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Preface 

We often think of our natural environment as being composed of very many 
interacting particles, undergoing individual chaotic motions, of which only very 
coarse averages are perceptible at scales natural to us. However, we could as well 
think of the world as being made out of individual waves. This is so not just because 
the distinction between waves and particles becomes rather blurred at the atomic 
level, but also because even phenomena at much larger scales are better described 
in terms of waves rather than of particles: it is rare in both fluids and solids to 
observe energy being carried from one region of space to another by a given set of 
material particles; much more often, this transfer occurs through chains of particles, 
neither of them moving much, but each communicating with the next, and hence 
creating these immaterial objects we call waves. 

Waves occur at many spatial and temporal scales. Many of these waves have 
small enough amplitude that they can be approximately described by linear theory. 
However, the joint effect of large sets of waves is governed by nonlinear interactions, 
which are responsible for huge cascades of energy among very disparate scales. 
Understanding these energy transfers is crucial in order to determine the response 
of large systems, such as the atmosphere and the ocean, to external forcings and 
dissipation mechanisms which act on scales decades apart. 

The field of wave turbulence attempts to understand the average behavior of 
large ensembles of waves, subjected to forcing and dissipation at opposite ends of 
their spectrum. It does so by studying individual mechanisms for energy transfer, 
such as resonant triads and quartets, and attempting to draw from them effects 
that should survive averaging. 

The AMS-IMS-SIAM Joint Summer Research Conference on Dispersive Wave 
Turbulence was held in Mt. Holyoke College, MA, from the 11 to the 15 of June 
of the year 2000. It drew together a group of researchers from many corners of the 
world, in the context of a perceived renaissance of the field, driven by heated debate 
about the fundamental mechanism of energy transfer among large sets of waves, 
as well as by novel applications - and old ones revisited - to the understanding 
of the natural world. We hope that these proceedings reflect part of the spirit 
that permeated the conference, that of friendly scientific disagreement and genuine 
wonder at the rich phenomenology of waves. 

ix 
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Contemporary Mathematics 
Volume 283, 2001 

Strongly Stratified Limit of 3D Primitive Equations m an 
Infinite Layer 

A. Babin, A. Mahalov, and B. Nicolaenko 

ABSTRACT. Three-dimensional primitive equations of geophysical fluid dy-
namics in an infinite rotating layer are analyzed under the Boussinesq ap-
proximation in the asymptotic limit of strong stratification. The 'split' of the 
energy transfer of the vortical and the wave components is verified in this 
geometry. The vertically averaged (barotropic) ageostrophic field is advected 
by the vertically averaged quasi-geostrophic velocity when both rotation and 
stratification are dominant. 

1. Introduction 

In this paper we study initial value problem for the 3D Primitive Equations 
of geophysical fluid dynamics. The governing flow equations for rotating stably 
stratified fluids under the Boussinesq approximation are 

(1.1) chU -1/I~u + u. V'U + fe3 Xu= -V'p+ PI e3, V'. u = 0, 

(1.2) OtPI - l/2~PI + u. V' PI = -N2 U3, 

where rotation and mean stratification gradient are aligned parallel to e3 = [0, 0, 1]. 
Here u = (UI' u2, U3) is the velocity field and PI is the buoyancy variable; N is the 
Brunt-Viiisiilii parameter for constant stratification and f is the Coriolis parameter. 
We focus on inviscid Eqs. (1.1)-(1.2) or with small uniform viscosities. We assume 
here that the ratio "' = f / N is fixed and N ----+ oo. 

We introduce a change of variables PI = N p (Metais and Herring 1989) and 
combine velocity and buoyancy variable in one variable ut = (U, p) after which 
Eqs. (1.1)-(1.2) written in non-dimensional variables take more symmetric form: 

(1.3) 8tut- v~ut + U · vut + fRUt = -V'tp- Nsut, V'. U = 0, 

utlt=o = ut(o) 
where from now on we take vi = v2 = v and where vt p = (V' p, 0). Here 

( J 0 ) ( 0 0 ) ( 0 -1 ) R= 0 0 ' S= 0 J 'J= 1 0 ' 

1991 Mathematics Subject Classification. Primary 76D05, 76D33; Secondary 35832, 34C15. 
Key words and phrases. Three-dimensional Navier-Stokes equations, waves, geophysical 

flows. 
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2 A. BABIN, A. MAHALOV, AND B. NICOLAENKO 

and Rn, Sn will denote the action of Rand S on n-th Fourier component, M = 
JR + NS. In the next section we write Eqs. (1.1)-(1.2) in the Craya cyclic basis 
and use this representation to obtain asymptotic limit resonant equations. Fourier 
series with respect to the vertical variable x 3 and Fourier transform with respect to 
x 1 , x 2 will be used in this paper to represent physical fields in a layer ( -oo, oo) x 
( -oo, oo) x [ -?r, 1r], periodic in x 3 . All results in this paper extend to boundary 
conditions with zero flux in the vertical direction e3 on the boundary. One only 
needs to restrict Fourier series to be even in X3 for ul) u2 and odd in X3 for u3. 

Such boundary conditions imply zero tangential stress on the vertical boundary 
(e.g. Drazin and Reid, [24]). 

Following Bartello [16], it is useful to distinguish between two sets of wavevec-
tors k = ( k1 , k2 , k3 ), the barotropic set { k : k3 = 0}, and the remaining bam-
clinic vectors { k : ki + k~ =/= 0, k3 =/= 0}. Then the operation of vertical averaging 
corresponds to projection on barotropic fields. In this paper as well as in our 
previous work (see [5], [8], [12], [15]) we emphasize the important role of 3D quasi-
geostrophic (3DQG) and barotropic dynamics for rotating and stably stratified 
flows. We denote by U the vertical average of U and U = U - U. 

There is a big difference between the equations in a finite geometry and an 
infinite geometry. The case of finite geometry (a periodic box) was considered in 
detail for the case of 3D rotating Navier-Stokes equations in [5], [8] and [12] and for 
the 3D Primitive Equations in [6], [10]-[15]; see also [25], [26], [27], [28] and [29]. 
It was proven in [12] and [13] for 3D rotating Navier-Stokes and the 3D Primitive 
Equations respectively that solutions of the limit equations are always regular and 
solutions of the original equations with strong rotation or stratification are regular 
too. 

When the geometry is infinite (the whole space) and the Rossby number tends 
to zero (that is rotation rate tends to infinity) for solutions of the Navier-Stokes 
equations with a finite energy it was shown in Chemin, Desjardins, Gallagher and 
Grenier ([20] and [21]) that the limit dynamics reduces to 2D barotropic Navier-
Stokes equations and there is no ageostrophic limit dynamics at the leading order. 
The reason is that the Coriolis term generates waves which carry away energy 
to infinity. Therefore oscillating part of solution at every positive time tends to 
zero as the Rossby number tends to zero. This effect is expressed in the form of 
Strichartz inequalities ([20] and [21]). Similarly, a finite energy 3D perturbation 
of 2D periodic initial data generates a solution which tends to a solution of 2D 
N avier-Stokes equations and the energy of the ageostrophic part is carried away to 
infinity. 

Here we consider the 3D Primitive Equations (1.1)-(1.3) under the Boussi-
nesq approximation in an infinite layer with a finite height, and we derive the 
limit equations which describe a nontrivial dynamics for both quasigeostrophic 
and ageostrophic components. The quasigeostrophic component satisfies the quasi-
geostrophic equation (3DQG). The vertically averaged (barotropic) ageostrophic 
field is advected by the vertically averaged quasigeostrophic velocity (2D compo-
nent) in the asymptotic limit equations when both rotation and stratification are 
dominant. 
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STRONGLY STRATIFIED LIMIT OF 3D PRIMITIVE EQUATIONS 3 

2. Quasigeostrophic and ageostrophic components in the Craya basis 

The inertio-gravity wave propagator is the operator solution E(Nt) (E(O) = Id 
is the identity) to the linear problem obtained from (1.3): 

cl>(t) = E(Nt)cl>o; cl>(O) =.Po 
where cl>(t) = (U(t),p(t)) (see [11], [14], [13] for details). The operator E(Nt) 
describes propagation of inertio-gravity waves. In the Craya cyclic basis (see [35], 
[32], [30] and [18]) the linear problem restricted on the subspace of divergence free 
vector fields reduces to the following 3 x 3 matrix for the n-th Fourier component: 

WnM'~wn 0 ~ ~1) 
where zero eigenvalue corresponds to the quasi-geostrophic mode (vortical mode). 
We use the extended notation 

m = [m1, m2, m3, OJ, 
and similarly for n, k. We introduce the orthonormal basis of the divergence-free 
subspace for n-th Fourier mode: 

[ n2 n1 ] [ n1 n3 n2 n3 -ni - n~ ] 
Pon = - ~' ~' O, 0 ; Pln = lnlln'l' lnlln'l' lnlln'l ' 0 ; 

(2.1) P2n = e4 = [0, 0, 0, 1]. 

Here n1,n2 E ffi., n3 E Z; lnl2 = ni + n~ + n~, ln'l2 = ni + n~. The vectors 
Pok> Pom, Plk etc. are defined similarly. The vectors Pok, Plk, P2k are orthonormal 
cyclic vectors for the matrix S restricted on the divergence free Fourier subspace; 
let P d be the projection on divergence free vectors in the Helmholtz decomposition 
(for the velocity component): 

In' I 
PdSnPon = 0; PdSn Pln = -¢nP2n; PdSnP2n = ¢nPln; ¢n = ~-

The PJk are the Craya basis for the purely stratified problem, already used in [35]. 
In the case f i= 0 we use the following orthonormal basis 

1 1 
(2.2) qon = -(¢nPOn + TJ~nP2n), qln = Pln, q2n = -(¢nP2n- TJ~nPon) 

Wn Wn 

where 
n3 2 2 2 2 

(2.3) ~n = ~' Wn = c/Jn +TJ ~n' TJ = f/N 

(see for details [15], [10]); the algebra is the same for periodic box and infinite 
layer, one has to use Fourier transform with respect to horizontal variables. For 
the matrix of linear problem in (1.3) 

Mn = NSn + fRn 

the vectors (2.2) form a cyclic basis since, after projection on divergence-free vector 
fields via Helmholtz decomposition: 

PdMqon = 0, PdMqln = -wnq2n, PdMqzn = Wnqln· 

Any arbitrary divergence-free vector field UJ, can be written as 
U t _ vo + v1 v2 n- nqOn nqln + nq2n· 
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4 A. BABIN, A. MAHALOV, AND B. NICOLAENKO 

We shall use the variables V to denote vector of coefficients corresponding 
to U~: V n = [V~, v;, v;] = [V~, V~], V~ = [V;, v;]. We denote by II~ 0 the 
projection onto q0n (quasi-geostrophic mode): 

V QG( t)- IIQGUt( ) -"" 1 J J VO in·xd d IIQGUt - VO X, - X - ~ --2 nqone n1 n2, n n- nqOn· 
n3 ( 27r) 

Similarly, we define the projection nAG onto ageostrophic component II~ 0 U~ 
v;qln + v;q2n: 

VA 0 (x, t) = IlAGUt(x) = 2::: ~ J jw;qln + V,;q2n)ein·xdn1dn2. 
n3 (27r) 

The action of the linear propagator E(Nt) on the Fourier components can be 
written in V-variables 

Here J, M~ are given by 

(2.5) ( 
0 0 

M~ = ~ ~ -1 ) 0 . 

Then Eqs. (1.3) in Fourier representation in V variables can be written in the 
cyclic basis (2.2) as 

(2.6) 

where i 1 , i 2, i 3 = 0, 1, 2, M' is the matrix Min V-variables. The coefficients Q~';:,~ 3 

are determined in the Craya basis as follows 

Qi,i2i3 - ( )( ) kmn - q;,k . m q;2m . qi3n . 

The coefficients Q~';:,~ 3 , k + m = n, are obtained by a straightforward computation 
using (2.2), they are given explicitly in [15]. For the coefficient describing interac-
tion of O-m odes ( quasi-geostrophic = vortical) we obtain ( n 1 Am' = n 1 m 2 - n2md. 

ooo n' A m' ' ' 2 
Qkmn = lkll II 1- (n · m +'f) n3m3). WkWmWn m n 

Since skew-symmetric ink, m component of Q2r;;;n makes no contribution to Eq. (2.6), 
we can use the following Q2r;;;n in Eq. (2.6): 

ooo k' Am' 12 2 2 wmlml k' Am' 
Qkmn = WkWmWnlkllmllnl (lm I +'f) m3) = WkWnlkllnl 

where we have used lml 2w;;, = lm'l 2 + 'f) 2 m~. The coefficient Q2r;;;n is the familiar 
coefficient in 3DQG equations written in cyclic basis. 

3. The limit resonant equations for an infinite layer 

In this section we derive the limit resonant equations for an infinite layer and 
prove the corresponding convergence theorems. Eqs. (2.6) have the form 

(3.1) 
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STRONGLY STRATIFIED LIMIT OF 3D PRIMITIVE EQUATIONS 5 

Here M' is the linear propagator operator corresponding to inertio-gravity waves 
given in cyclic V-variables. We introduce the linear propagator directly into non-
linearity using the change of variables 

(3.2) V(t) = E( -Nt)v(t), V n = exp( -NwnM~t)vn 

where v = [v0 ,v1,v2 ] and M' is defined by Eq. (2.5). Eqs. (3.1) written in slow 
"Poincare" v variables ([34]) have the form 

(3.3) 

(3.4) 

OtV = Bp(Nt, v, v) + v~v, 
Bp(Nt, v, v) = E(Nt)B(E( -Nt)v, E( -Nt)v). 

Eqs. (3.3) are explicitly time-dependent with rapidly varying coefficients. 
The following equations describing the asymptotic limit dynamics are associ-

ated with Eqs. (3.4) (see [6], [10]-[15]): 

- - 11T (3.5) OtW = B(w, w) + v~w, B(w, w) = lim - Bp(N s, w, w)ds 
N-->+oc T 0 

where the arguments ware s-independent (that is frozen in "slow" time). Recall 
that we take the limit rJ = f / N fixed, N ____, +oo. The limit resonant equations 
(3.5) are obtained by annihilating all terms in the averaging of Bp which contain 
fast oscillating factors. 

The bilinear form B(w, w) in Eqs. (3.5) can be conveniently represented in 
the cyclic basis (2.2). We explicit the resonant (limit) equation for w = w0 q0 + 
w1q1 + w2q2 in the Craya basis where w 0 is simply projection of won QG mode. 
Then w0 satisfies the quasi-geostrophic equation; the proof of operator splitting in 
[6], [15] [10], [13], [25] and [26] is easily extended to an infinite layer domain, see 
details in Section 2.2. The ageostrophic component w' = ( w1 , w2 ) is found from 
inertio-gravity wave limit equation. The quasi-geostrophic equation is given by 

(3.6) OtW~ = Bo(w0 ,w0 )n- vlnl 2 w~, 

( . o o · "'""' ooo o o ooo Wmlml k' 1\m' 
3.7) Bo(w 'W )n = -t L.....t Qkmnwkwm, Qkmn = WkWnlkllnl . 

k+m=n 

See for details [11]-[15]. We introduce variables ij, UQG (quasi-geostrophic po-
tential and velocity, not to be confused with the cyclic basis vectors q0n, q1n and 
q2n): 

- - 0 QG - 0 - 0 - 2 - 2 (3.8) qm = Wmlmlwm, uk = [-k2/a2, kl, 0, O]IJik, IJik = qk/(wklkl ). 

Recalling that w~lkl 2 = lk'l 2 + 7]2 k'f,, rJ = f /N, we have the familiar formula which 
relates ~ 0 and ij in physical space 

(3.9) -(V'~ + 7)285)~0 = ij. 
Using (3.8), Eq. (3.6) is written in the form: 

OtQn = -i L (U~G · m)ijm- vlnl 2iin, 
k+m=n 

where in the in viscid case ij( t, x) obeys in physical space the 3D quasi-geostrophic 
equations (Bourgeois and Beale, [17]) 

[J_ 
-:=-q = 0 
Dt 
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6 A. BABIN, A. MAHALOV, AND B. NICOLAENKO 

where gt is the advective derivative, based on the quasi-geostrophic velocity and ij 
is the quasi-geostrophic potential. 

3.1. Estimates for the baroclinic ageostrophic component. In this sec-
tion we show that for every fixed x = (xb x2, x3) and t > 0, 0 < t :::; t1 the 
baroclinic part of the ageostrophic component with zero vertical average tends to 
zero; first define the barotropic ageostrophic component 

-AG 1 171" AG (3.10) U (x1,x2,t) = 2 U (xl,x2,x3,t)dx3 
71" -71" 

and 

(3.11) 
A AG 

which is the baroclinic ageostrophic component. Then U (x, t) ~ 0 as N ~ oo. 
• AG We repeat the proof of [20]-[21] for the situation of U satisfying 3D rotating 

Boussinesq equations in a finite width layer. 
We denote by Hs the standard Sobolev space with the norm 

(3.12) I lull; = L j j ( 1 + lnl2) s lu (n)l2 dn1dn2 
n3 

where u (n) are the Fourier coefficients of u (x), where Fourier transform is taken 
in x 1 , x2 and Fourier series in x3 . First we give a standard small time regularity 
theorem for Eqs. (1.1)-(1.3). 

THEOREM 3.1. Let ut(o) E Hs, s > 1/2. Then there exists a unique solution 

ut(t) E H 8 ,0:::; t :S t1 and IIUt(t)lls:::; C where h,C depend only on the norm of 

ut(o). 

The proof is the same as in [11]-[14], unboundedness in horizontal directions 
does not make any essential difference. Using Sobolev embedding theorems we get: 

THEOREM 3.2. Let ut(O) E H 8 , s > 3/2. Then B(Ut, ut) is bounded in 
L00 ([0, ti), L2 ), where 

(3.13) B(Ut, ut) = ( -Pd(U · V'U), -U · V'U4), ut = (U, U4) = (U, p). 

Here P d is the Leray projection on divergence free vector fields. 

Now we apply the method of [20]-[21]. 

THEOREM 3.3. Let ut (0) E H 8 , s > 3/2. Then for every R > 0, to > 0, t :'S h 
• AG 2 

and t > 0 we have U (t) ~ 0 as N ~ oo in Lloc([to, h], H 8 _,(BR)), where BR 
is a ball of radius R. 

PROOF. In Fourier representation we expand ut(k) = UQ0 (k) + UA0 (k) (see 
[11], [14] and [13] for details). Note that now k = (k1, k2, k3 ) where k1, k2 are 

• AG 
continuous and k3 = 0, ±1, ±2, .... The equation for two components of U is 

8tVAG (k) = -Nw (k) JVAG- vlki 2UAG + D(Ut)(k), 

where D(Ut) contains nonlinear terms and righthand sides; it is considered as 
a given forcing term of a linear equation. We use boundedness of D(Ut) in 
L00 ([0, h]L2 ) for small t 1 (see [11], [14] and [13] for details). 
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Here the eigenvalues w(k) satisfy the dispersion relation 

(3.14) w(k) = 
k2 

1 + b---%-, 
[k[ 

, AG 
with b = 1]2 -1. The equations for V are of the kind considered in [20] and [21], 
with a slightly different dispersion relation; this dispersion relation is also invariant 
with respect to rotation around k3 axis. Note that in [20] and [21] only continuity 
of k2 , k1 is used. In our case we have 

bn1n§ 2 
81w (n) =- 2 , [81w (n)[ ~ cn1n3, 

w (n) (nr + n~ + n§) 
(3.15) 

with c > 0. The above holds when n§ ~ 1, [n[ :::; R. The estimates (3.15) are similar 
to a: (k) in [21], for the pure rotating Navier-Stokes case: 

k2k3 3k~k3 k3 
(3.16) o:(k) = -82w(k) = ikj3' 82a:(k) = -~ + [k[3' 

where w(k) = Tfr in the pure rotation case. 
With the use of Strichartz-type estimates, this implies, following closely the 

, AG 
methods in [21], V (k) ---+ 0 as N ---+ oo when n3 -=/- 0 in Lfoc([to, t1], £4) when 

, AG 
to> 0. Using Theorem 3.1 we obtain that [[V [[Lfoc([to,t,J,H,_,(BR))---+ 0 as N---+ 
oo, in H~(BR), s' < s where BR is a ball of radius R. Theorem 3.3 is proven. 0 

3.2. The split of the energy transfer for the vortical and the wave 
components in an infinite layer. In this section we establish the split of the 
energy transfer for the vortical component (3DQG) and the wave components (AG 
fields) for the asymptotic limit equations in a layer. The structure of the asymptotic 
limit equations is given by Eqs. (3.19)-(3.20). 

THEOREM 3.4. Under the conditions of Theorem 3.3, VQG and VAG (vertical 
averaging ofVAG) tend to a solution of the 3DQG equation {3.19) and an advected 
system {3.20) for a barotropic ageostrophic component respectively. 

PROOF. Applying the projection IIQG to Eq. (1.3), the equation for QG com-
ponent is 

(3.17) OtVQG = v~VQG + BQG(VQG +VAG+ VAG' VQG +VAG+ VAG) 

where BQG = rrQGB and BAG = II AGB. Eq. (3.17) does not include explicit 
dependence on N; therefore one obtains using Theorem 3.1 the estimate of 81VQG 

uniform in N, and we can choose a convergent subsequence of Ot VQG. 

For the component VAG we use the same "Poincare" variables substitution as 
in Eq. (3.2): VAG = E( -Nt)uAG where E( -Nt) is the linear wave propagator. 
The frequencies for VAG are not dispersive in k1 , k2 for k:1 = 0, since w(k) = 1 for 
k3 = 0 (see eq. (2.3)). We have 

(3.18) 
OtUAG = V~UAG 

+ E(Nt)BAG (VQG + E( -Nt)uAG + VA 0 , vQG + E( -Nt)uAG +vAG). 
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8 A. BABIN, A. MAHALOV, AND B. NICOLAENKO 

Using Theorem 3.1 we get the estimate of OtUAG uniform inN, and we can choose 
a convergent subsequence of Ot u:AG. Integrating (3.17) in time we get exactly like 
in [6], [14], [15] and [10] that 

limN~+=.!:_ {T BQ0 (E(-Ns)uA0 ,E(-Ns)uA0 )ds = 0 
T lo 

where averaging is done in the sense of Eq. (3.5) (the algebra which is used here to 
show that the above resonant operator is zero is the same as in [6], [14], [15] and 
[10]). We also have obviously non-resonant terms 

T 

limN~+=~ 1 BQ0 (VQ0 ,E(-Ns)uA0 )ds = 0, 

T 

limN--.+oo~ 1 BQ0 (E(-Ns)uA0 , VQ0 )ds = 0. 

Since three-wave interaction resonance condition takes the form ±1 ± 1 ± 1 = 0 for 
k3 = m 3 = n 3 = 0 (recall that Wk = 1 for k3 = 0 and similarly form, n) we do not 
have resonant terms for 

limN--.+=.!:_ {T E(Ns)BA0 (E(-Ns)uA0 ,E(-Ns)uA0 )ds = 0. 
T lo 

Note that the continuity of k1 , k2 does not create a difficulty since I ± 1 ± 1 ±II 2: 1. 
, AG 

Passing to the limit in integrated equations (3.17),(3.18) and using that U -> 0 
we get the limit equations 
(3.19) OtVQG = v~VQG + BQ0 (VQ0 , VQ0 ) 

(3.20) -AG -AG -AG - -AG _ 
OtU = v~u + Bres (uAc, Uqc) + Bres (Vqc, UAc), 

where B:e~ is the limit resonant operator to be calculated explicitly in the next 
section. Eq. (3.19) is the 3D quasigeostrophic equation ([17]). Eq. (3.20) is the 
asymptotic limit equation for barotropic ageostrophic field with time and space 
dependent coefficients corresponding to 3DQG field. D 

3.3. Explicit computation of the limit barotropic ageostrophic equa-
tions. Recall that from Eqs. (2.25)-(2.27) of [15] we have for n 3 = k3 = m 3 = 0 

(3.21) Q 012 = Ql02 = Q021 = Q201 = QlOl = Q202 = 0 
kmn kmn kmn kmn kmn kmn · 

Two nonzero coefficients are 

(3.22) 011 (k' 1\ m') lm'l 2 ln'l 2 

Qkmn = Wk lm'lln'llk'llm'lln'l 
(k' 1\ m') 

Wk lk'l 'Wk = 

Therefore, 

(3.23) Qou - (k' 1\ m') 
kmn- lk'l · 

In physical space it is the advection operator by the vertically averaged quasi-
geostrophic velocity field VQG defined in (3.8). Similarly, 

(3.24) QD22 - (k' 1\ m') 
kmn- lk'l · 
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This implies the AG advection equation for the barotropic AG component 

(3.25) 8 -Ac __ (ik' A im')-AcuQc 
tun - I k' I um k . 

When viscosity is present we get 

(3026) ,:} -Ac __ ( ik' Aim') -AcuQG _ I , 
1
2 -AG 

Ut un - I k' I um k v n un 0 

9 

Note that QG component is determined from the 3DQG equation and the 
solution is subsequently vertically averaged. 

The leading term ageostrophic dynamics is non-trivial only for the barotropic 
ageostrophic component which is determined from the above advection equation. 
In spatial representation it is written 

£'l -AG ( ) UQG nt-AG ( ) A -AG (3.27) UtU X1,X2,t =- · V U X1,X2,t +vuU 

where \7' is the horizontal gradient operator. Here 

(3.28) -AG -AG ( ) -QG -QG ( ) 
U =U X1,x2,t ,U =U X1,x2,t, 

where UQG is the vertical average of the QG component velocity UQG defined in 
Eqs. (3.8). Note that Eq. (3.27) is given in terms of slow "Poincare" variable u:AG. 
To obtain the corresponding original physical field UAG, simply use in the Craya 
basis the identity u:AG=exp(NtJ) UAG' since w(n) = 1 for n3 = 0 in Eq. (2.4). 
Eq. (3.27) is an advection equation for u:AG by the barotropic 3DQG velocity field 
UQG. For 3D primitive equations under the Boussinesq approximation in a triply 
periodic cell similar results on advection of barotropic ageostrophic fields were ob-
tained in [15] (see Section 3, p. 238) for the catalytic equations in the asymptotic 
limit N ----> +oo, f ----> +oo, 7] = f /N = 0(1). Clearly, barotropic projection 
corresponds to vertical averaging. The importance of horizontal averaging and 
the corresponding dynamics of vertically sheared modes in the asymptotic limit 
N----> +oo, 7] = f /N----> 0 is emphasized in [26] and [10]. 

REMARK 3.5. The background decomposition 3DQG-AG has much in common 
with the ones presented by Bartello, Cambon and Smith during the conference, but 
the results do not involve additional assumptions or numerics. With respect to 
"classical" wave-tubulence theory, there is no need for assuming Gaussian random 
phases. The vertically averaged 3DQG (2D modes) are particularly relevant when 
rotation is dominant. Concentration of energy towards these modes was demon-
strated in the talks by Cambon (reporting on generalized EDQNM and LES) and 
Smith (reporting on forced DNS simulations). See [18], [30] for more details on 
EDQNM approach. 

