited waves and big enough inertial range in Fourier space. Weak
turbulence with intermediate levels of excitation in bounded systems is therefore, as a rule, the mixture of frozen
and Kolmogorov turbulence.

The challenge is to build simplified dynamical numerical model of purely frozen turbulence. It can be based on
a numerical algorithm which consists of the solution of dynamical equations coupled with a dynamically changing
map of allowed modes in time and Fourier space. It is also tempting to detect such frozen turbulence in laboratory
experiments on excitation of capillary waves in containers which could be observed via detection of ring structures
in two-dimensional spectra of surface elevations.
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