REMARK 3.6. Through a simple computation in [10], [15], [26] of 2-wave res-
onances in the Craya basis the effective differential spectral molecular viscosities 
vqc and vAG are given by 

ln'l 2 ln'l 2 
vqc(n) = v2 + (v1 - v2) I ,12 2 2 , VAc(n) = v1 + (v2- vt) I ,12 2 2 

n + 11 n 3 n + f1 n3 

where 11 = f /N, ln'l 2 = ni + n~/a~. It shows that dissipation affects QG and 
AG fields differently. This impacts on direct numerical simulations of QG and AG 
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10 A. BABIN, A. MAHALOV, AND B. NICOLAENKO 

fields in the context of numerical simulations of atmospheric flows (see [15] and 
[26] where the above formulas for VQG and vAG are given and physical effects of 
varying Prandtl number on the limiting dynamics are discussed). When n3 = 0 we 
get 

VQa(n) = V2 + (vl- v2) =VI, VAa(n) =VI+ (v2- vi)= V2. 

We note that the derivation of the effective viscosity coefficients for QG and 
AG dynamics does not require any additional assumptions such as used in other 
approaches (e.g. renormalization group approach). 

Acknowledgments: 
We would like to thank an anonymous referee for carefully reading our manuscript 
and for the very useful suggestions. 
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Anomalous Thansport by Wave Turbulence 

Alexander M. Balk 

ABSTRACT. We consider the advection of a passive tracer when the velocity 
field is a superposition of random waves. Besides the anomalous diffusion, we 
find the anomalous drift, when the mean displacement (x) grows like t~" with 
JL > 1. The effects of the boundaries of the inertial range (cut-off parameters) 
are considered, and the corrections resulted from these effects are calculated. 
The results are confirmed by numerical simulations. 

I. Introduction 

This conference is devoted to a particular case of the general Turbulence Prob-
lem, namely to the Turbulence of Waves. The Wave Turbulence seems to be simpler 
since it contains a certain small parameter: The wave amplitudes are assumed to 
be small enough. Besides a number of physical applications, the theory of Wave 
Turbulence promised to give some insights into the general Turbulence Problem. 

Thanks to the small parameter, the Wave Turbulence can be approached by 
perturbation methods. This was started in the 60s [1, 2, 3, 4, 5, 6, 7]. And it 
still continues. And the reason for that is not just because people want to have 
a rigorous derivation, but because the theory does not always work, and people 
would like to understand when it should work and when it should not. 

Recently several attempts have been made to analyze the Wave Turbulence, to 
see how theoretical predictions compare with numerical experiments. For example, 
see [8, 9, 10, 11, 12, 13]. At this conference, the talk by Professor Newell con-
siders some aspects of applicability of the Wave Turbulence. The talk by Professor 
Zakharov describes several unsolved problems of Wave Turbulence; many of them 
are about the validation of the Weak Turbulence theory. 

In the present talk I consider an even simpler problem, simpler than the Wave 
Turbulence Problem. I believe that it is the simplest possible turbulence problem. 
However, this problem contains almost all the essential elements of the general Wave 
Turbulence Problem. In this situation the computations are relatively simple, and 
the theoretical predictions can be readily compared with numerical experiments. 

2000 Mathematics Subject Classification. Primary 76F55 Secondary 76F25. 
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2. The Problem 

We consider the problem of turbulent transport, which is described by the 
passive scalar equation 

(2.1) 
a¢ a 
at +ax [v(x, t)¢] = 0. 

Here v(x, t) is a given velocity field, and ¢(x, t) is the unknown function. We assume 
that the velocity field is the superposition of random waves: 

(2.2) v(x, t) = J ckei(kx-Okt) dk; 

nk is the dispersion law, and Ck are (time-independent) random wave amplitudes. 
In this talk we consider the one-dimensional situation, when x, k, and v are 

scalars. The derivation can be modified for any dimension, but the formulas become 
less transparent (since one needs to introduce the polarization vector). We should 
note also that the expression (2.2) is not the most general representation of a wave 
field: For the velocity field (2.2) to be real we need to require that the dispersion 
law is odd, n_k = -nk (besides C-k = ck). However, in this talk we assume this 
symmetry in order to focus on the simplest possible case. No essential differences 
appear in the general situation, but the formulas become longer; the same final 
formulas result in the general situation, when the assumption n_k = -nk is not 
made. 

We assume that the wave amplitudes have Gaussian statistics with zero mean 
(ck) = 0 and variance 

(ckCk1 ) = Ek8(k- kl). 

So the ensemble of the velocity fields is completely defined by two functions: the 
dispersion law nk and the energy spectrum Ek. In this talk we assume that these 
two functions have power-law form: 

(2.3) 
(2.4) 

Bk01 with a positive exponent a (k > 0), 
Ck-v in some inertial range ka « k « kb (ka « kb) 

(the exponent v is not necessarily positive). 
The problem is to find the evolution of the ensemble average 

<P(x, t) = (¢(x, t)). 

The equation (2.1) is linear, but it still has the "closure problem": The evolution 
of (¢) depends on (v¢), in its turn the evolution of (v¢) depends on (v2¢), and so 
on. 

Our equation is so simple that it is equivalent to a single (one-dimensional) 
ordinary differential equation 

x = v(x, t); 

¢(x, t) is the concentration of the particles moving according to this ordinary dif-
ferential equation. We can also interpret the function ¢(x, t) as the probability to 
find a particle at point x at instant t. The possibility to reduce our equation to an 
ordinary differential equation enables us to perform computations relatively easy. 

Our model equation actually has several physical applications. For example, 
imagine that somewhere in the ocean we have put a little piece of wood, and we 
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ANOMALOUS TRANSPORT BY WAVE TURBULENCE 15 

would like to know the probability to find this piece of wood at some point x at 
some instant t. 

A molecular diffusion could be also included, but it is often very small, and we 
neglect it. As well, we neglect some other effects, e.g. surface tension in the ocean 
example. 

The problem of turbulent transport was considered by several people, often 
under the assumption of well separated scales: One considers the large-scale, long-
time behavior of the passive scalar field ¢(x, t), while the velocity field v(x, t) is 
short range correlated (see e.g. [14, 15, 16, 17] and the references cited therein). 
In this situation the homogenized advection-diffusion equation was derived 

a~T> a~T> a 2 ~T> 
(2.5) 8t + u ax = m 8x2 . 

Here u is the drift velocity, and m is the coefficient of turbulent diffusion. 
According to this equation, the variance grows linearly in time: 

(2.6) D = ((x- (x))2 ) = K1t + Ko, 

like in the Brownian motion. Here K 1 =2m, and the constant K 0 appears because 
equation (2.5) is not valid during some initial time. 

For example, when the velocity field is delta-correlated in time: 

(v(x1, tr)v(x2, t2)) = F(x1 - x2)8(tr - t2), 
then the coefficient of turbulent diffusion is m = F(O)I2. 

The situation of well separated scales was considered also in the case of waves 
(when the velocity field is a superposition of waves) [18, 19, 20]. To be specific, 
let us assume that the dispersion law has a power-law form (2.3), and the energy 
spectrum has a bell-shaped form around some characteristic wave number k0 . In 
this situation the velocity field is characterized by characteristic length-scale La = 
1rlko and time-scale To= 1rlw(k0 ). We can also consider a small parameter 

characteristic speed of the fluid particles v (2.7) 
E = characteristic group velocity of the waves w' ( ko) ' 

and we can approach this problem by the perturbation methods. 
For observation timet» T0 , we can derive the diffusion equation (2.5). How-

ever, it turns out that in the case of waves the diffusion coefficient is proportional 
to the fourth power of the velocity, not to the second power as in the case of delta-
correlated velocity field. In other words, the diffusion coefficient vanishes at the 
order E2 ; the non-zero diffusion coefficient arises only at the order E4 • 

3. The Main Physical Results 

In this talk we consider the situation when the velocity field is characterized by 
a wide interval of time and length scales; the energy spectrum has a wide inertial 
range, see (2.4). So, the velocity field v(x, t) contains a range of time scales from 
n = 7r I Bk'b to Ta = 7r I Bk':. We consider the observation time t inside this range: 
n « t « Ta. 

If we observed our system at instants t » Ta, then we would find that the 
variance D(t) = ((x- (x) )2 ) grows linearly in time, see (2.6). Since we consider the 
wave case, at the order E2 we would find that D(t) approaches a certain constant 
value (non-zero effective diffusivity arises only at the order E4 ). Similar we would 
find that the mean displacement R(t) = (x) grows linearly in time. 
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16 ALEXANDER M. BALK 

During timet « n, the tracer "feels" as if it moves in a constant (but random) 
velocity field (without spatial and temporal variations), and so, D <X t2 , R <X t3 . 

During intermediate time n « t « Ta we can expect to observe a more compli-
cated dependence when D(t) is "in between the constant and the t 2-dependence", 
while R(t) is "in between the t and the t 3-dependence" In particular, one could 
expect to see the anomalous transport, when 

(3.1) D=Kt>-. (0~A<2) and R=Lt~-' (1~p,<3). 

The anomalous diffusion (the anomalous dependence D(t)) was reported in [21]. 
Here we show that the anomalous drift (the anomalous dependence R( t)) can occur 
along with the anomalous diffusion. In particular we find 

(3.2) 
v-d 

A=2+--
a 

More precisely, 

and 
v-d-1 1 

p, = 2 + =A--. 
a a 

v-d 
A= max(O, 2 + --) 

a 
and 

v-d-1 1 
p, = max(1, 2 + ) = max(1, A- - ), 

a a 

so that the exponent A cannot be less than 0, and the exponent p, cannot be less 
than 1. 

When 0 < A < 1, we have sub-diffusion; when 1 < A < 2, we have super-
diffusion (see [21]). The anomalous drift is realized when p, > 1; we can only have 
super-drift (since p, 2: 1, we cannot have the sub-drift or slow drift). Since a > 0, 
we have p, < A < 2. The anomalous drift can occur only if a > 1 and only when a 
super-diffusion takes place, A > 1. 

We calculate the factors K and L, as well as the exponents A and p,. Then 
we compare these theoretical predictions with numerical experiments and find a 
good agreement. For the numerical simulation we consider the case with a= 3 and 
v = 1/4. Then A = 7/4 and p, = 17/12, so that we should observe super-diffusion 
and super-drift. 

We also consider the effects of the cut-off parameters ka and kb in (2.4). Actu-
ally, in this talk we consider the energy spectrum of the following form 

(3.3) if ka < k < kb, 
if k < ka or k > kb. 

The cut-off parameters ka and kb lead to certain corrections of the power-law form 
(3.1): 

(3.4) 
(3.5) 

D(t) 
R(t) 

Kt>-.- K 1 t 2 - K 2 , 

Lt~-'- L 1 t 3 - L 2 t. 

The power law regimes (3.1) are similar to the Kolmogorov-type power-law 
spectra inside the inertial range (see [22, 23]). 

Let us note that anomalous diffusion was investigated by Avellaneda and Majda 
[24, 25], but the nature of their velocity fields (random shear flows) is quite different 
from the wave fields, considered here. 

Finally, let us make the following remark. In order to present the ideas clearly, 
in this talk we focus on 1-D. In this situation the flow is necessarily compressible, 
but in higher dimensions it can be incompressible. The theory works equally well 
for compressible or incompressible flow, as well as for any dimension d. However, in 
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ANOMALOUS TRANSPORT BY WAVE TURBULENCE 17 

higher dimensions ( d > 1) the formulas become heavier since one needs to introduce 
the polarization vector (see [21]). 

4. Statistical Near-Identity Transformation. 

Using the Fourier transform 

r/>(x, t) = J fk(t)eik·x dk 

we re-write the passive advection equation (2.1) in the Fourier representation 

( 4.1) 

Here and below we use notations of the following type: for any function h we write 
hj instead of h(kj) Or hk1 , (j = 1,2, ... ), e.g. h = fku h = fk 2 , C3 = Ck3 , 03 = 
nk3; and d23 stands for dk2dk3. 

The solution of the equation ( 4.1) can be represented by the Wiener-Hermite 
expansion 

h f~ + J j(_l23j~H3d23 + ~ J Y-1234f~H34d234 + 

+~ jz-12345J~H345d2345 + .... 3. 

where H denotes the sequence of the Wiener-Hermite polynomials (see e.g. [28, 
29]) with respect to the Gaussian random field ck: 

H3 = c3, H34 = c3c4 - E3J(k3 + k4), 

H345 = c3c4c5- c3E4J(k4 + k5)- c4E5J(k5 + k3)- c5E3J(k3 + k4), ... 

The function f~ denotes the initial condition: fk (0) = f~, and the hat symbol 
denotes the multiplication by the corresponding J-function: 

.x-123 

f-1234 

X( -k1, k2, k3)J( -k1 + k2 + k3), 

Y( -k1, k2, k3, k4)J( -k1 + k2 + k3 + k4), 

The kernels X_ 123, Y- 1234, ... can depend on timet. 
Assuming that the characteristic wave velocity is of the order 1, we suppose 

that c = O(E), H34 = 0(E2), H345 = 0(E3), .... 
Instead of studying the infinite Wiener-Hermite expansion, we consider the 

truncated expansion (up to the second order) and change the initial condition ff 
to a new variable gk(t): 

Now we consider this equation as a change of variables from the old variable fk(t) 
to the new variable gk(t). Substituting (4.2) into the equation (4.1) for fk(t), we 
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18 ALEXANDER M. BALK 

find the equation for 9k ( t): 

J. 1 J. 
91 + x_123g2c3d23 + 2 Y-123492[c3C4- E38(k3 + k4)]d234 + 

! ' 1/' + X_12392c3d23 + 2 Y-123492[c3c4- E38(k3 + k4)]d234 + 

+ j ik1e-m3 t8( -k1 + k2 + k3) x 

x {92 + J X-25695A6d56 + ~ J Y-256795[c6c7- E68(k6 + k7)]d557} c3d23 

In accordance with the general idea of the Near-identity transformation [26, 27], 
we choose the kernel X_123 so that the terms linear in the field ck disappear from 
the new equation. This is possible if 

X-123 = -ik1e-i!l3 t provided - k1 + k2 + k3 = 0. 

Then 91 has the order E2 , and the integrals with time derivative 9 have the order 
E3 . So, we obtain the following equation 

(4.3) 1 J. 91 + 2 Y-123492[c3c4- E38(k3 + k4)]d234 + 

+ j ik1e-m3 tX_25695c5c3d2356 + E3{ ... } = o. 
We want to make the second integral look similar to the first integral. So, we 
rename the integration variables in the last integral: 

5--+ 2, 3--+ 3, 6--+ 4, 2--+ 5 =? ik1e-t 3 X-52492c4c3d2345; J, ·o t , 

then we symmetrize this integral with respect to transposition 3 f-+ 4 

1 j .k ( -m3tx' -m.tx' ) d 2 z 1 e -524 + e -523 g2c3c4 2345 

and write c3c4 in the later integral as c3c4 - E38(k3 + k4) + E38(k3 + k4). In the 
result we re-write the equation (4.3) in the form 

1 J. 91 + 2 Y-123492lcJc4- E38(k3 + k4)]d234 + 

+ ~ J ik1 (e-in3 tX_524 + e-in.tx_523) 92[c3C4- E38(k3 + k4)] + 

+ ~ j ik1e-m3 tX_51-3g2E38(-k1 + k5 + k3)d35 + E3{ ... } = 0. 

Now we choose the kernel Y_ 1234 to "kill" the second-order Wiener-Hermite poly-
nomial H34 = c3c4 - E38(k3 + k4): 

Y - .k -m3tx I .k -m.tx I -1234 - - z 1 e -524 ks=k, -k3=k2+k4 - z 1 e -523 ks=k, -k.=k2+k3 . 

Then 

(4.4) 91 + ig1 j k1e-m3 tX-21-3E38( -k1 + k2 + k3)d23 + E3{ ... } = 0. 

Since only the time derivatives of the kernels X and Y have been determined, 
we choose the constants of time integration so that the initial condition for the new 
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ANOMALOUS TRANSPORT BY WAVE TURBULENCE 19 

variable gk(t) would be the same as for the old variable fk(t) (see the near-identity 
transformation (4.2)). Hence 

X-123 

Y-1234 { 
e-i(03H14)t _ 1 e-in3t _ 1} 

k1k5 (n n )n - n n 3 + 4 4 3 4 k5 =k1 -k3=k2+k4 

{ 
e-i(03+!14)t _ 1 e-in4t _ 1 } 

+ k1k5 (n n )n - n n . 3 + 4 3 4 3 ks=k 1 -k4 =k2+k3 

The kernel Y-1234 does not affect the approximation (4.4). This is usual for a near 
identity transformations that the highest order term in such transformation does 
not affect the corresponding equation. Thus the equation (4.4) takes the form 

I 1 _ e-in3t 
(4.5) iJ1 = ig1 k1k2 03 E38( -k1 + k2 + k3)d23 

(t::3-terms are neglected). Here we have taken into account that the dispersion law is 
odd, n_3 = -n3. If from the very beginning we considered the general dispersion 
law, we would obtain a similar equation, but the derivation would be slightly longer. 

5. The Averaged Evolution 

In the equation (4.5) we can easily integrate with respect to k2 : 

I 1- e-in3t 
(5.1) iJ1 =ig1 k1(k1-k3) 03 E3d3 

This equation has the form 

(5.2) iJ1 = -g![krQ(t) + ik1P(t)] 
where 

Since f!k = -f!-k, Ek = E_k, we can symmetrize these integrals with respect to 
k +-+ -k 

(5.3) Q = I sin nkt E dk 
nk k ' 

The equation (5.2) defines gk(t) in terms of the initial value of this function. 
Due to our choice of the kernels X and Y, the initial condition for the variable 9k ( t) 
is the same as for the original variable !k(t): gk(O) = fk(O) = J2. Thus, 

(5.4) 
where ~D and Rare the time integrals of the functions (5.3) respectively: 

(5.5) D = I 1 -cos nkt E dk R = I k nkt -sin nkt E dk 
2 f!2 k ' f!2 k • 

k k 

In order to find the original field fk(t), we need to substitute (5.4) into the near-
identity transformation (4.2). Since (5.4) is not a random function, and the average 
of each Wiener-Hermite polynomial is zero, we have (Jk) = gk, and 

ci>(x, t) = (¢(x, t)) =I (Jk)eikxdk =I gkeikxdk. 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:42:07 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



20 ALEXANDER M. BALK 

So, 

(x) = Jx<I>(x,t)dx = 27ri;: I , (x2 ) = Jx2<I>(x,t)dx = -27r~:; I . 
k=O k=O 

The quantities Rand D, that determine 9k(t) according to (5.4), have direct phys-
ical meaning. They are respectively the mean displacement and the variance of a 
particle that was at the origin x = 0 at instant t = 0. Indeed, when we consider 
the transport of such particle, we assume <I>(x, 0) = J(x), i.e. f~ = 1/27r. Then 

(x) = R(t), (x2 ) = D(t) + R 2(t) =? ((x- (x) )2 ) = (x2)- (x) 2 = D(t). 

6. Anomalous Transport 

Now let us find the functions R(t) and D(t) for the power-law dispersion and 
energy spectrum (2.3), (3.3). According to (5.5) we have 

R(t) = 21~b kBka(~~~n)~katCk-vdk 
(the factor 2 in front of this integral appears because here we integrate only over 
the positive k whereas in (5.5) we integrated over the whole line from -oo to +oo). 
We write this integral as the integral from 0 to oo minus the integrals from 0 to ka 
and from kb to oo: 

{ka k Bka -sin Bkat Ck-v dk 
2 Jo (Bka)2 

{oo kBka- sinBkatck-vdk 
2 }kb (Bka)z . 

In the first integral we change the integration variable to y = Bko:t, d: = ad/:. 
Since we consider the time t in the intermediate range, in between the shortest and 
the longest characteristic times 

7r 7r 
B kcx « t « B kcx ' 

b a 

we can simplify the second and the third integral in the following way: In the 
second integral, the argument of sin is small, Bk~t « 1r, and we expand the sin 
by Taylor's formula. In the third integral, the argument of sin is large, Bk'bt » 1r, 

and we neglect this oscillating term. Thus 

where 

R(t)=t~-' 2~-v {ooy-sinydy 
aB----;;- Jo Y~-' Y 

v-2 f1=2+--. 
0! 

This is the expression for the anomalous drift exponent in Section 3 when dimension 
d = 1. 

The conditions for the convergence of those integrals are as follows: for the first 
integral 1 < 11 < 3; for the second ~ a - v + 2 > 0 {=} f1 < 3; for the third ~ 
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ANOMALOUS TRANSPORT BY WAVE TURBULENCE 21 

a+ v- 2 > 0 {::} J.l > 1. Thus, if 1 < J.l < 3, we have the expression (3.5) for the 
anomalous drift with 

L -- _2C 1oo y- sinyd BC ka-v+2 2C ka+v-2 
Y L1 - - a L2 = - b . 

aB2-;,v o yJ.L+1 ' - 3 a- v + 2' B a+ v- 2 
Similarly we derive the expression (3.4) for the anomalous diffusion. According 

to (5.5) we have 

D() = 41kb 1- cosBkat Ck-"dk 
t ka (Bka)2 

= 4 {oo 1- cosBkat Ck-"dk 
} 0 (Bka)2 

In the first integral we change the integration variable toy= Bk0 t. In the second 
integral we expand cos by Taylor's formula since Bk';;t « 1r. In the second integral 
we neglect cos-term since Bk'bt » 1r. Thus 

where 

D( ) = A~ 100 1 - COSy dy 
t t 1-v A 

aB-----o- o Y Y 

v-2 
A=2+--. 

Q 

This is the expression for the anomalous diffusion exponent in Section 3 when 
dimension d = 1. The conditions for the convergence of those integrals are as 
follows: for the first integral 0 < A < 2; for the second - v < 1 {::} A < 2; for the 
third- 2o + v > 1 {::} A> 0. Thus, if 0 <A< 2, we have the expression (3.4) for 
the anomalous diffusion with 

K=-- -cosyd K =2C-a- K2=- b . 
4C 1oo 1 k1-v 2C k-2a-v+l 

aB 1-;,v o yA+1 y, 1 1 - v' B2 -2o- v + 1 

7. Numerical Simulations 

We have tested the predictions (3.4) and (3.5) in numerical experiments and 
found a good agreement not only in the exponents (3.2), but also in the factors 
K, K1, K 2 and L, L 1 , L 2 . We have considered a wave field with exponents a = 3 
and v = 1/4 (see the expressions (2.3), (2.4) for the dispersion law and the energy 
spectrum). In this situation we have the super-diffusion, A= 7/4 > 1, as well as the 
super-drift, J.l = 17/12 > 1. The factors in (2.3) and (3.3) are B = 1 and C = 0.001. 
In the simulation cut-off parameters are ka = 0.1 and kb = 10 (see (3.3)). So, we 
should observe the anomalous transport during intermediate time Tb « t « Ta, 
where n = 7r/k'b ~ 3 X 10-3 and Ta = 7r/k';; ~ 3 X 103 . The results are represented 
in figures 1 and 2 in log-log scale; the dashed line - theory, the solid line -
numerics. Figure 1 shows the variance and Figure 2 shows the mean displacement 
as functions of time. To generate the realizations of the random velocity field, we 
fixed the spectrum Ek and chose random phases of the amplitudes Ck (uniformly 
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22 ALEXANDER M. BALK 

distributed over interval (0, 21r). To obtain the numerical curves, we have averaged 
over 1000 realizations. 
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covariance 

FIGURE 1. The covariance D(t) = ((x- R) 2) of a tracer particle, 
shown in the log - log scale. The solid line shows the numerical 
simulation, and the dashed line shows the theoretical prediction. 
In the intermediate range n « t « Ta the theoretical curve repre-
sents a straight line corresponding to the dependence R = Lt~-' with 
A = 7/4. Large deviation for t » Ta should not be considered since 
the theoretical prediction is only valid in the intermediate range 
n « t « Ta. However, the theoretical prediction "catches" the 
real behavior at the end of the inertial range: both, the theoreti-
cal and the numerical, curves deviate down from the straight line 
R = Lt~-' as t approaches Ta. 
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FIGURE 2. The mean displacement R(t) = (x) of a tracer particle, 
shown in the log - log scale. The dashed line shows the theoretical 
prediction. In the intermediate range n « t « Ta the theoretical 
curve represents a straight line corresponding to the dependence 
R = Lt~-' with f.l = 17/12. Large deviation for t » Ta should 
not be considered since the theoretical prediction is only valid in 
the intermediate range Tb « t « Ta. The solid line shows the 
numerical simulation. The discontinuity of the solid line (at small 
time) is not physical, but software-related: in that region R(t) < 0, 
and MATLAB does not plot log R(t). 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:42:07 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ANOMALOUS TRANSPORT BY WAVE TURBULENCE 25 

[27] J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems (Springer-
Verlag, 1985). 

[28] N. Wiener, Nonlinear Problems in Random Theory (MIT press, 1958). 
[29] C. Eftimiu, Wave propagation in random media: Wiener-Hermite expansion approach J. 

Electromagn. Waves Applications 4 (1990), 847-864. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 SOUTH 1400 EAST, ROOM 233, 
SALT LAKE CITY, UT 84112 

E-mail address: balkbath. utah. edu 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:42:07 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



This page intentionally left blank 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:42:07 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Contemporary Mathematics 
Volume 283, 2001 

Statistical Equilibrium Theories for the Nonlinear 
Schrodinger Equation 

Richard Jordan and Bruce Thrkington 

Introduction 

Turbulence in nonlinear media is often accompanied by the formation of large-
scale coherent structures that persist against a background of small-scale turbulent 
fluctuations [11]. A familiar example is the emergence of quasi-steady vortices in 
a two-dimensional fluid flow at large Reynolds number [19, 22]. Such coherent 
structures also occur in various dispersive wave systems, where they typically take 
the form of solitary waves, or quasi-solitons [6, 25, 4, 13]. 

In this note we formulate and analyze statistical equilibrium models of coherent 
structures for a particular class of dispersive wave systems. Specifically, we consider 
the dynamics of a complex field 'l(;(x, t) governed by a one-dimensional nonlinear 
Schrodinger (NLS) equation of the form 

(1) 

We restrict our attention to nonlinearities f that are focusing (attractive) and sat-
urated (bounded); that is, f(O) = 0, f'(a) > 0 for a ~ 0, and f(a) = 0(1), 
af'(a) = 0(1) as a-+ oo. Nonlinearities with these properties, such as f(l'¢1 2 ) = 
1'¢1 2 /(1 + 1'¢1 2 ), arise in physical applications as corrections to the cubic NLS equa-
tion for large wave amplitudes [21, 20]. As our goal is to model the long-time 
behavior of solutions, especially the phenomenon of self-organization into coherent 
structures, NLS systems of this kind furnish a natural class of prototypes because 
their dynamics are nonintegrable and free of wave collapse, and they support stable 
solitary waves. 

In constructing an equilibrium model of a turbulent dynamical system such 
as (1) we follow the classical approach of Gibbs - that is, we use a statistical 
ensemble based on the conserved quantities for the dynamics. This construction 
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28 RICHARD JORDAN AND BRUCE TURKINGTON 

rests fundamentally on the Hamiltonian structure of the system. For the NLS 
equation (1) the Hamiltonian, or energy functional, is 

(2) 

where the potential F is related to the nonlinearity f by F(a) = faa f(s) ds. In 
addition to the Hamiltonian, the dynamics (1) conserves the particle number, or 
£ 2 norm squared, which is given by the functional 

(3) Q('l/J) = ~ J l'l/JI 2 dx. 

The integrals H and Q are the only invariants of a dynamics in the class of equa-
tions we consider, apart from the momentum integral associated with x-translation 
invariance. To keep our theoretical development concise, we suppress the conser-
vation of momentum by posing ( 1) in a bounded interval 0 < x < L and imposing 
the boundary conditions, '1/J(O) = '1/J(L) = 0. 

Generally speaking, a statistical equilibrium theory of this kind is developed by 
(i) introducing a natural discretization of the dynamics having a finite number of 
degrees of freedom n, (ii) defining a Gibbs distribution on each n-dimensional phase 
space, and (iii) taking an appropriate continuum limit, n--+ oo. For the class of NLS 
systems we consider, however, this standard program has several unconventional 
aspects. First, the Gibbs canonical ensemble with respect to H and Q does not 
exist for a focusing nonlinearity, its partition function being divergent under the 
same conditions that ensure the existence of solitary waves. We therefore use a 
"mixed" ensemble, which is canonical in H and microcanonical in Q. Second, the 
ensemble mean energy, (H) = E, tends to infinity with n at fixed temperature. 
We therefore rescale the temperature in the continuum limit, so that the ensemble 
represents the long-time average behavior of the turbulent wave system as it evolves 
from generic initial conditions with finite values of the invariants, H( 'lj;0 ) = E 
and Q('lj;0 ) = N. Third, the underlying ergodic NLS dynamics realizes such an 
ensemble on a phase space of dimension n after a finite time T, and a definite 
relation n = n(T) is exhibited by direct numerical simulations of the dynamics 
[13]. We therefore recognize that the continuum limit, n --+ oo, is approached in 
the limit as T --+ oo. Accordingly, when validating the theory, we compare the 
predictions of the model with large, finite n to the averages of numerical solutions 
at a corresponding finite T. 

In these respects our approach differs from previous applications of equilibrium 
statistical mechanics to the NLS equation. In particular, the Gibbs distributions 
constructed by other investigators [16, 18, 2] all have infinite mean energy. While 
these Wiener-type measures have interesting probabilistic features, our rescaled 
continuum limit has the double advantage that it is directly relevant to the time-
average behavior of regular solutions and that it admits an asymptotically exact 
mean-field approximation. These properties of our theoretical approach allow us 
to deduce quantitative predictions from the statistical equilibrium model that can 
be checked by numerical experiments. Moreover, our continuum limit is ideally 
suited to rigorous analysis by large deviation techniques. Namely, we invoke the 
theory of large deviations to demonstrate that the ground state solitary waves are 
the most probable macroscopic states for the statistical equilibrium model. In turn, 
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STATISTICAL EQUILIBRIUM THEORIES 29 

we use this variational characterization of the equilibrium states to give a simple 
and intuitive proof of the nonlinear stability of these coherent structures. 

Although we limit our discussion to a class of prototype systems, our methods 
and results have the potential of wider applicability to what is sometimes referred 
to as "soliton turbulence" or "dispersive wave turbulence" [3, 17, 25, 6]. On 
the one hand, the same equilibrium statistical models could be defined for higher-
dimensional equations with various boundary conditions, and for unbounded, but 
subcritical, nonlinearities. On the other hand, these models could be adapted 
to capture the quasi-equilibrium behavior on the large-scales of a turbulent wave 
system that is weakly forced and dissipated on the small scales. These extensions 
have not yet been much explored. Of course, the understanding of nonequilibrium 
effects, such as the universal form of direct or inverse cascades for strongly forced 
and dissipated systems, lies outside the range of applicability of these models. 

Long-time behavior of solutions 

Numerical simulations [6, 25, 13, 14] of the NLS equation (1) with either 
Dirichlet or periodic boundary conditions demonstrate the tendency of the system 
to form coherent structures. These long-time simulations exhibit a separation-of-
scales behavior, in which the field 1/J evolves from generic initial conditions into a 
final state consisting of a deterministic, coarse-grained coherent structure combined 
with a random, fine-grained fluctuations. For a focusing nonlinearity, the coherent 
structure takes the form of a spatially-localized solitary wave. At intermediate 
times before the relaxation to such a final state, the solution 1/J typically consists of 
a collection of solitary waves, which undergo a succession of imperfect interactions. 
When two such waves interact, the smaller one decreases in amplitude while the 
larger one increases in amplitude, and some fine-grained wave radiation is produced. 
After a series of such wave interactions, a single soliton of large amplitude survives 
in a background of turbulent radiation. Figure (1), taken from [13], illustrates the 
evolution of the solution of (1) for the subcritical nonlinearity /(I1/JI 2 ) = 11/JI and with 
periodic boundary conditions on the spatial interval [0, 256]. A qualitatively similar 
picture is found for saturated nonlinearities and Dirichlet boundary conditions [15]. 

These numerical investigations also indicate that the dynamical invariants H 
and Q play disparate roles in this slow relaxation process. On the one hand, the 
particle number Q is almost insensitive to the fine-grained fluctuations, and the 
constraint Q = N controls the amplitude of the coarse-grained coherent struc-
ture. The freely-evolving solution exhibits a flux of particle number to large scales 
throughout the formation of the coherent structure. On the other hand, the en-
ergy H contains a term involving I1/Jxl 2 , to which the fine-grained waves make a 
significant contribution, and a term involving F(I1/JI2 ), to which they make a negli-
gible contribution. Thus, in the equilibrium state the energy splits into a coherent 
part and a turbulent part. In the process of relaxation toward this equilibrium, as 
the dynamics excites fluctuations on progressively smaller scales with correspond-
ingly smaller amplitudes, the solution exhibits a net flux of energy to small scales. 
This separation-of-scales behavior, which is supported by many simulations under 
a variety of conditions, motivates our particular choice of statistical equilibrium 
ensemble, as well as our mean-field approximation. These theoretical issues are 
taken up in the next sections. 
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FIGURE 1. Profile of the modulus I,PI 2 at four different times for the 
system (1) with nonlinearity f(I,PI 2 ) = I,PI and periodic boundary con-
ditions on the interval [0, 256]. The initial condition is ,P(x, t = 0) =A, 
with A = 0.5, plus a small random perturbation. The numerical scheme 
used to approximate the solution is the split-step Fourier method. The 
grid size is dx = 0.125, and the number of modes is n = 2048. a) t =50: 
Due to the modulational instability, an array of soliton-like structures 
separated by the typical distance l; = 211" / ...(A72 = 411" is created; b) 
t = 1050: The solitons interact and coalesce, giving rise to a smaller 
number of solitons of larger amplitude; c) t = 15050: The coalescence 
process has ended, and one large soliton remains; d) t = 55050: the 
amplitude of the fluctuations has diminished while the amplitude of the 
coherent structure has increased. 

Statistical equilibrium description of NLS dynamics 

In order to define a probabilistic model, it is necessary to introduce a sequence 
of a finite-dimensional approximations to the partial differential equation (1). For 
ease of presentation, we consider the NLS equation on an interval 0 = [0, L] with 
homogeneous Dirichlet boundary conditions, and we use a spectral truncation of the 
NLS dynamics. Nevertheless, the same ideas apply to other boundary conditions 
(such as periodic) and other discrete approximations (such as finite-difference). 

Let ek(x) = J2TLsin(y'Akx) and )..k = (k7r/L) 2 ,k = 1,2, ... , denote the eigen-
functions and eigenvalues of the operator - -t; on 0. With respect to this orthonor-
mal basis for £ 2 (0), let Wn =span {ei.···,en} be then-dimensional subspace 
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STATISTICAL EQUILIBRIUM THEORIES 31 

consisting of functions 
n 

(4) '1/J(n)(x) = u(n)(x) + iv(n)(x) = 2..:: '1/Jkek(x), 
k=l 

with arbitrary complex coefficients '1/Jk = Uk + ivk. For each fixed n, the field 'lj;(n) E 
L 2 corresponds to a microstate for the model, that is, a point 'lj; = ( 'l/;1 , ... , '1/Jn) 
in the phase space r n ~ en = R2n. The microscopic dynamics for this model is 
governed by 

(5) 

where p(n) denotes the orthogonal projection from L2 onto Wn. This spectral 
truncation of the NLS equation (1) is equivalent to a system of ordinary differential 
equations for the real Fourier coefficients Uk and Vk, k = 1, ... , n, having a canonical 
Hamiltonian form [2, 26]; namely, 

(6) duk = A.kvk- { f((u(n)) 2 + (v(n)) 2 )v(n)ek dx = oHn , 
& k a~ 

(7) dvk = -A.kuk + { j((u(n))2 + (v(n))2)u(n)ek dx =- 8Hn ' 
& k OUk 

with Hamiltonian 
1 n 

(8) Hn('l/J) = Hn(ul, vl, ... 'Un, Vn) = 2 I: Aki'I/Jkl 2 

k=l 
In fact, Hn('l/J) = H('lj;(nl), the restriction toWn of the functional H defined in (2). 
The spectrally-truncated particle number, Qn('l/J) = Q('lj;(n)), is also an invariant of 
the microscopic dynamics ( 5), and 

( - - 1 1 (n) 2 - 1 ~ 2 9) Qn('l/J)- Qn(ul, V1, ... , Un, Vn) - 2 1'1/J I dx - 2 ~ 1'1/Jkl · 
0 k=l 

We define the statistical equilibrium model by a Gibbs ensemble on the 2n-
dimensional phase space r n with n large, in which Hn is treated canonically and 
Qn is treated microcanonically. This particular choice of ensemble is motivated in 
part by the fact that H is sensitive to the random small-scale fluctuations, while 
Q depends solely on the large-scale coherent structure. Indeed, physical reasoning 
suggests that the ensemble be canonical in H, since energy is in contact with a 
"bath" of unresolved small-scale wave motions, and that it be microcanonical in Q, 
because the particle number is isolated from those motions, being trapped in the 
large-scale waves. We refer to this ensemble as the mixed ensemble, and we denote 
it by Pfj (d'l/;), where N > 0 is a given particle number and (3 > 0 is a given inverse 
temperature. Formally, the mixed ensemble is the probability distribution 

(10) Pfj (d'lj;) = Zn(/3, N)-1 exp( -f3Hn('l/J)) <5(Qn('l/J)- N) Dn(d'lj;), 

where the normalizing constant is the partition function 

(11) Zn(/3, N) = kn=N exp( -f3Hn('l/J)) ds('lj;). 

Here, Dn(d'lj;) =Ilk dukdvk is phase volume on r n, and ds('l/;) is hypersurface area 
on the sphere Qn('l/J) = N, which is the support of the distribution (10). 
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32 RICHARD JORDAN AND BRUCE TURKINGTON 

Let us define this mixed ensemble precisely as a conditional probability measure. 
First, we take a > 0 sufficiently large so that 

Hn('l/J) ;::: -iQn('l/J) for all '1/J Ern. 

It is easy to see that, for any saturated nonlinearity f, such a a can be found and 
can be fixed independent of n as n--+ oo. (A more refined argument can be given 
for unbounded, but subcritical, nonlinearities.) We then construct the following 
a-regularized canonical measure 
(12) P(3(d'lj;) = Zn(f3)-l exp( -{j[Hn('l/J) + aQn('l/J)]) IIn(d'lj;), 
which exists and is normalizable. By contrast, with a = 0 it is known that the 
partition function Zn(f3) in (12) diverges for typical focusing nonlinearities, since 
Hn goes to -oo in some directions of the phase space r n [16, 15]. Finally, we 
define the mixed ensemble to be 

(13) Pfj (d'lj;) = Pf3( d'lj; I Qn('l/J) = N), 
namely, the conditional distribution of the regularized canonical measure for Hn 
with respect to the microcanonical constraint Qn = N. It is evident that the mixed 
ensemble (13) is independent of the choice of a, and that it coincides with the formal 
expression (10). Technically, the condition Qn = N ought to be replaced by the 
thickened condition Qn E [N- ~:, N +~:],and then a second limitE--+ 0 taken after 
n--+ oo. But, to keep the exposition clear, we ignore this minor point. 

Our goal is to study the mixed ensemble (13) in a continuum limit n --+ oo, 
holding N fixed and scaling {3 = f3n with n so that the ensemble mean energy 
(Hn) tends to a finite limit E. Before giving a rigorous analysis of this limit 
based on large deviation principles, we first introduce and investigate a mean-
field ensemble that approximates the mixed ensemble (13). This mean-field theory 
has the advantage that its governing ensemble is explicitly calculable for finite n, 
and yet is asymptotically exact in the continuum limit. Consequently, it gives 
definite predictions about the coherent structure and the fluctuations, which can 
be compared with the results of direct numerical simulations to validate the theory. 

Mean-field theory 

We seek a tractable approximation to the mixed ensemble (13) for large but 
finite n, with a fixed particle number Qn =Nand a fixed mean energy (Hn) =E. 
The numerical simulations described above suggest a procedure for making such an 
approximation, since they show that in the statistical equilibrium state the variance 
of the computed solution, var'lj;<nl(x), at any point x En tends to zero as n--+ oo. 
Furthermore, this conclusion is consistent with the notion that with respect to the 
mixed ensemble the energy of the fluctuations equipartitions over the n modes '1/Jk, 
so that Ak var'I/Jk = 0(1/n). 

In view of these asymptotic properties, we are led to an approximation of the 
form 
(14) 

in which the probability density p(n) on r n is defined by maximizing over all ad-
missible probability densities p on r n the entropy functional 

(15) S(p) = -l,. plogpiTn(d'lj;), 
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STATISTICAL EQUILIBRIUM THEORIES 33 

E, 

(17) 

In these constraints, ( · ) denotes expectation with respect to an admissible density 
p. This variational characterization of the mean-field ensemble (14) derives from 
the well-known principle that a canonical ensemble maximizes entropy subject to 
a mean constraint, while a microcanonical ensemble maximizes entropy subject 
to an exact constraint. Accordingly, the mixed ensemble (13) is characterized by 
maximizing S(p) subject to the constraints (Hn) = E and Qn = N. The constraints 
(16) and (17) for the mean-field ensemble result from expanding the corresponding 
constraints for the mixed ensemble in terms of the small fluctuation '1/J(n) - ('1/J(nl), 
and then retaining only the leading term. The validity of this expansion technique 
is verified a posteriori by proving that, asymptotically as n ---+ oo, the mean-field 
ensemble is equivalent to the mixed ensemble [15]. 

Solutions p = p(n) to the constrained variational problem defining the mean-
field ensemble are found to have the form 

(18) 
n (J(n) Ak ( fJ(n) Ak ) 

p(n)('l/J) = g 2:;;:- exp --2 -1'1/Jk- ('l/Jk)l 2 , 

with 
1 r p,(n) 

(19) ('1/Jk) = )..k Jn f(l('l/J(nl(x))i 2)('1/J(nl(x))ek(x) dx- (J(n))..k ('1/Jk), 

Here, (J(n) and p,(n) are the Lagrange multipliers associated with the constraints 
(16) and (17), respectively. 

The predictions of the mean-field theory can now be deduced from the explicit 
expression (18). As these results are discussed in detail elsewhere [15, 13], we 
merely summarize the main predictions here. 

We see immediately that u 1 , v1 , ... , Un, Vn are mutually independent Gaussian 
random variables with means satisfying (19) and variances given by 

1 
(20) var(uk) = var(vk) = -( -)-. (3 n )..k 

The mean field, ¢(n) ~ ('1/J(nl), is determined implicitly by (19). Setting )..(n) __:__ 

-p,(n) / (J(n), the equation for the mean-field reduces to 

(21) ¢~n) + p(n) (!(i¢(n)l2)¢(n)) + )..(n)¢(n) = 0, 

where p(n) is the projection onto the span Wn of e 1 , ... , en. We recognize this form 
of the mean-field equation as the spectral truncation of the ground state equation 
for the continuous NLS system (1); that is, the equation satisfied by ¢ when the 
standing wave, '1/J(x) = ;[J(x) exp( -i>..t), is substituted into (1). Like the ground 
states, ¢Cn) is determined only up to an arbitrary phase-shift factor e;e. 

For each N the mean-field is, in fact, an absolute minimizer of Hn given the 
constraint Qn = N [15]. From this variational characterization, we infer that the 
family of coherent structures ¢(n) can be parametrized by the particle number N. 
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34 RICHARD JORDAN AND BRUCE TURKINGTON 

Moreover, the corresponding Lagrange multiplier, >,(n), in this variational problem 
is uniquely determined by the mean-field solution, and hence it can be parametrized 
by N. This parametrization is more natural in the statistical equilibrium theory 
than the usual approach of bifucation theory, in which branches of solutions cp(n) 
to the nonlinear eigenvalue problem (21) are parametrized by >,(n). 

For each finite n, the difference between the energy of the coherent structure, 
En~ Hn(cf>(n)), and the ensemble mean energy, E, resides in the turbulent fluctu-
ations having the temperature 

(22) 

The particle number spectral density is therefore given by: 

(23) 

Since cf>(n) is a spectral truncation of a smooth solution to the ground state equation, 
its spectrum decays rapidly ink. Hence, for large wavenumbers k » 1/ L, we have 
the approximation ~>.k(l1/!kl 2 ):::::; (E- En)/n. This expression shows that, as may 
be anticipated from a statistical equilibrium theory, the contribution to the energy 
from the fluctuations is equipartitioned among the n modes. 

Figure (2) shows the agreement between the spectrum predicted by the mean-
field theory and the spectrum obtained by averaging numerical solutions to the 
underlying NLS equation over the final 1000 time units and over 16 initial condi-
tions with the same energy E and particle number N. This simulation is for the 
subcritical power-law nonlinearity !(11/!1 2 ) = 11/!1, but the same sort of results are 
obtained for saturated nonlinearities [12]. For small wavenumbers the computed 
spectrum follows that of the ground state, while for large wavenumbers it realizes 
the predicted equipartition of turbulent energy. In this remarkably good fit, all the 
parameters determining the theoretical spectrum are deduced from the given values 
of E and N. 

The numerical investigations in [13] demonstrate that the time T required for 
the spectrally truncated NLS system (5) with n modes to reach a statistical equilib-
rium state scales like T "" n 4 . That is, the truncated dynamics ergodically samples 
the mean-field ensemble p(n) with given E and N at times t of the order of this 
characteristic time T. As time progresses the equilibrium coherent structure re-
mains almost unchanged, while the turbulent dynamics excites smaller and smaller 
scales. The continuum limit of the model is approached in an asymptotic sense as 
T ---+ oo. A fuller discussion of this behavior is given in [13]. 

Large deviation principle 

Both the mean-field theory and the numerical simulations suggest that, in the 
continuum limit as n---+ oo with fixed E and N, the random field 1/!(n) approaches 
the set of ground states ei8 ¢>(x) of the NLS equation (1). Now, we formulate this 
statement precisely as a large deviation principle for the L2 (fl)-valued stochastic 
process 1/!(n) defined by ( 4) with respect to the mixed ensemble (13). Broadly 
speaking, a large deviation principle is an exponential-order refinement of the law 
of large numbers [5, 7]. We expect the random field 1/!(n)(x) to have this kind oflimit 
behavior because it is the sum of component fields 1/!kek(x) that are asymptotically 
independent. 
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Fluctuations 

10° 
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FIGURE 2. Particle number spectral density I1/Jkl 2 as a function of k 
for t = 1.1 x 106 unit time (upper curve). The lower curve (smooth 
one) is the particle number spectral density for the solitary wave that 
contains all the particles of the system. The straight line drawn for large 
k corresponds to the mean-field prediction for the spectral density for 
large wavenumbers. The numerical simulation has been performed with 
n = 512, dx = 0.25, N = 20.48 and E = -5.46. 

35 

We are interested in the asymptotics of the mixed ensemble Pfn ( d'l/J) in the 
limit where the inverse temperature f3n goes to infinity as n --t oo. This particular 
scaling is motivated by the fact that (J(n) ,...., (J*n for large n at fixed E, according 
to the mean-field theory (22). In such a limit, the process '1/J(n) satisfies a large 
deviation principle, which is essentially expressed by the following limit formula: 

For any continuity set B C £ 2 (0), 

(24) nl~ ;n log Pfn {'1/J(n) E B} = E(N)- inf{H(¢) : Q(¢) = N, ¢ E B}, 

where 

(25) E(N) ~ min{H(¢): Q(¢) = N, ¢ E H 1~(0)}. 

By a "continuity set" we mean a Borel subset B of L 2 having the property that 
in (24) the same infimum is achieved over the interior of B as over the closure of 
B. In practical applications of this result, it suffices to use such continuity sets B. 
A more general statement holds in the form of an upper bound for closed sets B 
and a lower bound for open sets B. The sequence f3n --t +oo is called the sequence 
of scaling constants in the large deviation limit. The so-called rate function is the 
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extended functional on L2 (D): 

(26) IN(¢)= { H(¢)- E(N) 
+oo 

for¢ E HJ(D), Q(¢) = N 
otherwise 

Heuristically, the large deviation principle means that the states (/> that mini-
mize H given the constraint Q = N are the overwhelmingly most probable states 
with respect to the mixed ensemble. This set of constrained minimizers is the set 
of equilibrium states, or ground states; we denote it by EN. For an equilibrium 
state{/>, IN((/>)= 0; however, for any state¢ satisfying Q(¢) = N that is not an 
equilibrium state, IN ( ¢) > 0. Thus, if we choose B to be the complement of an 
r-neighborhood of the equilibrium set [N, we infer from (24) that 

P/J, { dist( 'ljl(n), EN) 2: r > 0} :::; e-f3nJ(r)/2 ___... 0 as n ___... oo, 

where J(r) = inf{IN(¢): dist(¢,EN) 2: r > 0} > 0; the distance is taken in 
the L2-norm. Thus, any state ¢ E L2 (D) that is not an equilibrium state has an 
exponentially small probability of being observed in this continuum limit. 

The proof of the large deviation principle (24) relies on recent results about 
microcanonical ensembles and associated mixed ensembles developed in [8]. The 
general results in that paper allow us to derive (24) from a corresponding large 
deviation principle for 'ljl(n) with respect to the a-regularized canonical ensemble 
Pf3n (d'ljl) defined in (12). The required asymptotic statement is essentially: 

(27) nl~~;n logPf3n{'l/J(n) EB}=-inf{H(¢)+aQ(¢): c/JEB}, 

for any continuity set B C L2 (D). The rate function for this large deviation prin-
ciple is I(¢)= H(¢) + aQ(¢) for¢ E HJ, extended to be +oo for¢ E L2\HJ. By 
virtue of the choice of a, I is a convex functional on L2 having a unique minimum 
at 0, with I(O) = 0. As is demonstrated in [8], the rate function IN for (24) is 
constructed from I by imposing the microcanonical constraint Q = N; that is, 
IN(¢)= I(¢)- inf{I: Q = N}, if Q(¢) = N, and IN(¢)= +oo, otherwise. This 
construction produces the formula (26), which is independent of a. 

In turn, the proof of the large deviation limit (27) without the microcanonical 
constraint follows from standard results [5, 7]. First, the Hamiltonian H('ljl) is 
separated into the Dirichlet integral, D('ljl) = ~In l'l/Jxl 2 dx, and the remaining 
integral, <I>('ljl) = -~In F(l'l/JI 2 ) dx, involving the nonlinear potential. In terms of 
this decomposition, the canonical distribution (12) is a perturbation of a Gaussian 
distribution, in the sense that the following asymptotic approximation holds for 
large n: 

where 
Gf3n (d'ljl) = C;; 1 exp( -f3nDn('l/J)) IIn(d'ljl). 

The desired large deviation principle for Pf3n ( d'ljl) is therefore a consequence of 
Varadhan's asymptotics of integrals [7, 24], combined with the elementary fact 
that 'ljl(n) satisfies a large deviation principle with respect to the rescaled Wiener-
type measure Gf3n (d'ljl), for which the rate function is D. The latter result is a 
special case of a general theory of asymptotics for Gaussian integrals [10]. In this 
way, the proof of (24) is completed. Full details are given in [9]. 

It is worth noting that the large deviation principle for 'ljl(n) depends cru-
cially on the fact that the functionals Q and <I> are continuous with respect to 
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the £ 2-topology, and hence that the necessary approximations Qn('l/J) ~ Q('lj;(n)) 
and «Pn('l/J) ~ «P('lj;(n)) hold for large n. This fact is intimately related to the prop-
erties needed to justify the mean-field theory, which amounts to terminating these 
approximations at the first order. For this reason, the large deviation estimates can 
be used to give a rigorous justification of the mean-field approximation. 

Ground states and their stability 

The equilibrium states, ¢ E t;N, for the mixed ensemble (13) are the ground 
states of the underlying NLS equation (1). Indeed, for any such ¢, we have 
H((f>) = E(N), the value function for the optimization problem defining the ground 
states (25). This "coherent energy" function, E(N), plays the role of the basic ther-
modynamic function in the statistical equilibrium theory. We now indicate how the 
properties of the ground states ¢ -especially their nonlinear stability - are deduced 
from the properties of E(N). 

The first-order variational condition for¢ is 8(H- >..Q)(¢) = 0, where>.. is the 
Lagrange multiplier for the constraint Q = N. A standard calculation shows that 
this condition is equivalent to the familiar equation for a ground state, namely, 

(28) 
Exponential decay of the solitary wave ¢ away from its peak requires that >.. be 
negative. The coherent energy is therefore a decreasing function of N, since 

dE 
dN = >.. < O. 

Moreover, E(N) --> -oo as N --> oo. This property follows from the fact that, in 
the absence of the constraint Q = N with fixed N, His unbounded from below on 
HJ(r2). In this way, we see again that the existence of a ground state solitary wave 
depends crucially on the particle number constraint. 

In general, the ground state ¢ is not a local minimizer of the corresponding 
Lagrangian functional L ~ H- >..Q. Rather, the second-order variational condition 
for¢ is: 82 (H ->..Q)(¢) 2 0 for all variations 8¢ satisfying the linearized constraint, 
8Q = 0. An easy calculation shows that typically this second variation is negative 
when the restriction 8Q = 0 is violated. This fact has an interesting relation to the 
proof of nonlinear stability of the ground state by a Lyapunov argument. A natural 
choice of Lyapunov functional for ¢ is the Lagrangian L itself, and indeed standard 
proofs of stability make use of this functional [21, 23]. However, the indefiniteness 
of the Lagrangian at ¢ requires that such proofs somehow take into account the 
particle number constraint Q = N, which plays a crucial role in controlling the 
growth of perturbations. Consequently, the known proofs of stability tend to be 
rather complicated. We now sketch a simple proof of nonlinear stability of the 
ground state that overcomes this difficulty by using a central concept in constrained 
optimization theory, the "augmented Lagrangian" [1 J. 

The augmented Lagrangian in question is defined by 

(29) L1 (¢) = H(¢)- >..Q(¢) + ~[Q(¢)- NJ 2 , 

for some positive constant "(. Clearly, the idea is to add a quadratic penalty term for 
the constraint Q = N to the Lagrangian L. In fact, it is possible to fix '"'( sufficiently 
large so that L 1 has a nondegenerate, unconstrained minimum at the ground state 
¢. Since L 1 is composed of functionals that are conserved quantities for the NLS 
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equation (1), L"' is a Lyapunov functional for ¢, and so nonlinear stability of the 
ground state follows. 

The choice of the penalization constant 'Y is determined by the second-order 
properties of the coherent energy function E(N). Generically, the rate of spatial 
decay, J=X, of a localized solitary wave increases with increasing amplitude, N; 
this behavior means that 

d2 E d>.. 
dN2 = dN < O. 

In fact, this inequality coincides with the known stability condition for NLS solitary 
waves [21, 23]. In this situation, we construct the desired Lyapunov functional L"' 
by choosing 'Y large enough so that-"'(< d2EjdN2 at N = Q(¢). Then, locally 
near N the coherent energy function E has a supporting parabola, in the sense that 
for N' =/= N 

E(N') > E(N) + >..(N'- N)- 'l(N'- N) 2 . 
2 

This inequality together with the definition of E in (25) imply the desired property 
of L"'; namely, that for any perturbation ¢ of ¢ in £ 2 , 

£'"'~(¢) > E(Q(¢))- >..Q(¢) + ~[Q(¢)- N] 2 

> E(N)- >..N = £'"'~(¢). 

The stability of the ground state¢ in the £ 2-norm therefore follows. Technically, it 
is also necessary to verify that <52 L'Y ( ¢) is positive-definite. The complete argument 
is given in [9]. 

In conclusion, we comment that the large deviation principle (24) can be viewed 
as a stability property of the ground states with respect to microscopic perturba-
tions. That is, it guarantees that the macroscopic field 7/J(n) remains close in the 
£ 2-norm to the set of ground states [N with very high probability, while the mi-
crostates 7/J sample the invariant distribution Pf{,. In other words, as an ergodic 
microscopic dynamics explores the phase space in r n compatible with the energy 
and particle number constraints, the fluctuations in the random field 7/J(n) appear 
negligible in the £ 2-norm. A finite fraction of the total energy is however contained 
in these turbulent fluctuations, and consequently the typical microstate lies a fi-
nite distance from the ground states in the H 1-norm. This weak stability property 
is a statistical characteristic of freely-evolving NLS turbulence. By constrast, the 
strong, or Lyapunov, stability property of the ground states pertains to the deter-
ministic evolution of perturbations that are finite in the £ 2-norm. Nevertheless, 
the same Lyapunov argument shows that the macroscopic field 7/J(n) remains close 
in the £ 2-norm to the ground states, even if a fraction of the perturbation energy 
goes into fine-grained turbulent fluctuations. Thus, we find that that ground states 
are stable in both the microscopic sense and the macroscopic sense. 
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Is there a 2D cascade in 3D convection? 

Robert M. Kerr 

ABSTRACT. The boundary layer in simulations of classical Rayleigh-Benard 
convection in a wide box with no mean flow is used to study the third order 
structure function S3 ( r) and the associated longitudinal and transverse second 
order structure functions, S:f' ( r) and S:f ( r). At small scales S3 ( r) is consistent 
with the -4/5 law for three-dimensional turbulence. At large scales S3(r) is 
found to be linearly increasing and eventually positive, which is similar to a 2D 
backward energy cascade. However, the magnitude of S3(r) is too large for its 
origin to be a 2D backward energy cascade. The relationship to atmospheric 
observations is discussed. 

Introduction 

While all geophysical fluid systems are fundamentally three-dimensional, there 
are a number of geophysical constraints that suggest that two-dimensional effects 
might be present in many situations. These constraints include stratification, rota-
tion, and the large aspect ratio (width/height) of many geophysical systems. How-
ever, there is no conclusive evidence for any two-dimensional behavior that does not 
involve the third dimension. The most commonly quoted evidence is the existence 
of a -5/3 energy spectrum at large scales in the stratosphere [Q], which could be 
consistent with a backward energy cascade [N]. The stratospheric measurements 
come from commercial aircraft and show a -5/3 spectrum between k = O.OOlkm- 1 

and O.Olkm- 1 and a steeper -3 spectrum at larger scales. [Q]. 
This evidence for a two-dimensional cascade has recently been called into ques-

tion. Using analysis of the longitudinal third-order structure function S3 (r) = 
Sf ( r) and comparison of the longitudinal and transverse second-order structure 
functions S~'T(r) to their expected isotropy relationship, it is found that s3 is an 
order of magnitude too large to be due to a two-dimensional cascade [0]. Another 
-5/3 energy spectrum over a wide range of scales has recently been shown [T] in 
three overlapping sources of observational data in the atmospheric boundary layer 
over the tropical ocean. The range of scales is between 1000 km and 1 km. Each set 
of observations is within the boundary layer where none of the traditional mecha-
nisms for two-dimensionality such as stratification or rotation should apply. That 
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42 ROBERT M. KERR 

is, the atmosphere over the tropical ocean is convecting, it is not strongly stratified, 
and being at the equator, rotational effects should be minimal. 

In a manner similar to the atmospheric boundary layer, in classical Rayleigh-
Benard convection between two flat plates a -5/3 horizontal kinetic energy spec-
trum was found numerically [K]. In that work, the observation was explained as 
a three-dimensional forward cascade, but the large horizontal scales over which a 
-5/3 spectrum is obeyed brings up the question of whether this could also be related 
to a two-dimenional backward cascade of energy. Again, no traditional mechanism 
for two-dimensionality exists. 

There are thus three flows showing -5/3 spectra that are much wider than 
they are deep and for which the traditional forwards cascade mechanism would 
be difficult to apply. This paper will examine the structure function properties 
of the simulated flow to gain insight into what might be the origin of these -5/3 
spectra. The paper will be organized as follows. First there will be a discussion 
of the properties of the structure functions and the mechanisms that have been 
proposed for suppressing the third direction in geophysical flows. Then there will 
be a detailed examination of the structure functions for the numerical simulations 
of convection in a wide,flat box at several vertical levels. 

The conclusions will be similar to Lindborg's observations for the stratosphere. 
That is, there exists a regime where S3 (r) is roughly linear and positive, but neither 
Sf ( r) nor S3 ( r) are consistent with two-dimensional predictions based upon Sf ( r). 
How this might relate to the atmospheric boundary layer measurements [T] will be 
discussed. 

1. Two-dimensional relations. 

The p-th order longitudinal structure function is the correlation 

s{:(r) = (u(:t + ?) - u(:t))P (1.1) 

where r = I? I, u and ? are in the same direction and the average is over all x. 
The transverse structure functions SJ ( r) are obtained when u is perpendicular to 
?. The second-order longitudinal structure function S2 (r) = Sf(r) is related to 
the one-dimensional energy spectrum such that where 

1 2 5/3 E11(k) = 2u1(k) = C1IIIulk- (1.2) 

then 

(1.3) 

where C1 is the one-dimensional Kolmogorov constant and IIIul is the energy cas-
cade rate. For a three-dimensional forward energy cascade, IIIul is the energy 
dissipation rate. For both two and three dimensional flows, C1 must be determined 
experimentally. The relationship for the third-order structure function S3 for an 
ideal three-dimensional forward energy cascade, known as Kolmogorov's 4/5 law 
[M, G], is 

(1.4) 

That is negative and linear. 
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What Lindborg [0] suggests is that there should be a similar relationship for 
s3 for the backward two-dimensional energy cascade that is positive and linear 

(1.5) 

where the 3/2 coefficient comes from simulations [S] and spectral closure calcula-
tions [H]. 

Both the 2D and 3D relationships are linear, but one is negative and the other is 
positive. Furthermore, if there is a -5/3 spectrum and if linear, positive S3 (r) were 
due to a back cascade of two-dimensional turbulence, then from our knowledge of 
two-dimensional turbulence and 8f(r), IIIul can be determined and the magnitude 
of S3 (r) could be predicted. What newer stratospheric data shows [0] is that S3 (r) 
is positive and plausibly linear, but has the wrong magnitude if it is a result of a 
backwards cascade in two-dimensional turbulence. 

The test using second order structure functions relies upon the following isotropy 
relation for isotropic D-dimensional turbulence, 

(1.6) 

For an r213 regime, in two dimensions this reduces to SJ = (5/3)Sf and in three 
dimensions to SJ = ( 4/3)Sf. The stratospheric observations show instead that 
SJ ~Sf. 

In order to invoke two-dimensional arguments for fundamentally three-dimen-
sional systems, some dynamical mechanism for suppressing the effects of the third 
dimension must be invoked. The objective is to develop a justification for balanced 
models such as quasi-geostrophy, where the fundamental motion is two-dimensional 
and any remaining three dimensional effects gradually dissappear as the strength 
of the confining dynamical mechanism is increased. Three mechanisms have been 
proposed. Stratification, rotation, and thin domains. In the convective boundary 
layer near the equator the existing arguments for two-dimensionality by stratifi-
cation [F, P] and rotation [B, E, C] do not apply. The third mechanism, thin 
domains, might apply since the boundary layer is capped by large-scale subsidence, 
but the current analysis [R, A] only applies only to thin periodic domains, which is 
not found in the atmosphere. For the stratosphere, another suggestion [U] is that 
a -5/3 regime could be due to gravity wave saturation. 

There could be many mechanisms that yield -5/3 and the particular power law 
could just represent how nearly singular structures of the correct dimensionality 
and power law scale near their cusp to give -5/3. In the language of multi-fractals, 
these determining parameters would be the Hausdorff dimension and the Lifshitz 
condition for the nearly singular structures. If one wants to claim that a particular-
5/3 spectral regime is due to an inverse energy cascade, some additional test besides 
the spectral shape is necessary. The claim is that examination of the second S2 (r) 
and third order S3 (r) structure functions could provide such tests [0]. 

2. Flat numerical convection 

The numerical data set in this study is a simulation of classical Rayleigh-Benard 
convection between two plates with periodic sidewalls anrl a large aspect ratio 
(width over height) in both horizontal directions of 6 : 6 : 1 [K]. The original 
purpose of this simulation was to test some of the scaling proposals for boundary 
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FIGURE 1. Comparison of longitudinal and transverse second or-
der structure functions at three heights in Rayleigh-Benard con-
vection at Ra = 2 x 107 . The three heights represent the top of 
the boundary layer Z = 0.83, roughly 1/2 the way to the center 
Z = 0.6, and the center Z = 0. Shown are S,f(r), Sl'{r) and 
the 3D prediction for Sf(r) based upon S,f(r). Here, the small-
est D.r = 0.04 and only every 4th point starting at r = 0.08 is 
shown with a symbol. Near the wall (Z=0.83) Sf(r) ~ S.f(r) for 
all except the smallest r. As one moves into the interior, the 3D 
prediction covers a larger range of r, until in the center the 3D 
prediction is satisfied for all r. 
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FIGURE 2. S!;(r)jr213 at three heights for the same data as in 
Fig. 1. Although the 3D relation between Sf and S~ is true for 
all r only in the center, the strongest r 213 regime in s~ is found 
at Z = 0.83, at the top of the boundary layer. 
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layers associated with the fh = 2/7 law for the normalized heat flux or Nusselt 
number as a function of the Rayleigh number Nu "' Ra217 . Unlike most of the 
experiments and simulations for this problem, a large aspect ratio was chosen so 
as to be closer to the linear theory, to test how universal the 2/7 law was, and 
to be closer to geophysical convection. Along with a detailed discussion of issues 
such as resolution, the spectrum was shown to be close to -5/3 and was related to 
a three-dimensional forward cascade of energy. The evidence that was given for 
a three-dimensional cascade was consistency with the experimental and numerical 
evidence [I] that says that when there is a three-dimensional energy casade that 
the normalized enstrophy stretching rate 

WieijWj 
Swew = C (Ejv)3!2 ~ 0.5 (2.1) 

This term is cubic, as is S3 (r), and is related to the r----> 0 limit of S3 (r). 
The present use for this data set will be to investigate the behavior of Sf ( r), 

S! ( r) and S3 ( r) for a situation that clearly obeys none of the assumptions associ-
ated with constraining a three-dimensional flow to be two-dimensional turbulence, 
but still exhibits a -5/3 spectrum at scales too large for there to be a forwards 
cascade of turbulence. Sf(r) and S~'(r) will be discussed first, going from small 
to large scales at different heights. For reference, Fig. 3 shows the time-averaged 
temperature and horizontal velocity fluctuation profiles. Mean velocity profiles are 
not shown because they are insignificant. The averages are over several convective 
timescales [K] and the equivalent distances from the top and bottom walls have 
been averaged. If the wall is at Z = 1 and the center is at Z = 0, three heights away 
from the wall will be shown. These are chosen to be at the top of the boundary 
layer (Z = 0.83), on the central side of the boundary layer (Z = 0.60) and in the 
center (Z = 0). 
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T 

FIGURE 3. <>: mean u12 , x: mean w'2 , and T profiles for the flat 
box calculation. 

As r ~ 0, S2 (r) "'r2 is expected. Rather, at all Z, the dominant trend up to 
r = 0.4 in the log-log plots in Fig. 1 is slightly less than linear behavior, although 
linear plots show a slight trend towards quadratic r 2 over the first 3 mesh points 
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(tor= .125). The transverse structure function does obey the 3D isotropy relation 
(1.6) at the smallest scale for all three Z and for all r at the center. Therefore the 
smallest scales at all Z obey the three-dimensional isotropy relations. One might 
speculate that near the wall that it is three dimensional only at the smallest scales 
because the third direction of motion is only the height of the boundary layer. 

At Z = 0.83, not only does ST(r) not obey either the the 2D or 3D isotropy 
relationships for most r' but instead s:r ( r) :::::: st ( r). 

Fig. 2 shows Sf(r)/r213 to determine over what r for different Z that Sf(r)"" 
r213. Although the spectral equivalent of r213, k- 513 is found when spectra are 
averaged over the entire flow [K], r 213 appears for at most a few points at moderate 
r for Z = 0 and Z = 0.60. Only for Z = 0.83 and within the boundary layer (not 
plotted) is Sf(r) ""r213 approximately obeyed at large scales. 

Therefore, the boundary layer behavior of Sf is similar to the stratospheric 
results [ 0 l in that where sf( r) "" r213 when s:r ( r) :::::: st ( r). 

Figure 4 plots the third-order longitudinal structure function for the same three 
Z levels. Recall 3D would be negative and 2D would be positive. The comparison 
of S:f ( r) and Sf ( r) suggested that at the smallest scales for all three Z in Fig. 1 
the flow is 3D, so one might expect S3 ( r) < 0 at these scales. For the center Z = 0, 
one might expect 3D behavior for all r, although there would still be a question of 
how this could occur for r > 2, the height of the domain. 

What is observed in Fig. 4 is that, as predicted, S3 (r) < 0 for r < 1 for all 
Z. Furthermore for Z = 0 for r < 0.5, S3 (r) = -4/5tT. For Z = 0.6 this is also 
approximately true. The evidence for a three-dimensional cascade at small scales, 
obtained by comparing s:r ( r) and s3 ( r) to st ( r)' is consistent with the observation 
that Swew :::::: 0.5. 

To find evidence for two-dimensional behavior, we want to look where S3 (r) > 
0. For all three Z, this is observed. But only for Z = 0.83 is there a long range of r 
for which there is a strongly linear and positive increase from a negative value. The 
positive rate of increase at Z = 0.83 and 0.6 is much greater than the prediction 
based upon the value of Ilu predicted using Sf(r). In this sense, the boundary 
layer results are again similar to the stratospheric data [0]. 

The conclusion is that in or just above the boundary layer, at the large scales, 
Sf ( r) and S3 ( r) have similar relationships to Sf ( r) as in the stratospheric mea-
surements. 

3. Discussion 

The primary result of this paper is that in convective simulations in a wide 
domain without a mean flow, relationships for second and third-order structure 
functions at larger scales within the boundary layer do not match the expectations 
of either two or three dimensional dynamics. Instead, as in stratospheric observa-
tions ST(r) :::::: Sf(r) and S3(r) is increasing linearly and becomes positive over 
the regime where a -5/3 spectrum, or S2 "" r 213 , is observed. The maximum of 
S3(r)jse12 :::::: 0.2, which is not as large as the stratospheric value of about 0.5, 
but is still much larger than the value expected for a 2D backward cascade of energy 
of about 0.03. 

Despite the absence of truly two-dimensional dynamics in this simulation, a 
linearly, increasing S3 (r) suggests some sort of upscale energy transfer mechanism. 
One might ask whether this could be calculated directly. With periodic boundary 
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conditions where a Fourier decomposition can be applied, or if the velocity had 
free-slip boundary conditions in any direction so that sine and cosine transforms 
could be used, we know how to calculate the spectral energy transfer directly [J]. 
However, for no-slip boundary conditions and Chebyshev transforms in the vertical, 
this is not feasible. 

While the existence of an upscale transfer mechanism is only suggested by the 
behavior of 83 ( r), from visualizations of this flow there is a good reason to believe 
that such a mechanism exists. Visualizations of this convective flow show fine-
scale motions superimposed upon a large-scale pattern [K]. In the boundary l<tyer, 
the fine-scale motions consist of numerous small plumes whose vertical velocity is 
small and locally induced. Since the only source of energy is the heating which is 
originally transferred from the walls to the fluid through these small-scale plumes, 
the small-scale boundary layer motions are probably the energy source for the large-
scale pattern. Therefore, the energy in the small-scale plumes must be transferred 
upscale to the large-scale flow. 

For an upscale energy transfer to occur in the boundary layer, and for direct 
transfer to small-scales and dissipation through a three-dimensional cascade to be 
suppressed, it still seems that there should be some source of two-dimensionality. 
This new source of two-dimensionality could not be either stratification or rotation. 
Possible sources of two-dimensionality in the boundary layer could be sweeping and 
strong horizontal velocities along the boundary layer due to the large-scale flow, 
or the large-scale motion pushing into one boundary that origates with the small-
scale convective generated on the opposite boundary. This needs to be investigated 
further. 

What initially inspired this analysis of the flat, convection calculations was the 
observation of an extensive -5/3 spectrum in the atmospheric boundary layer over 
the tropical ocean. While the mechanism behind the -5/3 spectrum and a linearly, 
increasing 83 in these simulations has not been identified, a reasonable question 
to ask would be whether similar analysis of the atmospheric boundary layer data 
[T] between 1 km and 1000 km might yield similar results. This analysis has been 
performed and as in the stratospheric observations and the simulations, for the 
second order structure functions are nearly equal, SJ' ( r) ::::; Sf ( r). However, while 
IS3(r)/Sf312

1 >> 0.03, the sign of 83 is not constant at large scales and furthermore 
depends on whether the meridional or zonal direction is taken. 

In order to understand the origin of these effects in the atmospheric boundary 
layer, simulations must address several significant differences between the large-
scale flow in the tropical atmosphere and the flat convection simulations. The 
primary difference is that there is a large zonal (east-west) flow over the tropical 
ocean and this could affect the nature of the boundary layer flow [D]. Therefore, a 
convection simulation with a large-scale flow would be necessary. Some preliminary 
analysis of a convection simulation with a large-scale flow, but in an aspect ratio 1 
box (a cube, not flat) [L], shows that the sign of 83 in the boundary layer can be 
affected by the presence of a mean shear at the top of the boundary layer. 

References 

[A] A. Babin, A. Mahalov & B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equa-
tions for resonant domains .. Indiana Univ. Math. Journal 48 (1999), 1133-1176. 

[BJ P. Bartello, 0. Metais & M. Lesieur Coherent structures in rotating three-dimensional turbu-
lence .. J. Fluid Mech. 273 (1995), 1-29. 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:42:07 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



50 ROBERT M. KERR 

[CJ P. Bartello Geophysical and Astrophysical Convection. Gordon and Breach Scientific Publish-
ers (ed. R.M.Kerr and P.A.Fox), Potential vorticity, resonance, and dissipation in rotating 
convective turbulence., (2000), pp. 309-340. 

[D] C. Deser Diagnosis of the surface momentum balance over the tropical Pacific ocean .. J. 
Climate 6 (1993), 64-74. 

[E] P. Embid & A. Majda Averaging over fast gravity waves for geophysical flows with arbi-
trary potential vorticity .. Comm. Part. Diff. Eqs. 21 (1996), 619-.; P. Embid & A. Majda 
Low Froude number limiting dynamics for stably stratified flow with small or fixed Rossby 
numbers .. Geophys. Astro. Fluid Dyn. to appear (1997), -. 

[F] A.M. Fincham, T. Maxworthy & G. R. Spedding, Energy dissipation and vortex structure in 
freely decaying, stratified grid turbulence .. Dyn. Atmos. Oceans 23 (1996), 155-169. 

[GJ U. Frisch TUrbulence: The legacy of A.N. Kolmogorov .. Cambridge Univ. Press, 296 pp .. 
[H] J. R. Herring Theory of two-dimensional anisotropic turbulence .. J. Atmos. Sci. 32 (1975), 

2254-2271. 
[I] R. M. Kerr Higher-order derivative correlations and the alignment of small-scale structures 

in isotropic numerical turbulence .. J. Fluid Mech. 153 (1985), 31-58. 
[JJ R. M. Kerr Velocity, scalar and transfer spectra in numerical turbulence .. J. Fluid Mech. 211 

( 1990)' 309-332. 
[K] R. M. Kerr Simulation of High Rayleigh Number Convection .. J. Fluid Mech. 310 (1996), 

139-179. 
[L] R. M. Kerr 2001 The energy budget in Rayleigh-Benard convection Phys. Rev. Lett. (in 

press). 
[M] A. Kolmogorov Dissipation of energy in locally isotropic turbulence .. Dokl. Akad. Nauk. SSSR 

31 (1941), 99-101. (reprinted in The Royal Society, London434, 9-13.) 
[N] D. K. Lilly Two-dimensional turbulence generated by energy sources at two scales .. J. Atmos. 

Sci. 46 (1989), 2026-2030. 
[OJ E. Lindberg Can the atmospheric kinetic energy spectrum be explained by two-dimensional 

turbulence?. J. Fluid Mech. 388 (1999), 259-288. 
[P] J. R. Herring & 0. Metais, . J. Fluid Mech. 202 (1990), 97-115.; 0. Metais & J.R. Herring, 

. J. Fluid Mech. 202 (1990), 117-148. 
[Q] G. D. Nastrom, K. S. Gage & W. H. Jasperson Kinetic energy spectrum of large- and mesoscale 

atmospheric processes .. Nature 310 (1984), 36-. ; . J. Atmos. Sci. 36 (1979), 1950-1954. 
[R] L. M. Smith, J. Chasnov & F. Waleffe Crossover from two- to three-dimensional turbulence .. 

Phys. Rev. Lett. 77 (1996), 2467-2470. 
[SJ L. M. Smith & V. Yakhot, Bose condensation and small-scale structure generation in a 

random force driven 2D turbulence .. Phys. Rev. Lett. 71 (1993), 352-355. 
[T] C. K. Wikle, R. F. Milliff & W. G. Large Surface wind variability on spatial scales from 1 to 

1000 km observed during TOGA COARE .. J. Atmos. Sci. 56 (1999), 2222-2231. 
[U] T. E. VanZandt A universal spectrum of buoyancy wave in the atmosphere .. Geophys. Res. 

Lett. 9 (1982), 575-578. 

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH, BOULDER, COLORADO, 80307-3000 
Current address: Department of Atmospheric Sciences, University of Arizona, Thcson, Ari-

zona 85721-0081 
E-mail address: kerrlaatmo. arizona. edu 

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:42:07 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Contemporary Mathematics 
Volume 283, 2001 

The Forced lnviscid Burgers Equation as a Model for 
Nonlinear Interactions among Dispersive Waves 

Fernando Menzaque, Rodolfo R. Rosales, Esteban G. Tabak, and Cristina 
V. Turner 

ABSTRACT. The forced inviscid Burgers equation is studied as a model for the 
nonlinear interaction of dispersive waves. The dependent variable u(x, t) is 
thought of as an arbitrary mode or set of modes of a general system, and the 
force is tuned to mimic the effects of other modes, which may be either near 
or far from resonance with u. 

When the force is unimodal, a family of exact traveling waves fully de-
scribes the asymptotic behavior of the system. When the force is multimodal, 
with the frequencies of the various modes close to each other, the asymptotic 
solution is quasi-stationary, punctuated by faster intermittent events. The ex-
istence of these "storms" may have significant implications for energy transfer 
among modes in more general systems. 

1. Introduction. 

The nonlinear interaction among a large set of waves is a complex phenomenon. 
Among the issues involved are the tuning (or detuning) of sets of modes, depending 
of how far they are from perfect resonance. This issue is subtle though, since it 
depends on the time scale of the nonlinear interaction, which itself depends on the 
degree of tuning among modes. 

A particularly subtle issue appears in the transition from discrete to continuous 
sets of waves: how to add up the effects of very many near resonances. Do they 
interfere destructively or constructively? In most theories of continuous spectra, 
the former is usually assumed, to the point of suppressing altogether the leading 
order effect of resonances, pushing them to higher orders than those appearing in 
discrete systems. 

In systems that are both forced and damped, statistical cascades often appear, 
carrying energy among scales, from the scales associated with the forcing, to those 
where dissipation transfers the energy out of the system. When the scales of forcing 
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and dissipation are many decades apart, the intermediate scales span the so-called 
turbulent inertial range, where the system behaves effectively as a Hamiltonian 
one, and self-similar energy spectra are often observed. Attempts to understand 
the nature of these self-similar cascades gave rise to the theory of Wave Turbulence 
(e.g., see [1], [2], [5], and [11].) In order to close a very complex system, this theory 
makes a number of assumptions, such as phase decorrelation among the various 
modes, scale separation between linear and nonlinear phenomena, and infinite size 
of the system, giving rise to a continuum of modes. These assumptions are hard 
to justify, and the theory, despite its beauty, has a number of problems, such as 
internal inconsistencies - as when it predicts upscale energy fluxes- and a mixed 
record of agreement with observations and numerical simulations (e.g., see [3] and 
[6].) 

In this work, we consider a simple model, where surrogates for resonances and near 
resonances can easily be built in: the forced inviscid Burgers equation, 

(1.1.1) Ut + ( ~ u 2 ) x = f(x, t), 

where f = f(x, t) is some smooth forcing, and both f and u are periodic (of period 
21r) in space and have vanishing mean. 

Here the dependent variable u(x, t) represents a mode (or set of modes) with linear 
frequency w = 0 (as follows from the zero mean condition.) On the other hand, 
the externally imposed force f(x, t) represents other modes of the system, which 
(depending on the scale of their dependence on time) will be close or far from 
resonance with u. 

A vastly different reduced model for resonant energy transfer among modes was 
developed in [7]. It it interesting to note that both models, though completely 
different in conception and structure, contain intermittent regimes - these are 
strong in [7] and much milder in the present work. It appears that intermittence 
is a natural occurrence in models of turbulent energy cascades. 

The nonlinear term in (1.1.1) has two combined functions: to transfer energy among 
the various (Fourier) components of u, and to dissipate energy at shocks. Thus the 
"inertial cascade" and the system's dissipation are modeled by a single term. This 
not only implies a big gain in simplicity, but could also in fact be a rather realistic 
model for fluid systems, where dissipation is almost invariably associated with some 
form of wave breaking. 

The model equation (1.1.1) above is a simplified version of the equations describing 
the interaction among resonant triads involving a nondispersive wave [8]. The 
simplification consists in freezing the two dispersive members of the triad, thus 
making them act as a prescribed force on u(x, t). 

It would seem that a more general model, with a non-zero linear frequency w, is 
the one given by the equation 

(1.1.2) Ut + W Ux + ( ~ U 2 ) x = f' 
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which is equivalent to considering non-zero mean solutions to (1.1.1)- i.e.: write 
u = w+ii, where w is the mean1 of u. However, this last equation can be reduced to 
equation ( 1.1.1) by the introduction of the new independent variable x' = x - w t. 

A resonant force f(x, t) in (1.1.1) is one that does not depend on time; a near-
resonant one, on the other hand, evolves slowly. More precisely, a near resonance 
should be modeled by 

(1.1.3) Ut + ( ~ u 2 ) x = E2 f(x, Et), 

where 0 < E « 1 measures the degree of non-resonance. The reason for the factor E2 

in front of the forcing term follows from considering a quasi-steady approximation 
to the solution to (1.1.3), namely: 

u(x) ~ E 2 /"' f(s, Et) ds. 

This is not quite right, but indicates the correct result: a (slow) forcing of size 
0(E2 ) in (1.1.3), generally induces a response of amplitude E in u. This shows that 
any force stronger than E2 in (1.1.3) would render its own modulation irrelevant, 
since the induced nonlinearity would act on a much faster time scale than that of 
the modulation. 

Interestingly, the E's above in (1.1.3) can be scaled out by a simple transformation: 
let i = d, and write u = Eii. Then, in terms of these new variables, (1.1.3) 
becomes (1.1.1). Hence near-resonances in (1.1.1) cannot be defined as 
an asymptotic limit involving a small parameter E; if there is a distinction 
between near resonant and nonresonant forces, it will have to arise from a finite 
bifurcation in the behavior of the solutions'to (1.1.1)- which in fact occurs, as we 
will show in section 2. 

The fact pointed out in the prior paragraph is part of a more general property of 
equation (1.1.1), namely: it is a canonical system. For consider a model involving 
a more general nonlinearity, such as: 

(1.1.4) Ut + N(u), = f(x, t), 

where, generically, we can assume that N(u) = O(u2 ) (since any linear term can be 
eliminated by a Galilean transformation.) Now consider a weakly nonlinear, nearly 
resonant, situation, where u is small, the force is small and the time scales are slow. 
Thus, take: u = Eii, f = E2 ], with the time dependence via i = Et, and 0 < E « 1. 
Then it is easy to see that, in terms of ii, ], i, and x, the leading order system is 
(1.1.1) - except for, possibly, a constant other than 1/2 in front of the nonlinear 
term. In fact, this reduction of the equations to (1.1.1) will occur even if we have 
a system (i.e.: u in (1.1.4) is a vector), as long as there is a single force (lined up 
with a single mode of the system.) 

1 Note that, because f has a vanishing mean, the mean of the solutions to (1.1.1) 
is a constant. 
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Notation and general properties. 
It is well known that the inviscid Burgers equation develops shocks. Throughout 
this work, we shall use the following notation for various quantities at shocks: 

• A plus (respectively, minus) superscript (or subscript) stands for the value 
of the corresponding variable ahead (respectively, behind) of the shock. 

• Brackets stand for the jump across the shock of the enclosed expression. 
Specifically: the value ahead (to the right) minus the value behind (to the 
left). Thus, for example: 

[u] = u+- u-, 

is the jump in u across the shock. 
Shocks obey the following rules: 

• The shock speed is given by the Rankine-Hugoniot jump conditions, 
namely: 

1 
S = u = "2 (u+ + u-) . 

where u is the arithmetic mean of u at the shock, and S is the shock speed. 
• Shocks must satisfy an entropy condition, which for (1.1.1) states that u 

should jump down across shocks, i.e.: 

[u]:::; 0. 

Finally, equation ( 1.1.1) has an energy 

E(t) = { 2
rr ~ u2 (x, t)dx, 

lo 2 
which satisfies the equation 

(1.1.5) dE ( 1 ) f 2rr dt - L 12 [up = Jo u(x, t) f(x, t) dx, 

where the sum on the left is over all the shocks in the solution. This sum accounts 
for the dissipation of energy at the shocks, and the right hand side represents the 
work by the forcing term f. That is, we have: 

{21r 
W1 = Jo ufdx, 

where Ed is the energy dissipated per unit time and Wt is the work done by the 
forcing. 

Contents and plan of the paper. 
Much of the contents of this paper will be concerned with the study of the energetic 
interplay between the dissipation at shocks and the work done by the forcing func-
tion. Our interest lies mostly in situations where E(t) is close to stationary, so that 
the work done by the forcing and the dissipation at shocks approximately balance 
each other. Either of these then represents the amount of energy flowing through 
the system, and the dependence of this flux on the characteristics of f(x, t) will 
teach us something about the nature of the energy exchange among near resonant 
modes. 

This paper is organized as follows. In section 2, we study the asymptotic, long 
time solutions to (1.1.1), under unimodal forces f(x, t) = f(x - w t). This long 
time asymptotic behavior is given by a family of exact traveling wave solutions. We 
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observe an interesting bifurcation between near resonant and nonresonant behavior, 
taking place at a critical value of w (that depends on the form and size of the forcing 
f.) If lwl is smaller than this critical value, the forcing does work on the solution; 
if lwl is bigger, on the other hand, it does not. We sketch proofs for these results, 
which use a novel combination of Hamiltonian formalism with breaking waves. 

In section 3, we study two-modal forcings, in which f = g1 (x) + g2 (x- wt). For 
large values of w, 92 has vanishingly small effect on the asymptotic, long time, 
solution u(x, t). For small values of w, on the other hand, quasi-steady solutions 
u = u(x, r) arise (where Tis a slow time), punctuated by intermittent events (which 
we call "storms") with enhanced rates of energy exchange between the forcing and 
the solution, at an intermediate time scale (slow, but faster than r.) The abnormal 
rate of energy exchange during storms hints at the possibility that nonlinear wave 
systems may have regimes where the energy exchange among modes is strongly 
influenced by fast, intermittent events, involving coherent phase and amplitude 
adjustments of the full spectrum, rather than by the slow evolution of individual 
resonant sets. 

We can make the statement in the prior paragraph more precise, or at least more 
suggestive, as follows: We show in section 3 that the extra (integrated) energy 
exchange during a storm scales like w- 1 12 . In our model, however, there are only a 
finite number of storms per period, which itself scales like w- 1 • Thus the average 
energetic impact of the storms is of order w112 , vanishing with w. Yet, in more 
complex systems, there are a number of likely scenarios (involving, for instance, 
random or pseudo-random events), in which the number of storms per period will 
increase as the period does, at least as w- 112 . When this is the case, the energetic 
impact of storms will be at least comparable to that of the quasi-steady parts of 
the solution, and we will find ourselves at the threshold of an energy cascade driven 
by intermittent events. 

2. A Single Forcing Mode. 

In this section, we consider the equation 

(2.2.1) Ut + ( ~u 2 ) x = f(x- wt), 

where f = f(z) and u = u(x, t) are 21r-periodic in space, real functions, with zero 
mean. Here we will assume that f is a sufficiently smooth function, and that the 
initial conditions are such that the solution is, at all times, piece-wise smooth, with 
a finite number of shocks. 

As explained earlier, the forcing term is resonant if w = 0, near resonant if w is small 
and far from resonant if w is big. Notice though that, from the argument above 
equation (1.1.4) in the introduction, we cannot give an asymptotic meaning to this 
distinction through the introduction of a small parameter, since this equation is 
the canonical model for the description of systems with a fluid-like nonlinearity, 
weakly forced near resonance. Interestingly, as we shall see below (remark 2.2), the 
equation admits exact solutions where there is a sharp transition between resonant 
and non-resonant behavior, at a critical value of the frequency w =We· 

Below we consider a special set of solutions to equation (2.2.1), given by travel-
ing waves. These solutions not only can be written exactly in closed form, but have 
special significance - since they describe the long time behavior for the general 
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solution. In subsections 2.2 and 2.3 we show -numerically and analytically- that 
the solution to the initial value problem for (2.2.1) above converges to the traveling 
wave solution as t--+ oo, which is generically unique. 

2.1. Exact Traveling Solutions. We shall seek traveling wave solutions to 
(2.2.1) of the form 

(2.2.2) u(x, t) = G(z), 

where z = x - w t. Then equation (2.2.1) becomes the O.D.E. 

(2.2.3) - -(G- w) = f(z). d (1 2) 
dz 2 

This has the solutions 

(2.2.4) G(z) = w ± j2F(z), 

where F = f f(s)ds, with the constant of integration selected so that F(z) ~ 0 
everywhere. 

(2.2.5) We shall define Fer to be the choice ofF such that min(Fer) = 0. 

These solutions can be used to produce exact (periodic) traveling wave solutions 
that both have a vanishing mean, and satisfy the entropy condition when they 
include shocks. Generically, three distinct cases can arise, with the solution de-
termined uniquely by w if Fer has a single minimum per period. See 
figure 1 for illustrative examples. 

Case 1. If F is strictly larger than Fer, then the solution must be smooth -
with only one sign selected in (2.2.4). This follows because the entropy condition 
for shocks only allows downward jumps; thus only jumps from the positive to the 
negative root are allowed. Given that G must be periodic, no shocks are possible 
when min(F) > 0. In this case, the sign of the square root, and the value of the 
integration constant defining F, follow upon imposing the condition that the mean 
of u = G must vanish. 
We can write the solutions corresponding to this case as two families of solutions 
(one for w > 0 and another one for w < 0) parameterized by a single parameter 
b > 0, as follows: 

(2.2.6) u 

(2.2.7) w 

w- sign(w)j2 (J + Fcr(z)), 

1 1271" ±- )2(6 + Fcr(z)) dz, 
27r 0 

where z = x- w t and F (as defined above) is given by F(z) = b + Fcr(z). These 
formulas show that 

For lwl > Wm where Wcr is defined below in equation (2.2.8), the travel-
ing wave solutions are as smooth as Fer· Furthermore, they are uniquely 
determined by the function f and the frequency w. 

Notice that uniqueness, in this case where lwl > Wen does not depend at 
all on Fer having a single minimum per period. 

Case 2. For values of lwl smaller than 

(2.2.8) Wcr = __!._ { 2
rr j2Fcr(z) dz, 

27r lo 
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no F can be found that will satisfy the zero mean condition. When this is the case, 
one must take F = Fer, and allow the solution to jump between the positive and 
the negative roots. Then the solution can return (smoothly) to the positive root 
through the point where Fer = 0, which is generically unique. In this case, the 
tunable parameter that one can use to adjust the solution so that u = G has a 
vanishing mean, is the position z = s of the shock (notice that, because u at the 
shock jumps from u_ = w + J2Fer(s) to u+ = w- J2Fer(s), the shock's velocity 
is w - therefore it remains fixed in the frame moving with the traveling wave.) 
To be specific, assume that Fer has a single minimum per period, and let 
z = Zm be the position of the minimum. Then the equation for the shock position 
z = s is given by: 

(2.2.9) 1 Js 1 1zm+2rr 
W =- 27r Zm V2Fer(z) dz + 27r 

8 
.j2Fer(z) dz, 

where Zm :::; s < Zm + 21r. Since the right hand side in this equation is a (strictly) 
monotone decreasing function of s (with the values Wer for s = Zm, and -Wer for 
s = Zm + 21r) there is a unique solution for s. Thus the traveling wave solution 
is unique. 

REMARK 2.1. Notice that, in the (non-generic) case when Fer has more than 
one minimum per period, uniqueness is lost when w :::; Wer· This is because, in 
this case, there is more than one possible point where a smooth switch from the 
negative to the positive root in equation (2.2.4) can occur. This feature is at the 
root of the behavior reported in section 3 for the response to forcings with more 
than one frequency. 

Case 3. In the limiting case when w = Wer, the shock and the smooth transition 
from negative to positive root coalesce and disappear, leaving a corner moving at 
speed Wcr as the only singularity of the solution. 

Simple example; single harmonic forcing. 

Consider the case with a single sinusoidal forcing: f = f(z) = sin z (with z = 
x- wt), for which Fer= 1- cos(z) = 2sin2 (z/2). Then the critical value for w is 
given by: 

(2.2.10) 1 12
71' z 4 

Wcr =- 21sin(-)1 dz =-, 
27r 0 2 7r 

and we have: 

Solutions with shocks for the simple example: These occur for lwl < Wer = 
4/Jr, and have the form 

(2.2.11) u(x, t) = G(z) = w ± 21 sin(x ~ wt) I· 
In each period (say 0 :::; z < 21r) there is a (continuous) switch from the minus 
to the plus sign as z crosses z = 0, and a switch from the plus to the minus sign 
(across a shock) at some position z = s. The position of this (single) shock follows 
from the zero mean condition (i.e.: equation (2.2.9) for this simple example) 

(2.2.12) 18 1271' 
0= 0 c+(z)dz+ s c-(z)dz=2Jrw-8cos(s/2), 
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Traveling wave solution u = u(x - ro t). 
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FIGURE 1. Examples of traveling waves for the equation 
Ut + (0.5 u2 )x = sin(x- w t). Three solutions are shown: 
(a) Smooth solution, for w = -2.00 < -Wcr· 
(b) Critical solution, with a corner, for w = -Wcr = -4/7r. 
(c) Solution with a shock, for w = -0.70wcr· 
The "envelope" for the solution with a shock, given by u = w ± ,J2F is also 

shown (dashed line.) In each case, the solution is plotted for a timet such 
that wt = 0.801r. 

where a+ = w + 21 sin(z/2)1, and a- = w- 21 sin(z/2)1. Thus 

(2.2.13) s = 2 arccos ( ~w) , with 0 :::; s < 21r . 

We can also compute the work per unit time w, done by the external force f on 
this exact solution. Since this work must agree with the energy Ed dissipated at 
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the shock (given that the solution is steady), we have: 

r" 1 3 16 { 7rW 2}3/2 (2.2.14) w1 = Jo f u dx = Ed = - 12 [u] = 3 1 - ( 4) 
A plot of the work done by the forcing is shown in figure 2. 

REMARK 2.2. For lwl 2: Wcr = 4/7r the solutions have no shocks (see below) 
and there is no energy dissipation, nor work done by the forcing (i.e.: the solution 
is orthogonal to the forcing.) This indicates a rather abrupt change in behavior, 
which we interpret as the boundary of resonance. That is, a sharp transition 
from resonant behavior (with the forcing continuously pumping energy into the 
system, which is then dissipated by a shock) to non-resonant behavior (with no 
work done by the forcing) occurs at lwl = Wcr· It is easy to see that this behavior is 
general, and not particular to the special harmonic forcing of this simple example. 
It will occur for the traveling waves produced by any forcing of the form in equation 
(2.2.1). It is interesting to note that this behavior is analogous to a third order 
phase transition, with the collective behavior of the modes making up the solution 
switching from a dissipative configuration to a non-dissipative one. 

Smooth solutions for the simple example: These occur for lwl > Wcr = 4/7r, 
and have the form 
(2.2.15) u(x, t) = w ± j2 (D- cos(x- wt)), 
where D > 1 and the sign of the square root follow from the condition on the mean: 

{2" 
Jo u(x,t)dx = 0. 

It is actually easier to write w as a function of D, as follows 

(2.2.16) 1 12rr w = w(D) = ±- j2(D- cosz) dz, where 
27r 0 

D2:1. 

This equation is the same as (2.2. 7) for this simple example, with D = 1 + J. 

Critical solutions for the simple example: These occur for lwl = Wcr = 4/7r, 
and are given by: 

(2.2.17) { I . (X=fWcrt)i} U = ± Wcr - 2 Slll 2 . 

2.2. Numerical Experiments. In subsection 2.3 we will show (analytically) 
that the solution to the general initial value problem for equation (2.2.1) converges 
asymptotically (for large times) to the traveling wave solution ~ at least in the 
case where the traveling wave solution is unique, i.e.: Fer, as defined in (2.2.5), has 
a single minimum per period. In this section, we show the result of a numerical 
calculation illustrating the convergence process. 
Numerical code: In both the calculations shown in this subsection, and those in 
section 3, we use a (second order in time) Strang [9] splitting technique, separating 
the equation into 

Ut = f and Ut + ( ~ u 2 ) x = 0. 

Then we use a second order Runge-Kutta ODE solver for the first equation. For 
the second equation we use a second order Godunov [4] scheme, with the van Leer 
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FIGURE 2. Energy dissipated (as a function of w) by the traveling waves. 
The energy dissipated Ed (equal to the work W1 done by the external force 
f) for the equation Ut + (0.5 u 2 )x = sin(x- w t), is shown as a function of w. 
Notice the sharp cutoff at w = ± Wcr, beyond which no work is done by the 
force f. This result is general and does not depend on the particular forcing 
sin(x- w t) -it will occur for any forcing of the form f = f(x- w t). 

[10] monotonicity switches. This yields a fairly simple and robust shock capturing 
(second order, both in time and space) algorithm. 

Example: Figure 3 shows an example of how a solution to equation (2.2.1) (with 
f = sin(x - w t) and "arbitrary" initial data) converges to a traveling wave as 
t -t oo. Specifically, we take w = 0.5 Wcr - where Wcr is given in equation (2.2.10) 
-and u(x, 0) = sin(x). 
The convergence to the traveling wave solution is done via the formation of shocks 
(only one in this case) that dissipate energy and force the solution to converge to 
its limiting shape. The arguments in subsection 2.3 give a more precise description 
of this process. Notice how fast the convergence is: the period in time of the forcing 
function is T = 21rjw, and (even though the initial condition is 0(1) away from 
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Solution for time: t = 0.000 (2 rrlro), with ro 1t = 2 

3 ·DaahiKI·IIne: steady solUtion enyelope. 

X 

Solution for time: t = 0.100 (2 rrlro), with ro 1t = 2 

3 .Dashed·lina:.ateady· sohidlon.anY&Iopa 

u 

u 

Solution for time: t = 0.080 (2 rrlro), with ro 1t = 2 

Solution for time: t = 0.500 (2 rrlro), with ro 1t = 2 

3 Daahactllne: ateacly solution enVelope 
-- ..... 

X 

FIGURE 3. Forcing f = sin z in the equation, with z = x - wt and 
w = Wcr/2 = 2/7r. As t -+ oo the solution converges to the traveling 
wave u = w ± 2 sin(z/2), where the sign switch occurs at the shock posi-
tion. The traveling wave has period 21r jw in time (same as the forcing.) 
From left to right and from top to bottom, we plot the solution and the 
"envelope" w ± 2 sin(z/2) (dashed line) for the traveling wave: (a) Initial 
conditions fort= 0. (b) Timet= 0.08 (21rjw), shortly before the formation 
of the shock. (c) Timet= 0.10 (27r/w), shortly after the formation of the 
shock. (d) Timet= 0.50 (21rjw), once the solution has converged to the 
traveling wave. 

the traveling wave) by t = T /2 the solution is indistinguishable from the traveling 
wave. 

2.3. Asymptotic behavior of the solutions. In this subsection, we show 
(analytically) that the exact solutions of subsection 2.1 yield the large time (t-+ oo) 
asymptotic behavior of the solutions to equation (2.2.1), for any initial data. First, 
we show that this result holds for Jwl > Wcr, and initial data relatively close to 
the corresponding smooth exact solution. Next we present arguments for the case 
Jwl ~ Wcr, and arbitrary initial data. The same type of reasoning that we use in 
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this second part can be used to show global convergence when /w/ > Wer, but we 
shall not carry out the details of such argument here. 

The main mechanism involved in the convergence (as t-+ oo) to the traveling wave 
solution when /w/ :::; Wer (see remark 2.5) is much more "efficient" than the mech-
anism involved in the case when /w/ > Wer· This is because the first mechanism 
involves 0(1) shocks at all times, while the second has shocks of vanishing ampli-
tude as t -+ oo. The calculation displayed in figure 3 illustrates how efficient the 
mechanism in the case /w/ :::; Wer is, as pointed out at the end of subsection 2.2. 
By contrast, in numerical calculations done for /w/ > Wer, we observed a very slow 
approach to the limiting behavior. 

REMARK 2.3. We shall restrict our arguments to the case when Fer, given by 
equation (2.2.5), has only two extremal points per period: a single zero, and a single 
maximum. The single zero condition guarantees a unique traveling wave solution. 
The single maximum condition is technical and simplifies the arguments - it is 
not really needed, as we point out later (see remark 2.6.) 

When the single zero condition is not satisfied, so that the traveling wave solution 
for /w/ :::; Wer is not unique, our numerical experiments still show convergence to a 
traveling wave as t -+ oo, which depends on the initial conditions. Actually, the 
arguments in this section for the case /w/ > Wcr do not depend on Fer having a single 
zero, while the arguments for /w/ :::; Wcr indicate convergence to some traveling wave, 
even if it is not unique. 

Case: jwj > Wcr· Local convergence to the smooth exact solution. 
Preliminaries. 

Let Uex = Uex(z) (where z = x- wt) be the exact solution introduced in subsec-
tion 2.1- see equations (2.2.6- 2.2.7). Then equation (2.2.1) can be written in 
the form 

(2.2.18) ( 1 2 ) Vt + 2v - F z = 0 , 

where v = v(z, t) = u- w, and F = F(z) = ~ (uex- w) 2 is the function defined 
earlier in subsection 2.1. We note that 

min(F) > 0, dF =f 
dz ' 

and that v must be a 21r-periodic function of z, with Mean(v) = -w. Finally, let 

Vex = Uex- W =- sign(w) V2F(z) 

be the exact solution of equation (2.2.18) corresponding to Uex --i.e.: the traveling 
wave. We shall now assume that w < -Wen since the case w > Wer can be 
obtained from the symmetry, in equation (2.2.1), given by: w -+ -w, u -+ -u, 
f(z) -+ - f( -z), and x-+ -x. Then we can write 

(2.2.19) Vex(z) = v'2F. 

The argument of convergence to the traveling wave solution as t -+ oo, in this 
/w/ > Wcr case, is dividPrl in two parts. In part I we show that the initial data can 
be restricted so that the solution remains positive (and bounded away from zero) 
for all times, and that such solutions always break and develop shocks - with the 
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sole exception of the traveling wave (which has no shocks.) In part II we construct 
a (convex) Hamiltonian functional, which decreases for solutions with shocks, and 
is minimized by the traveling wave solution. 

Case: lwl > Wcr· Part I. 
Along characteristics, equation (2.2.18) takes the form 

( ) dz = and dv = dF ( ) 2.2.20 dt v' dt dz z . 

This can be written in the Hamiltonian form 
dz ah 
dt av' (2.2.21) and 

dv 

dt 
with Hamiltonian 

(2.2.22) 
1 

h = h(z,v) = z-v2 - F(z). 

This is the standard Hamiltonian for a particle in a one-dimensional potential field 
V(z) = -F(z). We shall use this Hamiltonian formulation to derive the following 
two results: 

(2.2.23) l I. We can constrain the initial data v = v(z, 0), so that v = 
v(z, t) remains positive (and bounded away from zero) for all 
times t > 0. 

II. Smooth initial data v = v(z, 0), different from Vex (but con-
strained so that v > 0 for all t 2: 0), necessarily develop 
shocks. 

These two results will be used in Part II to show convergence of v to Vex, as t---+ oo. 

For both results, we turn to the phase plane for the Hamiltonian system (2.2.21) 
(see figure 4). To prove the first result, notice that, because the characteristic 
evolution is given by this Hamiltonian system, if the initial data are such that 
v(z, 0) 2: v0 (z) (where v = v0 (z) > 0 is an orbit for the system), then v 2: v0 for all 
times (hence it remains positive and bounded away from zero.) This is easy to see 
from the example in figure 4. Therefore, we shall (from now on) assume that v 
is greater than zero. 

To prove the second result, notice that, because here we consider only values of 
v greater than zero, all centers are excluded, and the trajectories of (2.2.21) are 
all open in the plane (though, of course, closed in the cylinder defined by the 27r 
periodicity of z). Several such trajectories, corresponding to different values of 
h, are displayed in figure 4. The point we need to make is that any two such 
trajectories always have different periods, for the period T(h) is given by 

T(h) - _1 {2rr dz 
- V2 lo Jh + F(z)' 

so that 
dT 1 ( 2 rr dz 

dh=-2..f2}o (h+F(z)) 312 <O. 

This means that any two characteristics with different values of h necessarily meet 
(the one with the shorter period catches up to the other one.) Therefore a shock 
must form (since two values of h at a single position z imply two distinct values of 
v.) 
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v > 0 trajectories for Hamiltonian. 
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FIGURE 4. Unbounded, v > 0 trajectories, for the system with Hamiltonian 
h = ~ v2 +cos z - 1. These occur for v > Vcr(z) = J2 Fcr(z), where 
Fer = (1 - cosz). (a) Critical trajectory Vcr• connecting the saddle points 
(thick solid line.) (b) A trajectory v0 , slightly above critical (dashed line.) 
(c) Two typical trajectories Vex and v1 (solid lines.) For the P.D.E. v1 + 
(~ v2 + cosz)z = 0, whose characteristic form is given by this Hamiltonian 
system, it is clear that: If the initial data for v are above a curve such as v0 , 

then the solution remains above v0 for all times. 

Hence the only case in which characteristics do not cross is the one in which the 
initial data lies on a contour line h = constant. However, such initial data is given 
by 

v(z, 0) = J2(F +h), 

and the condition that the average of v be equal to -w implies that h = 0, i.e., 
v = Vex. Hence all initial data different from Vex develop shocks. 
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Case: lwl > Wcr· Part II. 

For the second part of the argument, we need a different Hamiltonian structure, 
the one given by the integral 

(2.2.24) H = h2
tr ( ~v 3 - v F) dz . 

Using H, equation (2.2.18) can be written in the Hamiltonian form 

(2.2.25) Vt = _.!!_ (JH) . az Jv 

We notice that H is convex for positive functions v = v(z) (of mean equal to 
- w), with a unique absolute minimum given by v(z) = ../2F =Vex· Furthermore, 
because of the Hamiltonian structure (2.2.25), His conserved while v(z, t) remains 
smooth. On the other hand (see equation (2.2.27) below) His dissipated at shocks. 
Hence, since all v's different from Vex develop shocks (as shown earlier in part I), 
H cannot settle down until it reaches its minimum value, corresponding to v = Vex. 

We show now that H decreases when there are shocks. We have: 

(2.2.26) dH N (! 8i+ 1 JH ds· [1 ] ) -=I: -vtdz- - 1 -v3 -vF , 
dt . 8 . Jv dt 6 1. J=l J 

where we have assumed that there are N shocks per period (for some N), with 
Sj = Sj(t) the position of the j-th shock, s 1 < s2 < · · · < SN, and SN+l = s 1 + 211' 
(from the periodicity.) Substitute now into this last expression Vt from (2.2.25), 
and the Rankine-Hugoniot jump conditions for the shock velocities: 

ds1 1 ( _ +) 
dt = 2 vj + vJ ' 

where vf denote the values of v ahead and behind the shock. Then 

dH 

dt 

(2.2.27) 

-~ ~(J:J+l ((6f:r)z dz +(vj+vj) [~v 3 -vFL) 

~ t, ([ ( ~~)'- ~v' +v' FL- ~v; vj f"'J,) 
: 2 t. ([~ v4L- vj vj [v2L) 

N 

1 "'"" 2 [ 2] 24 L..)vL v 1 < 0. 
j=l 

The last inequality follows from the entropy condition, that states that v (therefore 
v2 , since v > 0) decreases from left to right across shocks. This concludes the 
argument of convergence to the traveling wave in the case lwl > Wcr· 
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Case: Jwl :=:; Wcr· Global convergence to the non-smooth traveling waves. 

Here we shall consider the case with lwl s; Wer (when F = Fer ~ 0) and general 
initial data. We shall require that the zero value of Fer be achieved only once per 
period in z (for concreteness take this value to be z = 0.) The reason for this 
restriction- which is satisfied by generic functions Fer = Fcr(z) -is that: when 
Fer vanishes at more than one position per period, there is more than one steady 
solution to equation (2.2.1), and this renders the issue of ultimate convergence to 
one of the steady solutions more cumbersome. We shall also require that Fer have 
only one local maximum per period, since this simplifies the arguments (but this 
condition is not strictly needed, as we point out later, in remark 2.6.) 

We shall use the following functional G, a modification of the Hamiltonian H in 
(2.2.24): 

(2.2.28) G = 12
7r (~1vl 3 -lvl Fer) dz · 

Notice that G is minimized pointwise by functions of the form v(z) = ±~ = 
±lvexl· In particular, the exact steady solution to equation (2.2.1) is the only 
minimizer of G consistent with the entropy condition for shocks ( v never jumps 
upwards) and with the requirement that its average be equal to - w. This follows 
from the condition that there is only one point where Fcr(z) = 0, which is the only 
place at which v(z) can switch smoothly from negative to positive. Hence there 
can be only one shock switching v(z) back to negative. The position of this shock 
is then determined by the condition that v(z) + w must have a vanishing mean. In 
particular, for lwl = Wcr, this last condition determines that the sign of v(z) never 
changes, and the only singularity of the solution is a corner at the position of the 
zero of Fer (with no shocks.) 

The argument for convergence to Vex will be based on the fact that, after 
an initial transient period, G necessarily decays when v(z, 0) f. Vex· 

Unlike H, G is not a Hamiltonian, yet it allows us to write equation (2.2.18) in the 
following pseudo-Hamiltonian form (valid wherever v f. 0): 

(2.2.29) Vt = - (J :z ( ~~) ' 
where 

1 
0 

-1 

ifv>O. 
ifv=O. 
if v < 0. 

Assume now that there are N shocks per period, with s1 = s1(t) the location of the 
j-th shock, where s 1 < s2 < · · · < SN and SN+l = s 1 (periodicity.) Furthermore, 
introduce the functions h = h(z, t) = ~ v2 - Fer and g = fJ lvl 3 -lvl Fer· We notice 
that 

Vt = -hz, 
ag 
av = (J h' 

where the last equation applies away from the shocks (in particular, it is valid when 
CJ is discontinuous due to a zero of v.) 
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Using the formulas above, we write below an equation for the time evolution of 
the functional G. Here, as usual, the brackets stand for the jump ~ front to 
back ~ of the enclosed quantities across the shock, the superscripts ± are used to 
indicate values immediately ahead and behind a shock, and a subscript j indicates 
evaluation at the j-th shock. We have: 

dG 

dt 

(2.2.30) 

where 

and 

51 - ~ 12
rr a (Fc2r)z dz- ~f. [a F;rL 

0 j=l 

52 2~ "2.: (a[vf [v2])1 , 
local 

Here the sum 52 is carried over all the "local" shocks (where v+ and v- both have 
the same sign: v+ v- > 0), the sum 53 is carried over all the "transonic" shocks 
(where v+ < 0 < v-), the sum 54 is carried over all shocks where either v+ or 
v- vanishes, and the overbars indicate the average value across the shock of the 
appropriate quantity. 

REMARK 2.4. Notice that only the values of Fer at the points where a jumps, 
and are not shocks, contribute to 51 (that is, the places where v changes sign 
"smoothly".) This is because only the points where a jumps contribute to the 
integral that appears in the definition of 5 1 , with the sum in the same definition 
subtracting any contributions that arise at the shocks. In fact, (generically) we can 
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write: 

where D is a set of indexes for all the positions across which v switches sign. 

It should be clear that 
• S1 does not have a definite sign, since its overall sign depends on the relative 

sizes of FJr at the places where v crosses zero upwards (from negative to 
positive, so that [0'] = 2) versus the places where it crosses zero downwards, 
so that [0'] = -2. 

• On the other hand, S2 is always non-positive, vanishing only when 
there are no local shocks (as it is the case for the exact traveling wave 
solution Vex.) This follows because, when v ::::: 0 on both sides of the shock: 
0' = 1 and the entropy condition yields [v2 ] < 0. Similarly, when 0' = -1, 
the entropy condition yields [v2 ] > 0 . 

• s3 is always non-positive, vanishing only when v- = ,f2'F;;. and 
v+ = -,ff'F;;. (or there are no transonic shocks), as it is the case for 
the exact solution Vex. We shall only need this last result for v- ::::: ,f2'F;;. 
and v+ :::; -,ff'F;;.. In this case, the proof is quite straightforward, since S3 

can be rewritten in the form: 

S3=- L ((a+b+2J:Fc~)(a 2 +b 2 ) ~ + ~ (a4 +b4 +2ab3 +2a3b)) :::;o, 
trans 

where a=:;-~::::: 0, and b =- ( ~ + ~) :::::0. 

• Finally, S4 is always non-positive, vanishing only when there are 
no shocks in the summation. This is obvious, since each shock in the 
summation contributes an amount O'+A+ -O'_A_, where A± > 0 and either: 
0'+ = -1 and 0'_ = 0, or 0'+ = 0 and 0'_ = 1. 

The argument for convergence to the exact traveling wave solution Vex (in this 
w :::; Wer case) will be based on the phase plane for the characteristic equations 
(2.2.21), corresponding to the Hamiltonian h in equation (2.2.22)- with F =Fer· 
This phase plane, displayed again in figure 5, is partitioned into two domains by 
the separatrix h = 0: a domain D containing the closed periodic orbits, and 
its complement C(D) containing the open orbits. We will assume here that 
Fer has a single maximum per period, so that there is a single critical point in D (a 
center), with all the other orbits being closed and periodic (as shown in figure 5.) 
We shall first argue that: 

(2.2.31) The asymptotic behavior for the solutions to (2.2.18) 
cannot include any values in the interior of the domain D. 

The argument for this goes as follows: 
A. First we note that: any two characteristics starting in the interior of D 

cross in finite time - even if they lie on the same contour line (orbit) for h. 
Furthermore: for any compact subdomain De of D, the crossing time can 
be uniformly bounded. 
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Bounded trajectories for Hamiltonian. 

v 

2.5 ---..-----.------.------r----..-""" 

-2.5 ....._ _____ __._ __ __._ __ ---~. __ ___.. _ _, 
X7t 0 0.5 1 

z 
1.5 2 

FIGURE 5. Bounded trajectories for the system with Hamiltonian h = ~ v2 + 
cosz- 1. These occur in the region lvl < Ver(z) = ..j2Fer(z), where 
Fer = (1- cosz). The critical trajectories v = ±ver. connecting the saddle 
points (thick solid lines), and several periodic orbits are shown, in addition 
to a couple of unbounded orbits (dashed lines.) Notice that, in cases where 
Fer has more than one maximum per period, the bounded orbit region will 
be more complicated, with saddles and more than one center in it. 

This is obvious from figure 5. A formal argument goes as follows: let z1 = 
zl(t) and z2 = z2 (t) be any two characteristics corresponding to orbits in D, 
with z1 the characteristic for the outermost orbit in D. Then both z1 and 
z2 are periodic functions of time, with max(zl) 2 max(z2 ) and min(zl) ::::; 
min(z2 ). Then max(z1 - z2 ) 2 max(zl)- max(z2 ) 2 0 and min(z1 - z2 ) ::::; 

min(zl) - min(z2 ) ::::; 0, so that z1 - z2 must vanish somewhere, in fact: 
at least twice per z1-period. Thus: a uniform bound on the crossing time 
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is given by the maximum of the orbit periods over the domain De. Note 
that: as the distance of De to the boundary of D gets smaller, the 
crossing time bound goes to infinity, because the orbit period grows 
unboundedly as the separatrix is approached (points on the separatrix take 
an infinite amount of time to move from saddle to saddle, while points inside 
D move on orbits with a finite period.) 

B. Using the result in A, we argue now that any part of the initial data con-
tained in a compact subdomain De of D, ceases to influence the solution 
after a finite time. This second result, of course, implies (2.2.31). 

The argument here is as follows: suppose that there is a characteristic 
connecting some point on the solution with the initial data in De. But then 
some neighborhood of this point (possibly one-sided, if the point is on a 
shock), connected with the initial data in De by a "beam" of characteristics, 
would exist. This is clearly impossible after the time given by the uniform 
bound in part A above. 

REMARK 2.5. The result in (2.2.31) is easy to visualize graphically (in terms 
of what the solution to equation (2.2.18) does as it evolves in time) using the phase 
plane for the evolution by characteristics in (2.2.21) ~as illustrated by figure 5. 
It should be clear that any part of the solution curve v = v(z, t), contained inside 
D, will be stretched and "rolled up" (as illustrated in figure 6) by the characteristic 
evolution along the periodic orbits of the Hamiltonian 

1 2 
h = 2v - Fer(z). 

This then leads to multiple values, which are resolved by the introduction of shocks. 
It should also be clear that, in this roll up process, the upper and lower envelope of 
the solution curve will be produced by stretching of the parts of the initial solution 
curve closest to the separatrix h = 0 ~ which will then be the only parts surviving 
after the shocks are introduced. 
Notice that this is a very "efficient" mechanism for the elimination of any part of 
the solution curve contained inside D. For all practical purposes, the elimination 
of these parts occurs in a finite time (roughly, the average "turn over" time for 
the periodic orbits), after which only a very small region near the critical level 
curve h = 0 can remain. As pointed out at the beginning of this subsection, this 
fact is clearly seen in the numerical experiments we conducted, with a very sharp 
separation of scales between the convergence times for the cases lwl > Wer and 
lwl < Wer· 

REMARK 2.6. The prior remark should make it clear that the key element in 
obtaining (2.2.31) is the existence of a small "band" of periodic orbits in D close 
to the separatrix. This is true even if Fer has more than two extremal points per 
period~ leading to several critical points inside D, not just a center. 
The critical thing to notice is that the initial data solution curve v = v(z, 0) must 
be periodic in z. Thus it is clear that: if any part of this curve ends up inside 
D, then there will have to be points where the curve crosses the separatrix h = 0 
going from C(D) to D, and vice versa. The neighborhoods of these points inside D 
will then be stretched and "rolled up" by the characteristic evolution, so that they 
are the only surviving parts of the initial data inside D (after some time.) Hence 
(2.2.31) will be valid, even if Fer has many extremal points. 
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Curve roll up by characteristic flow. 
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FIGURE 6. Solution curve roll up by the characteristic flow with the Hamil-
tonian h = t v2 +cos z - 1, and initial condition v(z, 0) = 0. The figure 
shows the initial conditions (dashed line) and the curve, as evolved by the 
characteristic flow, for timet= 27f. The parts of the curve near the saddles 
stretch to fill the critical h = 0 orbit (as t -+ oo), which is the only thing 
that survives after the shock is put in place. 

The result in (2.2.31) shows that, after a long enough time, the solution can cross 
the line v = 0 smoothly only in an arbitrarily small neighborhood of z = 0, where 
Fer vanishes (notice that a crossing is needed when lwl < Wcr, since the condition 
Mean(v) = -w cannot be satisfied if either v ~ Vcr = )2 Frr or v :::; -Vcr = 
-)2 Fer·) If there is such a crossing, it must be upwards, with v returning to 
negative values through a transonic shock. Moreover, the solution needs to lie 
entirely on C(D) or at most, if within D, in an arbitrarily small neighborhood of 
the separatrix h = 0. 

Once in the situation described in the prior paragraph, 5 1 in equation (2.2.30) 
becomes arbitrarily small (see remark 2.4). Since (as shown earlier) 5 2 , 53 , and 54 
are non-positive, it follows that the functional G, defined in (2.2.28), ran no longer 
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increase: it remains constant for solutions that are either smooth or only have 
shocks from J2Fcr to-~, and decreases for all other solutions. FUrthermore, 
the same argument we used for the case lwl > Wcr can be used to show that any 
parts of the solution (in C(D)) not lying on a single contour line h = constant, 
necessarily break and form shocks. Hence, as long as v(z, t) stays away from Vex, 
G decreases. Again, we conclude that the long time ( t --+ oo) asymptotic limit of 
the solution v = v(x, t) must be given by Vex(z) (which minimizes G.) 

3. Two Forcing Modes. 

In this section, we study the effects- on the solutions to equation (1.1.1)- of 
a forcing term consisting of the sum of two traveling waves of different speeds. For 
concreteness, we shall only consider the case in which one of these speeds is zero, 
corresponding to a perfect resonance, and we shall observe the changes in behavior 
as the other speed ranges from zero to infinity. To be specific, we will consider the 
equation 

(3.3.1) 
{ when 

f(x, t) = 9r(x) + 92(x-!! t) 
!! is a constant, 91 and 92 are 21r periodic smooth functions with vanishing mean, 
and u = u(x, t) is 27r periodic in space, with zero mean. We will assume !! > 0, 
since the case !! < 0 can be reduced to this one using the symmetry: x --+ -x, 
u --+ -u, and f --+ -f. 
When !! is small, the two forcing modes oscillate at nearly the same [resonant] 
frequency. Our interest in this situation arises from the general question of the 
effects of the superposition of many near resonant interactions in general systems. 
In order to estimate the combined effect of the interaction of a mode with very many 
others, one needs to assess the degree of phase coherence among the corresponding 
forcing terms. Such assessment depends fundamentally on the consideration of 
three issues: 

(3.3.2) 

1. How close to each other are the linear frequencies of the forcing 
modes. 

2. How much these linear frequencies are affected ["renormalized"] 
by nonlinear effects. 

3. How often do strong [intermittent] nonlinear events effectively 
reinitialize the phases of the various forcing modes. Also, do 
these reinitializations tend to randomize or rather further cor-
relate the various phases? 

It should be quite clear that these questions are not easy to answer. Moreover, 
once answers are assumed (see next paragraph), one has only defined the nature of 
the forcing; its effects on the evolution of the forced mode still need to be assessed. 
Furthermore, since the forcing arises from combinations of other modes which are 
also similarly forced, the problem has and enormously complicated nature. 

Attempts to bypass this great complexity often rely on universal assumptions, such 
as randomization of the phases and separation of the linear and nonlinear scales, 
which are very difficult to justify. Typically, these closures are sometimes successful 
·- in that their predictions agree with the observed behavior of the system under 
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study - and sometimes a radical failure, with the reasons for this disparity open 
to debate. 

Here we isolate the issue of the response to a given force, by prescribing the form of 
the forcing term. Moreover, we consider only two forcing modes, and prescribe their 
form and frequency as if they were not subject to nonlinear interactions themselves. 
By so reducing the complexity of the problem, we are able to resolve some questions 
regarding the effects of the degree of coherence of the forcing modes on the behavior 
of the forced mode. 

The plan of this section is the following: First we describe certain general 
features of the solution to equation (3.3.1). Then we study separately two limiting 
regimes, corresponding to 0 either very large or very small. In each case we study 
(analytically and numerically) the behavior of the corresponding solutions. 

Let us start by noticing that the forcing term in (3.3.1) is periodic in time, of 
period 2n/O. Since (3.3.1) is dissipative- though only through shocks, which are 
not necessarily present all the time - we expect that the solution u(x, t) will 
converge to a periodic pattern of the same periodicity. We have checked 
this numerically, by computing the quantity 

(3.3.3) {27r ( 2 ) 2 
D = Jo . u(x, t + ; ) - u(x, t) dx. 

In all the numerical experiments that we performed, D decreased rapidly, becoming 
effectively zero in about one or two periods of the forcing function. 

We shall now distinguish two distinct extreme regimes, with the general case be-
havior interpolating between these two. Of the two terms in the forcing, 91 = 91 ( x) 
is in resonance with u(x, t), since the latter has a vanishing mean (hence zero linear 
frequency in the unforced case.) On the other hand, the forcing 92 = 92 (x- 0 t) will 
be close to -or far from- resonance depending on the size of 0. When 0 » 1, we 
expect the leading order effect of 92 (x- 0 t) on u(x, t) to cancel, due to averaging. 
When 0 < 0 « 1, on the other hand, the effect of 92 can no longer be neglected. In 
this second case we expect 91 and 92 to combine into a single, quasi-steady force, 
yielding a quasi-steady solution u = u(x, 0 t) -very much a modulated version of 
the steady solution to (2.2.1), studied in section 2, for w = 0. Namely, in this last 
case we expect: 

(3.3.4) 

That this is roughly the case, yet with some interesting qualifications, will become 
clear in the analysis that follows. 

3.1. Case: 0 » 1; 92 far away from resonance. In this subsection, we 
show that, when n is large, the solution u = u(x, t) to (3.3.1) is close to the 
solution that one would obtain if the only forcing term were 91 ( x) - that is (to 
leading order) 92 has no effect. To see this, introduce the small parameter 
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Then equation (3.3.1) takes the form 

(3.3.5) ( 1 2) Ut + 2 U x = g1 (X) + g2 (X - T) , 

t 
where T = - is a fast time variable. We now propose the following asymptotic 

f. 
expansion: 

(3.3.6) 

where the dependence on Tis 21r-periodic. Then, at leading order, equation (3.3.5) 
yields 

(3.3.7) 

where G1 and G2 are the integrals of g1 and g2 , respectively (uniquely defined 
by the condition that both should have a vanishing mean.) We will assume the 
(generic) condition that G 1 has a single minimum per period. 

Integrating equation (3.3. 7) over one period (in T), we obtain 

(3.3.8) ====> uo ( x) = ± J 2 ( D + G 1 ( x)) , 

where D =- min(Gl), the solution crosses (continuously) from the negative to the 
positive root at the position of the minimum of G 1 , and has a shock (jumping from 
the positive to the negative root) at a position determined by the requirement that 
the average of u0 = u0 (x) should vanish. This leading order solution agrees with 
the solution that one would obtain if the forcing consisted exclusively of g1 (see 
section 2, for w = 0.) 

Substituting (3.3.8) into (3.3. 7) we then find that 

(3.3.9) u 1(x, T) =- G2(x- T) + p(x), 

where p = p(x) is a 21r-periodic function of vanishing mean, that is determined at 
the next order in the asymptotic expansion. Numerical experiments - not shown 
here- corroborate the results of this asymptotic analysis. 

3.2. Case: 0 < !! « 1; quasi-steady forcing. When 0 < !! « 1, we can 
(in principle) think of the solution to equation (3.3.1) as frozen in time near each 
value t = t0 . This yields a quasi-steady leading order solution u = u(x, !! t), where 
u(x, !! t0 ) is given by the steady state solution (section 2, case w = 0) to the case 
with a single forcing mode, with f = f ( x) = g1 ( x) + g2 ( x-!! t0 ). In this subsection, 
we shall discuss this quasi-steady solution in some detail. 

We begin with a simple asymptotic expansion that implements the idea in the 
paragraph above. Using!! as the small parameter, we write 

(3.3.10) u(x, t) = u0(x, T) + !!u1(x, T) + 0(!!2 ), 

where the dependence on T is 21r-periodic and T = !! t is a slow time variable. 
Then, at leading order, (3.3.1) yields 

(3.3.11) 
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Thus 

(3.3.12) u0(x, T) = ±j2 G(x, T), 

where G = G(x, T) is defined (for each T) by 

8G 
(3.3.13) ox =g1 (x)+g2 (x-T) and min (G)= 0. 

O~x<271" 

75 

In each period 0 ~ x < 27T the solution crosses (continuously) from the negative to 
the positive root at the point x = Xm ( T) where G = 0, and has a shock (jumping 
from the positive to the negative root) at a position x = s(T), chosen so that the 
mean of u0 vanishes. 

The solution (3.3.12) above works as long as G has a single minimum per period, 
in which case Xm = Xm(T) and s = s(T) are well defined and depend smoothly 
on T. However, there will generally be some special times, T = Tc, at which this 
fails. Generically G will have several local minimums, evolving in time, with one of 
them smaller than all the others. The (generic) special times occur when two local 
minimums exchange the property of being the global minimum. At these times Xm 
ceases to be smooth, jumps discontinuously from one position to another, and the 
expansion in (3.3.10) becomes inconsistent and fails. 

REMARK 3.1. As pointed out at the beginning of subsection 2.3 (and remark 2.5) 
the convergence of the solution to a steady state - when the forcing is time inde-
pendent - is generally very fast. Thus, we can be pretty sure that (3.3.10) will 
describe the behavior of the solution away from the critical times Tc. The question 
(which we will address below) now becomes: what happens forT~ Tc? 

On each side of a critical time Tc, the expansion in (3.3.10) is valid, but the position 
of the shock (x = s(T)) and the zero (x = xm(T)) jump across T = Tc, implying 
a discontinuous global change in the solution u. Hence, there is a set of discrete 
times when the solution u needs to adjust "rapidly" from one quasi-steady state to 
another (0(1) away) one. The existence of these adjustment processes, which 
we will call "storms", raises the following questions: 

(3.3.14) 

1. What is the time-scale (i.e., the duration) of a storm? 
2. During a storm: are there significant effects in the energy 

exchange between the forcing function f = f(x, t) in (3.3.1) 
and the solution u = u(x, t)? That is to say: is the work per 
unit time 

{211" 

Wt = Jo fudx, 

done by the external force, significantly affected by the storm? 

REMARK 3.2. Notice that the total energy (as follows from equation (3.3.12)) 

(3.3.15) 1211" 1 12rr 
E ~ - u6(x, T) dx = G(x, T) dx 

0 2 0 

is a continuous function of T for the quasi-steady solution, even though u0 itself 
is not. This implies that any extra energy exchange between u and the forcing f 
during a storm will need to be matched by extra dissipation over the course of the 
storm. 
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REMARK 3.3. Away from the storms, the asymptotic solution in (3.3.10) shows 
that there is a leading order balance between the work Wt done by the forcing f 
on the solution u, and the energy Ed dissipated at the shocks. Namely: 

(3.3.16) 

This, of course, is in agreement with the fact that the total energy E is a slow 
function of time (E = E(r), as shown by equation (3.3.15).) This suggests the 
following extra question, related to 2 in (3.3.14) above: How is the balance in 
(3.3.16) affected by a storm? 

Before attempting to answer these questions analytically, let us set up a simple 
example, that will help both make the discussion concrete, and verify its results 
through numerical experiments. Let us select a forcing term of the form 

(3.3.17) f(x, t) = sin(x) + 2 sin(2(x- f! t)), 

in equation (3.3.1). Then G, as defined in (3.3.13), is given by: 

(3.3.18) G = J f(x, t) dx = C (f! t)- (cos(x) + cos(2(x- f! t))) , 

where C = max(cos(x) + cos(2(x- f!t))). The critical times at which the zero of 
X 

G jumps are given by 

(3.3.19) 
(2n+l)7r 

tn = 2 f! , 

where n is an integer. At these times 

(3.3.20) G(x, f! tn) 
1 2 S (1- 4cos(x)) , 

and 

(3.3.21) 
1 ± 2 II - 4 cos( x) I 

with two candidate crossings of zero. 

At the critical times tn (of which there is one per period), there are two solutions 
u0 (x) of the form (3.3.21), in which u0 switches from negative to positive at one 
of the zeros, has a corner at the other, and switches once from positive to negative 
through a shock, at a position determined by the condition that u0 has a vanishing 
average. The quasi-steady solution given by the asymptotic expansion in (3.3.10) 
approaches one (or the other) of these two solutions as t -t tn from below (or 
above.) 

REMARK 3.4. In addition to the two special solutions mentioned in the prior 
paragraph, there is a full one-parameter family of solutions (of which the two 
solutions just described are extreme cases.) In this family, both zeros of u0 are 
used for upward (negative to positive) crossings, and there are consequently two 
shocks switching the solution back to negative. The positions of these two shocks 
are related by the constraint on the average of u0 , which leaves one free parameter. 
The relevance of this one parameter family of solutions is that, during a "storm", the 
actual solution u(x, t) sweeps this family, one member at a time, at an intermediate 
rate, faster than O(f! t), but slower than O(t). Before showing this curious result 
through an asymptotic expansion, we illustrate it with a numerical solution. 
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Figure 7 displays the (numerical] solution to equation (3.3.1) with the forcing given 
by (3.3.17), starting from the asymptotic solution shortly before the critical time 
t 1 , for a value of the frequency !1 = 0.01, not exceedingly small. The dotted 
line gives the envelope for the asymptotic, quasi-steady solution u0 (x, r) (i.e.: the 
curves u = ± v"iG.) In this figure we can see the actual solution u = u(x, t) 
switching its upward crossing point from one zero of G(x, !1 t 1 ) to the other, through 
a relatively fast transition, involving the development, growth, travel and eventual 
disappearance of a second shock. During this transition, the solution sticks very 
closely to the envelope of the quasi-steady solution. The slight disagreement, most 
visible in frame (e), is due to the finite size of !1: as !1 gets smaller, the full "storm" 
takes place with the envelope nearly constant, and we should compare it with the 
"critical" envelope (that has two zero crossings per period.) 
Figure 8 shows the total energy of the solution as a function of time, for a full 
period2 in time Jr/!1, and four values of the frequency, from !1 = 1/50 to !1 = 1/400. 
Note that this figure shows the energy converging to a function of time with a corner 
at t 1 , as the frequency !1 tends to zero (the limit is the function given by equation 
(3.3.15), for this special case when G is given by (3.3.18).) Such a cornered energy 
function corresponds to an instantaneous storm, which changes the phase of the 
solution discontinuously at t = t 1 . 

A more thorough understanding of the energetics of a storm is gained by looking 
at either the energy dissipation rate Ed = Ed(t) (caused by the shocks), or the 
work Wt = Wt(t) done by the forcing (see figures 9 and 10). Both show a marked 
spike during the storm, approximately duplicating the regular amount of work 
and dissipation. The doubling of the energy dissipation rate is easily explained as 
arising from the appearance of an extra shock during a storm, of a size comparable 
to the regular one. The close agreement between the energy dissipated and the 
work performed by the forcing, on the other hand, can be explained by the slow 
evolution of storms, faster than the regular 0(!1 t) rate, but clearly slower than a 
O(t) rate. Hence, at any particular time, the energy input and output need to be 
in balance to leading order. In other words: even during a storm the solution 
is quasi-steady (as we will show below.) 
The points just raised bring us back to the natural question of what is the time-scale 
for a storm (namely, question 1 in (3.3.14).) Quantifying this time scale will tell us 
how significant storms are from the viewpoint of energy exchange: fast storms do 
not have time to affect the energy exchange significantly, while slower storms do. 
Notice that the storms have a very definite duration in figures 9 and 10: they start 
and end rather abruptly. Measuring these durations suggests that they scale with 
the square-root of the frequency !1. That this is precisely the case can be inferred 
from the following asymptotic argument: 

Consider, during a storm3 an asymptotic expansion of the form 

(3.3.22) u(x, t) = u0 (x, T) + J u 1 (x, T) + O(J2 ), 

where T = J ( t - tc), and !1 « J « 1 is a small parameter to be determined ( J 
gives the storm time scale.) The right hand side f = f(:r, r) in equation (3.3.1) 

2Note that, because 92 in (3.3.17) has period 1r, in this case the long time asymptotic solution 
to (:3.3.1) has period 1r jn in time not 21r jn, as in the general case. 

3 Taking place fort"'" tc = Tc/n, where Tc is defined below equation (:3.3.13). 
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Solution for time: t = 0.480 (tr.lro), with ro = 0.01 Solution for time: t = 0.500 (tr.lro), with ro = 0.01 
3r---~--~--~--~----~--~ 3'r---------------------~--~ 

.· 
u 0 

·1 

.... _.... .. ...... 
~0 ~0~--~--~--~--~~--~--~ 

X X 

Solution for time: t = 0.510 (tr.lro), with ro = 0.01 Solution for time: t = 0.520 (tr.lro), with ro = 0.01 3 3r---------------------~--~ 

·1 
', 

·2 

X 

Solution for time: t = 0.575 (tr.lro), with ro = 0.01 

·2 

' 3 o~--~--~--~3--~:----~--~ 
X 

Solution for time: t = 0.584 (tr.lro), with ro = 0.01 
3r---~--~--~--~----~--~ 3r---------------------~--~ 

·1 

·2 

·3 
0 

Dashed. line: quaal-steady .. M ~ .. 

solution envelope. " " 

X 

:~:~:.,~~'::'~i:::~·~~.----- ':'' '' 
' u 0 

·1 
·' 

·2 

·3 
0 3 

X 

FIGURE 7. Asymptotic t -+ oo solution to the e1uation Ut + ( ~ u2), = 
sin(x) + 2 sin(2 (x - 0 t)), with 0 = 0.01. Time slices of the solution 
are shown for t near the critical time tc = 1r / (2 0), when Fer has a dou-
ble zero. The asymptotic solution is periodic in time, of period 1r /0. 
Because 0 is small, the solution is quasi-steady at all times. The plots here 
illustrate the evolution in the time scale O(v'fit), with corrections of order 
O(v'O). fort near tc (when a double shock arises.) Fort away from tc the 
solution is close to the unique quasi-steady solution of the problem. For t 
close to tc the solution evolves following the one parameter family of quasi-
steady solutions possib:~ when t = tc. Two shocks arise in this stage. 
Left to right and top to bottom, the figures show the solution (and the 
envelope ±-,fiF;;. for the quasi-steady solution, in a dashed line) for the 
times: (a) t = 0.480 (1rjO), (b) t = 0.500 (1rjO), (c) t = 0.510 (1rjO), (d) 
t = 0.520 (1rjO), (e) t = 0.575 (1rjO), and (f) t = 0.584 (1rjO). 
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Energy. 

~~---7o. 72---- 7o. 74---- 7o.6~---70.8~--~ 
(Olin) t 

~~--~o. 72---- 7o. 74---- 7o.6~---0~.8~--~ 
(Olin) t 

Energy. 

~~--~0.~2----~0.-4----~0.6 _____ 0~.8----~ 0.2 0.4 0.6 0.8 
(Olin) t (Olin) t 

FIGURE 8. Energy E = E(t)- shown over one period 0::::; (Oj1r)t::::; 1 in 
time -for the t -t oo asymptotic solution for the equation Ut + ( ~ u2 )x = 
sin(x) + 2sin(2(x- Ot)). Left to right and top to bottom, plots for the 
cases n = 1/50, n = 1/100, n = 1/200, and n = 1/400 are shown. 

can expanded in the form 

(3.3.23) 
n 

f(x, T) = f(x, Tc) + 'J T fr(x, Tc) + ... , 

where T = 0, t, as in the expansion in (3.3.10). Substituting (3.3.22) and (3.3.23) 
into equation (3.3.1) we obtain, to leading order: 

(3.3.24) ua(x, T) = ±)2 Gc(x), 

where Gc = G(x, Tc), and G is as in (3.3.13). Because T = Tc, generically Gc will 
have two zeros per period, and the dependence of u0 on T is through the position 
of the two shocks in (3.3.24). That is: u0 must be a member of the one parameter 
family of solutions that the steady state problem has at the critical times (see 
remark 3.4), with the parameter a function ofT. 
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FIGURE 9. Energy dissipation rate Ed = Ed(t) - shown over one period 
0 :=:; (Oj1r)t :=:; 1 in time - for the t -+ oo asymptotic solution for the 
equation Ut + (~u 2 )x = sin(x) + 2sin(2(x- Ot)). Left to right and top 
to bottom, plots for the cases n = 1/50, n = 1/100, n = 1/200, and 
fJ = 1/400 are shown. The width of the dissipation spike near the time 
where the shock in the quasi-steady solution changes location, behaves like 
6.t ;::::: 1/\i'TI. The energy dissipation rate for the quasi-steady solution is 
shown by the dotted line. 

At the next order in the expansion we have, on each side of the equation: 

(3.3.25) 

which requires (j = vTI in order to balance. Hence the (intermediate) time-scale, 
valid during storms, is given by T = vTI t, as suggested by the numerical experi-
ments. 

Answers to the questions posed earlier. 
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Work done by forcing. Work done by forcing. 

0.2 0.4 0.6 0.8 
(m/1t) t 

Work done by forcing. Work done by forcing. 
14 
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w 

8 

6 

0.8 40 0.2 0.4 0.6 0.8 
(ml1t) t 

FIGURE 10. Work done by the forcing W1 w,(t) - shown over one 
period 0 :::; (D./rr)t :::; 1 in time - for the t ~ oo asymptotic solution for 
the equation Ut + (~ u2 )x = sin(x) + 2sin(2 (x- D.t)). Left to right and 
top to bottom, plots for the cases n = 1/50, n = 1/100, n = 1/200, and 
D. = 1/400 are shown. Note how closely the work done and the dissipation 
match, as a consequence of the fact that the solution, at all times, is fairly 
close to a quasi-steady solution. 

We can now answer the questions that were posed earlier in this subsection as 
follows: 

(3.3.26) 

A. Storms have a typical duration ilt = 1/v'fi, evolving on 
an (intermediate slow) time-scale T = v'fi t (question 1 in 
(3.3.14).) 

B. During a storm both: the work per unit time W1 by the 
force f, and the energy dissipation rate Ed by the shocks are 
(roughly) twice as large as their values away from a storm, 
since the solution has two shocks during a storm, and only 
one away from it (question 2 in (3.3.14).) 

C. Combining the answers in A and B, we see that the overall 
excess dissipation caused by a storm is 0(1/v'fi). 

D. Storms alter the balance between dissipation and work given 
by (3.3.16), replacing it by 

Ed- W1 = O(v'fi). 
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As pointed out in the introduction to this paper, the fact that the effects caused by 
a storm scale with vn, not f!, may have important consequences when considering 
the effects of a complex set of near-resonances (something that escapes the scope 
of this present paper, and which we plan on investigating in future work.) 
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Traveling surface elastic waves in the half-plane 

Panayotis Panayotaros 

ABSTRACT. We develop a perturbation theory for small amplitude traveling 
surface elastic waves in the half-plane, and apply the theory to various non-
linear hyperelastic materials. For such media the traveling wave problem has 
a variational structure and we use this structure to study an equation for the 
first approximation to the shape of the waves. We find evidence for traveling 
wave solutions where the elastic displacement has cusps at the boundary. 

1. Introduction 

In this contribution we study small amplitude non-linear traveling surface elas-
tic waves in a solid occupying the half-plane. These traveling waves describe elastic 
displacements that are translated with uniform velocity in the direction parallel to 
the surface of the medium. 

Our main motivation for considering the problem is related to the common 
interpretation of traveling waves of permanent form as solutions bifurcating from 
the trivial solution. This viewpoint has been very useful in proving existence of 
periodic traveling wave solutions in dispersive wave equations, and can be thought 
of as a rigorous version of Stokes' perturbation theory for water waves. On the other 
hand, linear surface elastic waves in the half-plane are non-dispersive, and traveling 
wave solutions would correspond to solutions bifurcating from an eigenvalue of 
infinite multiplicity (this eigenvalue is the square of the speed of the linear traveling 
waves). 

To study the possibility of such a bifurcation we have developed (see [Pa]) a 
systematic perturbation theory that is formally analogous to solving the bifurcation 
and complementary equations appearing in Liapunov-Schmidt reduction order by 
order in a suitable small parameter. The bifurcation equation is here replaced by an 
infinite set of solvability conditions. The first solvability condition is a non-linear 
equation for the lowest order part of the traveling wave solution, and coincides with 
equations originally derived and studied numerically by [PT] and [La]. The second 
and higher order solvability conditions are linear and share a common structure, 
involving the linearization of the first solvability equation around its solutions. The 
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84 PANAYOTIS PANAYOTAROS 

solvability equations are infinite dimensional, but involve the boundary values of 
the elastic displacement, i.e. the displacement inside the domain can be at each 
order determined by its boundary values. 

For hyperelastic materials the traveling wave equations as well as the solvability 
conditions have the structure of a constrained variational problem. This observation 
is particularly useful in studying the first solvability condition, where there has 
been some controversy regarding the limits of the numerical solutions of [PT] (see 
[HIZ]). Here we consider three hyperelastic materials and we find evidence for 
numerical solutions with non-trivial limits. An interesting feature of these solutions 
is that they describe surface elastic displacements with discontinuities in their first 
derivative, specifically, cusps in the horizontal component of the surface elastic 
displacement. 

2. The traveling wave problem 

We consider a homogeneous elastic medium occupying in its undeformed state 
the half-plane H = {(y1,y2 ) E R 2 : y 2 2: 0}. A deformation of the body will take 
a point originally at (yl,Y2) to a new position Yi +ui(Yl,Y2), i = 1,2, and we can 
describe time dependent elastic motions by the evolution of the displacement vector 
field u defined on H. Elastic forces are described by the (first Piola-Kirchhoff) 
stress tensor Ti,j, i,j = 1, 2, a specified function of the derivative \lu of the elastic 
displacement, and the equations of motion of elasticity have the general form 

(2.1) 
2 

8ttui = l::ay1 Ti1, i = 1,2, in H. 
j=l 

In the problem of traveling waves of permanent form we are seeking solutions that 
have the form ui(y1 - ct, y2 ), i = 1, 2, with c the unknown velocity. If we also 
require that no external forces be applied at aH, traveling wave solutions must 
then satisfy 

(2.2) 
2 

c28x,x 1 Ui=l::ax1 Tij, in H, 
j=l 

2 

2::: Tijnj = 0 at aH, i = 1, 2, 
j=l 

where Xl = Yl- ct, X2 = X2, and n is the outward unit normal at aH. We will also 
impose the decay condition 

(2.3) lim u(x1,x2) = 0, 'v'x 1 E R, 
X2---4CXJ 

and periodicity in the horizontal direction, i.e. 

(2.4) 

With these boundary conditions we will be working in the half-cylinder D obtained 
by identifying x2 = 1r and -1r. 

We are particularly interested in the traveling wave problem for hyperelastic 
materials, where the stress Ti,j is given by 

(2.5) Tij = 
aW(\lu) 

OUi,j 
i,j = 1,2. 
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Physically, W is the potential energy density. We will write W = W L + W N L, 
with WL quadratic and wNL cubic or higher order in 'Vu. The linear part of the 
traveling wave equations will be here specified by 

(2.6) 
1 

where '"Y = 2['\i'u + (V'uf], 

and >., p, > 0 are the Lame constants. (2.6) is the quadratic part of the most 
general potential energy for isotropic materials. We will also denote the stresses 
corresponding to W L, W N L through (2.5) by TL, TN L respectively. 

The linear traveling wave problem corresponds to the choice T = TL in (2.5). 
The problem was considered by Rayleigh (see e.g. [Lo]), and we summarize the so-
lution as follows. First, there exists a unique speed of propagation c2 = c5 (depend-
ing on >.,p,). Also, all solutions have the form ui(x1,x2) = EkEZakeikx'vi(k,x2), 
i = 1,2, with 

(2.7) v (k x ) = i~ (-Ae-lk]Ax2 + ~e-lk]Bx 2 ) k E Z \ {0}, 
1 ' 2 JkJ A2 + 1 ' 

(2.8) v (k x ) = (e-]k]Ax2 _ 2AB e-]k]Bx2) 
2 ' 2 A2 + 1 ' k E Z \ {0}, 

and ak E C arbitrary (a-k = ak for real displacements). The constants A, B are 
given by A2 = 1 - 4 B 2 = 1 - _4___ For k = 0 we have the trivial solution 1-'' >-+21-' 
vi(o, x2) = o, i = 1, 2. 

Therefore, the space of solutions to the linear problem is infinite dimensional 
and all solutions propagate at the same speed. Also note that linear traveling 
solutions are determined by their value at 8D = 8 1 . 

In the perturbation theory we develop in the next section we will also consider 
the inhomogeneous linear traveling wave equation 

(2.9) '\7. TL(u)- c5a;, u = F in H, TL(u). n = f at 8H, 

with the decay and periodicity conditions (2.3), (2.4). The functions F = [F1 , F2] : 
H-+ R2 and f = [!l,h]: 8H-+ R2 are also assumed to be 21r-periodic in x1, 
and F decays as x 2 -+ oo. In order for (2.9) to have a solution, it is necessary that 
F and f satisfy 

(2.10) fooo v*(k, x2) · F(k, x2)dx2 - v*(k, O) · j(k) = o, Vk E Z\ {0}, 

where the v(k,x2) = [v2 (k,x2),v2 (k,x2 )] are as in (2.7), (2.8), and Fk, fk are the 
Fourier coefficients of F, f respectively. Assuming that the solvability condition 
is satisfied, we can explicitly construct a solution w of (2.9) (see [Pa], Appendix 
A), so that the general solution will have the form u = w + v, with van arbitrary 
solution of the homogeneous system. 

3. Small amplitude non-linear traveling waves 

To obtain a formal expansion for non-linear traveling waves we look for solutions 
of (2.2) of the form 

(3.1) u = o:ullJ + o:2u[2] + o:3u[3J + ... ' c2 - c5 = o:>.l + o:2 >.2 + o:3 >.3 + ... ' 
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with the u[i] satisfying the periodicity and decay conditions (2.3), (2.4). Physically, 
the "small parameter" a is the ratio of the boundary displacement ( u 1 or u 2 ) to the 
horizontal period. To simplify the notation we will assume that TN L = TN L ( u, u) is 
quadratic in the displacement. Using the expressions of (3.1) in (2.2), and setting 
the coefficients of powers of a to zero, we obtain a sequence of linear equations for 
the u[i] and >.;. At order a 1 we have 

(3.2) 'V · TL(u[l])- pc2o;, 1 u[l] = 0, in H, TL(u[l]) · n = 0 at oH, 
so that we can set u[l] = v[l], with v[l] an arbitrary solution of the homogeneous 
linear traveling wave equation. At order a 2 we have 

(3.3) in H, 

(3.4) 

The solvability condition (2.9) for this inhomogeneous system for u[2l will then give 
us a non-linear equation for v[l] and >. 1 , and it is this equation that selects the 
lowest order terms in the expansion (3.1). Assuming that the solvability condition 
has solutions we can construct explicitly a formal solution w[2l of (3.3), (3.4). The 
general solution of (3.3), (3.4) will then have the form u[2l = w[2l + v[2l, with v[2l 
an arbitrary solution of the homogeneous linear traveling wave equation, to be 
determined together with >. 2 by the solvability condition for the equation for u[3l. 
The procedure can be thus iterated to higher orders. At each order ar, r 2: 2, 
we have the inhomogeneous linear traveling wave equation for u[r], with the right 
hand side depending on a solution v[r-l] of the homogeneous problem, Ar-l, and 
previously determined terms. The v[r-l], >-r-l will be determined by the solvability 
condition (2.9), and the solution will have the form 

(3.5) u = av[l] + a 2 (v[2] + w[2l) + a 3 (v[3l + w[3l) + ... , 
with the w[r] explicitly given solutions of the inhomogeneous equations. 

The main question is whether we can use the above scheme to produce the 
formal expansion (3.1). The key lies in finding the v[r] and An r 2: 1 through 
the solvability conditions, and we start our discussion with some observations and 
comments regarding the general structure of these equations. 

First, note that the solvability conditions are equations for solutions of the ho-
mogeneous linear traveling wave equations and are thus equations on 5 1 . Although 
we are reducing the spatial dimension of the problem we have to solve an infinite 
sequence of integra-differential equations (it will be more convenient here to write 
the spectral form of these equations). 

The first solvability condition, which we abbreviate as S[l] ( v[l], >.I) = 0, is 
quadratic in v[l] and homogeneous in v[l], >. 1 . The solvability conditions for the 
higher order terms v[r], An r > 1 are linear equations for the v[r], and all have the 
form 

(3.6) 

where L is the derivative of S[l] ( v[ll, >.I) with respect to the first argument, evalu-
ated at a solution of the first solvability condition, and G[r] depends on previously 
determined terms (ultimately on v[ 1l). Also, the k-th Fourier coefficient of (Lv[rl) 
is fv v'k. {)~1 v[rJ. 
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Another general observation, shown in [Pa], is that in the case of hyperelastic 
materials, all the solvability conditions have a variational structure and can be 
written as 

(3.7) 

with clr] the Fourier coefficients of vlrl, and Vn Ir appropriate functionals. 
The above observations also apply to non-linearities with cubic and higher 

order terms. The first solvability condition will involve only the quadratic terms, 
while the higher order solvability conditions will have the form of (3. 7). The higher 
order non-linearities will be absorbed in the part Q[r] that depends on previously 
determined terms of the expansion. 

The formal analogy of the procedure we described with Liapunov-Schmidt re-
duction is through the decomposition (3.5) of the solution to a component belonging 
to the kernel of the linear traveling wave operator and a component solving the in-
homogeneous system. A similar perturbation theory has also been used in problems 
of static elasticity (see [CPG]). 

4. The first solvability condition 

By (2.9) and (3.3), (3.4) the first solvability condition is the set of equations 
( 4.1) 

Sl1](v[lJ, ,\1) =- { v*(k) · (\7 · TNL(vlll, vlll)) + { i,*(k) · (TNL(vlll, vl11) · n,)+ 
lv lav 

+AlP l v*(k) ·a;, vl1l = 0, k E Z \ {0} 

Writing 

(4.2) vlll= L 41Jeipx,v(p,x2), 
kEZ\{0} 

with v(p,x2) [vl(p,x2),v2(p,x2)] as in (2.7), (2.8), we can solve (4.1) numeri-
cally by considering its Galerkin (spectral) projections. In the case of hyperelastic 
materials, ( 4.1) is also equivalent to 

( 4.3) 

where V1 is the cubic part of the potential energy, and h ( vl 1l) = ~ fv :Z::::7=l (8x, v)11 )2 . 

This variational interpretation also holds for the Galerkin projections of (4.1), with 
V1 , h replaced by their restrictions Vt, I[" to the subspaces spanned by N modes. 
The level sets of the I[" are ellipsoids in R 2N, and this implies that the Galer kin 
projections of (Z1.1) have non-trivial solutions. The main question is therefore the 
limiting behavior of these approximate solutions as N increases. 

By the homogeneity of ( 4.1) in v)1l and ,\1 , multiplying a Galer kin solution v~l, 
-\f by any constant we obtain another solution. Given thus a sequence of solutions 
of Galerkin systems with larger and larger number of modes we can scale them 
arbitrarily. In this work we set a uniform scale, so that all Galerkin solutions lie 
on an ellipsoid of a fixed radius. Specifically, we set ,\ 1 = 1 and solve the Galerkin 
projections of ( 4.1) with N 1 < N 2 < . . . modes numerically, using the hybrid 
Newton's method of [Po]. We then scale the numerical solutions ii~l by suitable 
factors o:N, so that v~~ o:N, v~~ lie on If'' = 1. The result is a' sequence of 
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1(a) 1(b) 

FIG .1. Horizontal (a) and vertical (b) surface elastic displacements 
for model NLl. 

2(a) 

-l.~c---;------cc---;------cc----:------cc----:-~ 
_, x1 e f-tt,n) 1 

2(b) 

FIGURE 2. Horizontal (a) and vertical (b) surface elastic displace-
ments for St.Venant-Kirchhoff material. 

Galer kin solutions v~~, Af', with Af1 = aN;. Note that the sequence of v~~ yields 
a sequence of surface displacements that have weakly convergent subsequences in 
£ 2 ( S1), although we can not rule out the possibility of solutions converging to the 
trivial surface displacement. 

The first solvability condition was solved numerically for three hyperelastic 
materials. The first two are toy models with non-linearity given by the cubic 
potential energy densities 

We also considered the St.Venant-Kirchhoff material (see [C], ch. 4), where the 
potential energy density is 

The quadratic part in (4.5) is precisely given by (2.6). The Poisson ratio was set 
to ~-
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3(a) 3(b) 

c c c c 

50 100 150 200 ~ 300 350 400 450 500 50 100 150 200 ~ 300 350 400 450 500 

FIGURE 3. Speed corrections ..\1 for NL1 (a) and St.Venant-Kirchhoff 
(b) models. 

Figures 1, 2 show the surface displacement v[1l(x1 , 0) for WfL and the St.Venant-
Kirchhoff material respectively, with (a) and (b) the horizontal and vertical com-
ponents of v[l] (x1, 0) for each material. Note that we have looked for solutions of 
prescribed parity. In all figures we show the results obtained with 500 modes. The 
shown shapes become well defined with truncations containing about 100 - 150 
modes, and then we observe small change, mostly finer oscillations that decrease 
in amplitude. For instance, evaluating the surface displacements at 2500 uniformly 
distributed points in [-1r, 1r) we see that the difference between the respective com-
ponents of surface displacements obtained using 400 and 500 modes is bounded by 
2 X 10-2 for the solutions of Figures 1(a), (b) and by 2 X 10-3 for the solutions of 
Figures 2 (a), (b). The pointwise difference is in all cases oscillatory and its integral 
over [-1r,1r) is in the range 10-6 - 10-5 . The sequences of .Afi corresponding to 
Figures 1, 2 are shown in Figures 3(a), (b) respectively. They appear to converge 
to non-zero values. Similar results are obtained for the model W2NL (see [Pa)). 

An interesting feature of the numerical solutions shown is the appearance of 
well defined cusps in vPl (x1 , 0) for all the non-linearities considered, while v~ 1 J (x1 , 0) 
appears to be differentiable. The numerical results shown correspond to sequences 
of Galerkin solutions that appear to converge to non-trivial shapes, and suggest 
that non-trivial solutions to the first solvability condition may exist. Note that by 
(2.7), (2.8), vP1(x1,x2) is smooth in the interior of D. 

We also found a second type of numerical solutions that yield sequences of 
surface displacements that appear to converge (in £ 2(81)) to the trivial displace-
ment. Sequences of numerical solutions of this type were observed for all three 
non-linearities we considered (see [Pa)). 

5. Discussion 

The solutions of the first solvability conditions we presented are quite similar 
to the numerical solutions of [PT), although the higher spatial resolution used here 
allowed us to see well defined cusps in the horizontal surface displacement that were 
not observed before. [HIZ) on the other hand found only the Galerkin solutions 
that converge to the trivial displacement, and argued that no non-trivial solutions 
should exist. Here the variational formulation guaranteed the existence of Galerkin 
solutions and we were able to focus on the limits of the sequences v~~, .A~Nd. Also 
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the constraint gave us a natural common scale for the Galerkin solutions and we 
have identified two types of sequences of numerical solutions, namely sequences 
with apparently non-trivial limits, and sequences of solutions approaching the zero 
displacement. We thus consider that we have evidence for non-trivial solutions 
of the first solvability conditions and that the results of [PT] and [HIZ] can be 
reconciled. Clearly however, it would be desirable to have rigorous results on the 
question. 

The formalism we described applies to other non-dispersive media. If the do-
main has no intrinsic length scale (examples are the half-plane, the wedge etc.), 
traveling linear waves that decay away from the boundary will have no disper-
sion and the investigation of the non-linear problem leads to infinite dimensional 
solvability conditions similar to the ones encountered here. The first solvability 
condition is also the equation for the traveling wave solutions of an asymptotic 
evolution equation describing 0(~:) amplitude surface waves over an O(c1) time 
(see [H]). This model equation and the first solvability condition should thus be of 
intrinsic interest. 
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Numerical Study of Two-Dimensional Stratified Turbulence 

Leslie M. Smith 

ABSTRACT. In an effort to gain further insight into phenomena associated with 
dispersive wave turbulence, numerical simulations are used to study homoge-
neously stratified, two-dimensional turbulence forced randomly at small scales. 
Consistent with what has been observed in simulations of rotating turbulence, 
the flow characteristics change dramatically when the Froude number passes 
through the value one, where the Froude number is defined in terms of the 
energy input rate and peak wavenumber of the force. For Froude numbers less 
than approximately one, the transfer of energy from small to large scales is 
anisotropic, leading to population of the slow manifold only, which in this case 
corresponds to vertically sheared, horizontal motions. There is evidence that 
resonant triads play an indirect but crucial role in the anistropic transfer to 
the slow modes. 

1. Introduction 

Fundamental models for geophysical flows involve the complex interaction be-
tween waves and turbulence, e.g., the ,8-plane model, the rotating shallow water 
equations, the Navier Stokes equations in a rotating frame, the Boussinesq equa-
tions, and the Boussinesq equations in a rotating frame. Numerical studies fo-
cusing on the anisotropic transfer to large scales for forced, weak turbulence have 
been performed for ,B-plane flow [1, 2] three-dimensional (3D) rotating flow [2] and 
two-dimensional (2D) flow on a sphere [3]. Strong transfer from small to large 
scales in 2D flows, including ,B-plane flow, is by now taken for granted, with well-
established theoretical understanding [4]. The demonstration of such in fully 3D 
rotating flow was unexpected by many, and is lacking in mathematical foundation. 
Based on dimensional considerations, Rhines [5] predicted the large-scale ,B-plane 
spectrum E(k) ex: k- 5 instead of E(k) ex: k- 513 as in isotropic 2D turbulence [4]. 
Later, numerical simulations [1, 2) uncovered the anisotropic nature of the large-
scale ,B-plane spectrum, i.e. the fact that E( k) ~ E( kx = 0, ky) ex: kJ;5 . For 3D 
rotating flow, the analogous large-scale spectrum E(k) ~ E(kh = 0, kz) ex: k-; 3 

with k~ = k; + k~ is also supported by numerical simulations [2]. However, a first 
principles analysis starting from the equations of motion has yet to be developed 
for the central feature of anisotropic transfer in any dispersive wave system. 

The present study is a step towards a more complete understanding of dispersive 
wave flows in the regime of weak turbulence, defined here as the regime in which 
nonlinear inertial forces are essential, but smaller than dispersive wave effects. The 

© 2001 American Mathematical Society 

91 

http://dx.doi.org/10.1090/conm/283/04716

Licensed to Univ of Arizona.  Prepared on Wed Jul 30 10:42:07 EDT 2014 for download from IP 128.196.226.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



92 LESLIE M. SMITH 

focus is on the transition from isotropic to anisotropic transfer of energy from small 
to large scales as the Froude number is decreased. Previous numerical studies of 
2D stratified turbulence have focused on other phenomena, such as wave breaking 
[6, 7], flow over obstacles [8, 9], and stability [10]. Two-dimensional stratified 
turbulence may be a test case for theories of dispersive wave turbulence. Despite 
the limitation of zero potential vorticity, 2D stratified turbulence is not without 
merit as a model in its own right (see, e.g. [6, 7]). The Boussinesq equations 
for stratified flow are presented in Section 2. Section 3 gives parameter definitions 
and details of the numerical calculations. Section 4 describes the numerical results. 
Some of the many open questions are discussed in Section 5. 

2. The governing equations and linear eigenmodes 

The Boussinesq equations for vertically stratified flow are, in dimensional form, 
(e.g., [11]) 

(1) 

(2) 

(3) V·v=O, 

where v = u(x, z)x + w(x, z)z is the Eulerian velocity, Pis the effective pressure, 
N the buoyancy frequency, D I Dt = a I at + v . v is the material derivative, 1/o 

is the kinematic viscosity, "' is the diffusion coefficient and 0, which has units of 
velocity, is proportional to the density fluctuations. The total mass density p has 
been decomposed as 

(4) b , p' __ (bpgo) 112 
(), P =Po- Z + P' 

where p0 is a reference density, b is a positive constant (for uniform, stable strat-
ification), z is the vertical coordinate and g is the gravitational acceleration. The 
buoyancy (Brunt-VaisaUi) frequency N is 

(5) 

The term fu in (1) represents external forcing of the velocity; note that we do not 
consider external forcing of the density fluctuations (). It is interesting to note 
that equations (1)-(3) are exactly the same as the equations for three-component 
(3C), two-dimensional flow rotating about the x-direction at rate N 12, with velocity 
v = u(x, z)x + O(x, z)y + w(x, z)z. In this equivalence,() ex: p' plays the role of the 
velocity in the y-direction. The analogy between stratified flow and rotating flow 
in the linear limit is well-known; this analogy holds also for the fully nonlinear 
equations in the 3C-2D case. Note also that since the vorticity w is in the y 
direction and density p = p(x, z), then the potential vorticity w · V p is identically 
zero. 
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For an unbounded or periodic domain, the linear eigenmodes of (1-3) are Fourier 
modes (internal gravity waves) 

(6) (;) (x, t) = ¢(k)ei(k·x-a(k)t) 

where ¢ = (v, e). There are only two modes per wavevector as a result of the 
continuity constraint (3). Substituting (6) into the linearized form of the equations 
(1)-(3) leads to the dispersion relation for the internal gravity waves 

(7) a(k) = ±Nkx 
k 

where k = jkj. The eigenfunction ¢+ corresponding to a+ in (7) is 

(8) 

The eigenfunction ¢- corresponding to a- in (7) is the complex conjugate of ¢ +. 
For the case kx = 0, when the wavevector is parallel to the stratification axis, (8) 
are vertically sheared horizontal flow modes, with no vertical velocity. 

In the (numerical) solution and analysis procedure, we expand the Fourier 
transformed velocity and density fluctuations in terms of the orthonormal, solenoidal 
eigenmodes 

(9) 

(10) 

(~) (k, t) = a+(k, t) ¢+(k) + a-(k, t) ¢-(k), 

a(a)(k, t) =¢(a)· (~) 

where a= -, +. In the inviscid, unforced case (v0 = K = fu = 0), the evolution of 
aaeia<"lt results from nonlinear interactions only 

(11) d ( a ia"t) _ ia"t ,~,.a (~) - a e - -e o/ · -
dt v-~e ' 

where ~ and ~ are the Fourier transforms of the nonlinear terms. 

3. The numerical simulations 

Equations (1)-(4) are solved using a pseudo-spectral code in a periodic square. 
The linear terms are treated using an integrating factor technique, in effect removing 
them from the time-integration (as in (11) above). The viscous terms are treated 
with an integrating factor as well [12]. At each step of the third-order Runge-
Kutta time-stepping scheme, the Fourier transformed velocity and density fields 
are projected onto the gravity wave solutions of the linearized equations. Each 
wave is multiplied by the proper integration factor, and the time step is chosen to 
sufficiently resolve the waves (i.e., a!lt < N!lt < 0.2). The projection onto the 
gravity waves automatically satisfies incompressibility and eliminates pressure. The 
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94 LESLIE M. SMITH 

nonlinear terms v · Vv and v · VO are calculated in physical space and Fast Fourier 
transforms are used to go back and forth between Fourier and physical space. 

In the simulations, the forcing spectrum F(k) is Gaussian with standard devi-
ation s = 1, given by 

(12) 

Typically, the spectrum F(k) is truncated to include only a small number of 
wavenumbers, for example, for resolution 5122 Fourier modes and kt = 96, we 
truncate the force for k < 88 and k > 104. Based on the energy input rate E f and 
the peak wavenumber k f of the force, we define the Froude number as 

(13) 
2(E k2 )1/3 

Fr = f f 
N 

To vary the Froude number, we fix E f = 1, k f = 96 and s = 1, and vary the value 
of the Brunt-Vaisala frequency N. 

The small-scale dissipation is modeled by a hyperviscosity (-1)P+lv(\72 )Pu 
with p = 8 in place of the normal viscosity term v\72 u. Likewise the dissipation of 
the density fluctuations is modeled by ( -1 )P+l K(\72)P0 with p = 8 and "' = v such 
that the Prandtl number vI"' is unity. The purpose of using hyperviscosity, which 
turns on much more abruptly than the gradual increase of normal viscosity at small 
scales, is to eliminate as much as possible the effects of viscosity at intermediate 
scales, thus extending the turbulence inertial ranges. In general, we do not dealias 
in order to preserve more distance between kt and the dissipation wavenumber kd; 
this distance insures a region of constant enstrophy flux for k > k1. The use of 
hyperviscosity precludes accurate simulation of the tails of the spectra in any case. 
By maintaining a constant-flux of enstrophy in a wider interval kt > k > kd, we 
diminish the possibility that the hyperviscosity affects the large-scale dynamics. We 
have performed simulations dealiased using the 213 rule (see, e.g., [13)) to verify 
that the large-scale spectra are independent of the tails. 

4. Results 

The results are summarized in Fig. (1), showing kinetic energy vs time for a 
series of runs with varying Froude number. The data is nondimensionalized by the 
nonlinear time scale (EJkJ)- 113 and nonlinear energy (Etfkt )213 . The resolution is 
fixed at R = 5122 Fourier modes, the energy input rate is EJ = 1 and the forcing is 
between 88 ::::; k ::::; 104 (kt = 96). For Fr --t oo (N = 0), the flow approaches 2D 
isotropic turbulence with a forward cascade of enstrophy and an inverse cascade of 
energy. After an initial period of nonlinear adjustment, the energy grows linearly 
in time, dE I dt ~ 0. 78E ft. The linear growth of energy reflects a constant flux at 
78% of the energy input rate E f. In this finite system, the energy and enstrophy 
inertial ranges are not isolated from each other, evidenced by the fact that 22% of 
the energy input is transferred to scales smaller than the force, and dissipated by 
viscosity. 

Fig. (1) shows that as the Froude number is decreased, the growth of energy is 
reduced, until at a value Fr ~ 1, the growth is completely suppressed. Furthermore, 
the nonlinear behavior of the curves in Fig. (1) for Fr < oo reflect non-constant 
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flux of energy to large scales. Decreasing the Froude number from Fr -. oo to 
Fr ;::::;; 1 reduces the importance of nonlinear effects as compared to stratification 
effects. The value Fr = 1 indicates that nonlinear and stratification effects are 
equally important. For the case Fr ;::::;; 1, there is no nonlinear transfer of energy to 
wavenumbers k < k f, and the energy input is balanced by the dissipation. In other 
words, for Fr ;::::;; 1 there is no inverse cascade of energy. For values of the Froude 
number Fr < 1, when stratification effects are stronger than nonlinear effects, one 
sees that the energy again grows in time. However, as we shall explain, the transfer 
of energy to large scales is quite different for the two regimes Fr > 1 and Fr < 1. 
The fact that the crossover behavior occurs at Fr ;::::;; 1 supports the definition (13) 
based on the forcing parameters E f and k f as the appropriate measure of the ratio 
of nonlinear and stratification effects. 

Next we compare energy spectra for two runs, with Fr = 10.5 (Fig. 2) and 
Fr = 0.5 (Fig. 4), on either side of the critical value Fr ;::::;; 1. The essential difference 
between these two runs can be understood by comparing the full spectrum E(k), 
given by the solid line in each plot, to the one-dimensional spectrum E(kx = 0, kz), 
given by the short dashed line in each plot. The spectrum E(kx = 0, kz) represents 
the energy in horizontal motions, independent of kx, with vertical shear. In Fig. 2, 
one sees that the spectrum E(kx = 0, kz) is much smaller in magnitude than the 
full spectrum E(k). In this case there is no obvious statistical difference between 
E(kx = 0, kz) and E(kx, kz = 0) (long dash), indicating that the energy spectrum 
is not far from isotropic at the large value Fr = 10.5. The time in Fig. 2 is 
t( E tkJ )113 = 2568 when the kinetic energy has reached the value K(kt/E f ) 213 = 338 
(off the scale in Fig. 1). It is important to note that the energy of all wavenumbers 
in Fig. 2 continues to grow for times up to t(EJkJ) 113 = 2568, such that the energy 
spectrum is everywhere unsteady; there is no quasi-steady range of wavenumbers 
as is observed in isotropic 2D turbulence forced at small scales (see, e.g., [14, 15]). 
Figure 3 shows energy spectra at several times to illustrate the spectral evolution. 
At the latest time of our simulation, the energy spectrum of wavenumbers larger 
than the forcing wavenumbers scales close to E(k) ex k- 3 up to k;::::;; 20, rather than 
the isotropic scaling E(k) ex k- 513 [4, 14, 15]. Dimensional considerations lead 
immediately to the scaling E(k) = C(Fr)N2k- 3 (see e.g., [7]). A new scale appears 
corresponding to wavenumber k ;::::;; 20, which is the same order of magnitude as the 
Lumley-Ozmidov scale k0 = ( N 3 / E 1 ) 112 with value k0 = 8 in this case with N = 4. 
[17, 18]. The Lumley-Ozmidov wavenumber is an estimate for the wavenumber 
above which overturning can occur; it is considered a boundary between waves and 
turbulence. 

In contrast, Fig. 4 (Fr = 0.5) shows that E(kx = 0, kz) contains all of the 
energy in wavenumbers smaller thank ;::::;; 50. Fig. 4 is at time t(E1k]) 113 = 6367 
when the kinetic energy has reached the value K(ktfE1)213 = 312 (off the scale in 
Fig. 1). The total energies in Figs. 2 and 4 are about the same, but the time of 
Fig. 4 is about 2.5 times longer than the time of Fig. 2. The anisotropic transfer 
to large scales for Fr < 1 is a much slower process than the more isotropic transfer 
associated with pure 2D turbulence and weakly stratified 2D turbulence. This may 
be because only a subset of nonlinear interactions is responsible for the anisotropic 
transfer. In Section 5 we show that resonant interactions account for a large part 
of the energy transfer at early times in a simulation forced by a single mode. It 
appears that another new length scale which we denote lN = 2K/kN different from 
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the Lumley-Ozmidov scale, has been introduced into the problem for Fr < 1. The 
value of kN is kN ~ 40 in Fig. 4. We have not attempted to fit a power law to 
the data for 10 < k < 40 in Fig. 4 because the fluctuations are too large and the 
range 10 < k < 40 is too short. Even for longer times when the low wavenumbers 
k < 10 are populated, we feel that attempting to fit the data to a power law is 
not meaningful because of the large fluctations in a single realization of a one-
dimensional spectrum. Averaging over time is not possible unless a statistically 
steady state is established by low-wavenumber damping, something we wished to 
avoid in this study, but may pursue at a later date. A possible scaling for the range 
k < kN is E(k) = C(Fr)N2k- 3 (see e.g., [7]), though the spectra in Fig. 4 appear 
steeper than k- 3 . It is interesting to note that the structure of the large-scale 
spectrum E(k) in Fig. 4 is reminiscent of the spectrum of wind velocities measured 
by aircraft (see, e.g., [16]). These atmospheric spectra scale approximately as 
E(k) <X k-3 in the range 800-2500 kilometers, and approximately as E(k) <X k-5/ 3 

in the range 10 - 500 kilometers [16]. In 2D isotropic turbulence, the scaling 
E(k) <X k-3 appears at wavenumbers la7:qerthan scales corresponding to the scaling 
E(k) <X k-5/ 3 [4]. Figure 5 shows energy spectra for the case Fr = 0.7 just below 
critical, for which anisotropy is evident but the growth of energy is weak compared 
to the case Fr = 0.5 (see Fig. 1). 

Fig. 6 shows scalar energy spectra Ep(k) for Fr = 10.5 (solid) and Fr = 0.5 
(dash) for the same times, respectively, as in Figs. 2 and 4. The line k- 1 is shown 
for comparison. For Fr = 10.5, one sees that the data scale close to Ep(k) <X k- 1 

for k > 20. The pile-up of energy at k = 20 is evident in both the scalar and kinetic 
energy spectra for Fr = 10.5; there is also a pile-up of energy at k = 1 in the 
scalar spectrum, suggesting non-local transfer to density fluctuations at the largest 
scale in the system. For Fr = 0.5, the new length scale lN = 27r/kN with kN ~ 40 
appears again in the density spectrum, with transition to a steeper spectrum Ep(k) 
fork< kN. 

Portions of the physical space fields corresponding to the velocity and density 
spectra for Fr = 10.5 are shown, respectively, in Figs. 7 and 8 at a relatively early 
time t(E 1k]) 113 = 805 corresponding to the bottom spectrum in Fig. 3. The velocity 
vectors in Fig. 7 show small-scale vortices. Contours of the density fluctuations (Fig. 
8) show that mass tends to be concentrated in the centers of the small-scale vortices. 
At later times, a regular, grid-like pattern of vortices emerges corresponding to the 
accumulation of energy near k = 20, and this pattern is also evident in the density 
field. For these long times, the velocity vectors show a predominance of clockwise 
vorticity. It will be interesting to further investigate the long-time structure of 
the density and velocity fields for Fr > > 1, especially the sense of rotation of the 
vortices and the large-scale structure associated with the pile-up of scalar energy 
at k = 1. 

In contrast to Figs. 7 and 8, portions of the physical space velocity and density 
fields for Fr = 0.5 show a layered structure. The velocity vectors in Fig. 9 are 
nearly horizontal, with vertical shear, and the density contours in Fig. 10 also show 
that a layered structure is starting to form in the density field. As time progresses, 
the layers merge and thicken, and the velocity is higher within each layer. 
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5. Discussion 

A surprising feature of 2D stratified turbulence is the lack of energy transfer to 
large scales when Fr::::::: 1. This is in contrast to the case of ,8-plane turbulence, in 
which there is always transfer of energy from small to large scales, but the nature 
of this transfer changes from isotropic to anisotropic at a scale kf3 ex (,83 j f f) l/S 

[1]. The analogous scale for stratified flow is ko = (N3 jE1 )112 , called the Lumley-
Ozmidov wavenumber (see, e.g., [17, 18]). The Lumley-Ozmidov wavenumber is 
an estimate for the wavenumber above which overturning can occur; it is considered 
a boundary between waves and turbulence, and is much higher than the dissipation 
wavenumber in our simulation with Fr = 2(k1jk0 ) 213 ::::::: 0.5; N = 80 and fJ = 1 
lead to k0 ::::::: 715. The scale kN ::::::: 40 in Fig. 4 and 6 marking the transition to 
steeper spectra for Fr = 0.5 is clearly distinct from the Lumley-Ozmidov scale, and 
needs further investigation. 

It is well understood that gravity wave oscillations have the effect of reducing, 
on average, the energy transfer between modes, except for resonant triad interac-
tions with 

(14) k+p+q=O, a(k)+cr(p)+a(q)=O 

where cr(k) is the frequency of the gravity wave given by (7). It is also well known 
that resonant triad interactions cannot directly transfer energy between two modes 
with nonzero frequency and another mode with zero frequency [19, 20]. From 
(7), the zero-frequency modes have kx = 0, and are the only modes popluated at 
wavenumbers k < kN in our simulations with Fr < 1 (Fig. 4). This zero manifold 
corresponds to horizontal flow with vertical shear (Fig. 9). It remains to explain, 
then, precisely how energy is transferred from fast to slow modes in 2D stratified 
flow, and many other dispersive wave systems including ,8-plane flow and rotating 
flow. For ,8-plane flow where the slow manifold consists of zonal flow, Newell [21] 
showed that resonant quartets of Rossby waves can transfer energy to the zonal 
flow. These resonant quartets involve two resonant triads. In rotating flow where 
the slow modes correspond to cyclonic vortical columns, Smith and Waleffe [2] 
found analogous resonant quartets of inertial waves that can transfer energy to the 
vortical columns. Another possible mechanism for the transfer of energy from fast 
to slow modes, discussed in [2], is a two-step (or multi-step) process whereby the 
resonant triads transfer energy towards the zero modes, and then nearly zero modes 
with cr(k) = O(Fr) transfer energy into exactly zero modes with cr(k) = 0. Smith 
and Waleffe [2] considered deterministic forcing of a single mode in a resonant 
triad, and showed that energy is indeed transferred towards the zero manifold. 
Their analysis for rotating flow applies directly to the present case of 2D stratified 
flow after a rotation of the coordinate axes. Majda, Timofeyev and Vanden Eijnden 
[22] showed that the same result holds for stochastic forcing. 

Here we present numerical evidence for resonant triadic transfer from fast to 
nearly zero modes, and then from nearly zero to exactly zero modes. We consider 
a simulation forced randomly by a single mode with wavevector k = (80, 40) and 
other parameter values R = 5122 , f 1 = 1 and N = 80 such that Fr ::::::: 0.5. The 
long-time results are similar to those for the run with forcing in the wavenumber 
shell 88 < k1 < 104, shown in Figs. 4, 6, 9 and 10. However, for forcing of a 
single mode, it is easy to compute all modes resonant with the force using (14), 
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and then to compare those resonant traces to the energy density E(k). Contours 
of E(k) are compared to the resonant traces in Figs. 11 and 12 for an early and 
later time, respectively, in the simulation at Fr = 0.5 forced randomly by a single 
mode with k = (80, 40). Fig. 11 shows that most of the energy at early times 
is concentrated on or near some parts of the resonant traces. At later times, the 
energy has accumulated near the slow manifold with kx = 0. 

Of the many higher-order mechanisms for anisotropic transfer from fast to slow 
modes in dispersive wave turbulence, the challenge is to determine which one(s) are 
essential. This is an issue fundamental to the mathematical theory of dispersive 
wave turbulence and to the modeling of geophysical flows. It is one of the main 
reasons to pursue test cases such as 2D stratified turbulence, where it is easier to 
study subsets of interactions, and results of such studies will be the subject of future 
reports. 
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FIGURE 1. Energy vs time for varying Froude number: R = 5122, 

f.J = 1, kJ = 96. 
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FIGURE 2. E(k) vs k (solid), E(kz = 0, kx) vs kx (long dash), 
E(kx = 0, kz) vs kz (short dash): Fr = 10.5, R = 5122 , f.J = 1, 
kJ = 96, latest time t(EJkJ) 113 = 2568. 
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FIGURE 3. E(k) vs k (top spectrum is at the latest time), Fr = 
10.5, R = 5122 ' Ef = 1., kt = 96. 
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FIGURE 4. E(k) vs k (solid), E(kz = 0, kx) vs kx (long dash), 
E(kx = 0, kz) vs kz (short dash): Fr = 0.5, R = 5122 , Ef = 1, 
kt = 96, latest time t(ttk]) 113 = 6367. 
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FIGURE 5. E(k) vs k (solid), E(kx = 0, kz) vs kz (short dash): 
Fr = 0.7, R = 5122 , f.J = 1, k1 = 96, t(EJkJ) 113 = 1782. 

10 _, 

10 Cl 

10 1 

I 0 5 

I 0 6 1 'j_l 
I Ol I O' 

k 

FIGURE 6. Ep(k) vs k for Fr = 10.5 (solid, t(EJkJ) 113 = 2568) 
and Fr = 0.5 (dash, t(E1ky) 113 = 6367) : R = 5122 , f.J = 1, 
kJ = 96. 
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FIGURE 7. Velocity vectors in a portion of (x, z) physical space for 
Fr = 10.5 at time t(EJkJ) 113 = 805 corresponding to the bottom 
spectrum in Fig. 3. 

FIGURE 8. Contours of density in a portion of (x, z) physical space 
for Fr = 10.5 at time t(EJkJ) 113 = 805 corresponding to the bot-
tom spectrum in Fig. 3. 
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FIGURE 9. Velocity vectors in a portion of (x, z) physical space for 
Fr = 0.5 (same time as Fig. 4). 

FIGURE 10. Contours of density in a portion of (x, z) physical 
space for Fr = 0.5 (same time as Fig. 4). 
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FIGURE 11. Contours of E(k) and resonant traces at an early 
time [t(~: 1 k~) 1 1 3 = 4.9, tN = 19.8] for forcing of a single mode 
with k = (80, 40), Fr = 0.5. 
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FIGURE 12. Contours of E(k) and resonant traces at a later time 
[t(~: 1 k~) 1 1 3 = 28.7, tN = 114.8] for forcing of a single mode with 
k = (80,40), Fr = 0.5. 
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Turbulence of one-dimensional weakly nonlinear dispersive 
waves 

V. E. Zakharov, P. Guyenne, A. N. Pushkarev, and F. Dias 

ABSTRACT. The turbulence of weakly nonlinear dispersive waves is studied by 
numerically integrating a three-parameter one-dimensional model equation. In 
particular the validity of weak turbulence theory is assessed. The predicted 
power-law solutions are explicitly determined and then compared with the 
numerical results. For both signs of nonlinearity, it is shown that the weakly 
turbulent regime is strongly influenced by the presence of coherent structures. 
These are wave collapses and quasisolitons. 

1. Introduction 

The weak turbulence theory developed by Zakharov [8] is a tool for obtaining 
the shape of frequency spectra in problems dealing with weakly nonlinear dispersive 
waves. The applications of this theory range from water waves in hydrodynamics 
to ion-acoustic waves in plasma physics. The weak turbulence theory is based on a 
hamiltonian formulation of the problem where only resonant interactions between 
weakly nonlinear waves are taken into account. It is then possible to derive approxi-
mate equations by performing perturbation expansions in terms of the nonlinearity 
parameter. Although the theory was developed more than thirty years ago, few 
proofs, either experimental or numerical, have been given to assess its validity (e.g. 
[7]). Recently, Majda et al. [5] proposed a one-dimensional model equation as a 
basis to check the validity of weak turbulence theory. Numerical computations on 
this model have been reported in [1], [3], [5] and [9]. In this paper we summarize 
the most important numerical results on this equation, which depends on three 
parameters, and show that the weakly turbulent regime is strongly influenced by 
the presence of coherent structures, namely wave collapses and quasisolitons. 
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2. One-dimensional model equation 

The following three-parameter nonlinear dispersive equation was proposed by 
Majda et al. [5]: 

a~k , j , , , 
(2.1) i 8t = Wk'I/Jk + Tl23k '1/Jl 'I/J2'1/J3 J(kl + k2- k3- k) dkldk2dk3. 

In equation (2.1), which has been written in Fourier space, ~k denotes the k-th 
component in the Fourier decomposition of the complex wave field '1/J(x, t) and 
(*) stands for complex conjugation. Equation (2.1) depends on three parameters. 
The first parameter, a, is related to the linear frequency Wk = lkl"'. The second 
parameter, j3, is related to the interaction coefficient 

(2.2) 

The third parameter, >.,which also appears in the interaction coefficient (2.2) and is 
equal to ±1, governs the balance between dispersive and nonlinear effects. One can 
use the terminology focusing for >. = -1 and defocusing for >. = + 1. The system 
possesses two important first integrals, the Hamiltonian 

H = J Wki~'kl 2 dk + ~ J T123k~1~2~J~k J(kl + k2- k3- k) dkldk2dk3dk 

and the wave action (or number of particles) 

Equation (2.1) describes four-wave resonant interactions satisfying 

(2.3) 
(2.4) 

It can be shown that when a < 1 the system (2.3)-(2.4) has nontrivial solutions 
and that dominant interactions occur between four waves. In all computations 
the parameter a has been set equal to 1/2. This case mimics gravity waves in 
deep water, whose dispersion relation is given by Wk = (gk) 112 , where g is the 
acceleration due to gravity. Computations for >. = + 1 were performed by Majda et 
al. [5]. Computations for A= ±1 were recently performed by Cai et al. [1] and by 
Zakharov et al. [9]. 

3. Kolmogorov-type spectra 

For a weak nonlinearity, Zakharov's theory [lO]leads to a kinetic equation for 
the two-point correlation function nk = (l~kl 2 ): 

= 47r J IT123kl 2 (n1n2n3 + n1n2nk- n1n3nk- n2n3nk) 

x J(w1 + w2- w3- wk) J(k1 + k2- k3- k) dk1dk2dk3. 

The two main hypotheses for deriving the kinetic equation are the assumptions of 
gaussianity and of random phases. The stationary Kolmogorov-type solutions are 
given by 

(3.1) 

(3.2) 

al IQII/3 k-2{3/3-l+a/3 

a2 1Pil/3 k-2{3/3-1 
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TABLE 1. Slope and flux sign for the Kolmogorov-type solutions 
(3.1)-(3.2). The dispersion parameter o: is equal to 1/2. 

f3 -1 -3/4 -1/2 -1/4 0 +3 

power of k in (3.1) -1/6 -1/3 -1/2 -2/3 -5/6 -17/6 

sign of Q + + 0 - - -

power of k in (3.2) -1/3 -1/2 -2/3 -5/6 -1 -3 

sign of P - 0 + + + + 

and are associated respectively with a particle flux Q and an energy flux P. The 
coefficients a 1 and a2 denote the dimensionless Kolmogorov constants. It is impor-
tant to emphasize that these solutions do not depend on the sign of nonlinearity 
>.. Such solutions can be written for all values of f3 and o: < 1. But there is a 
physical argument which plays a crucial role in deciding the realizability of the 
Kolmogorov-type spectra. Suppose that pumping is performed at some frequencies 
wk around Wf and that damping operates at frequencies Wk near zero as well as at 
frequencies Wk much larger than w f. Weak turbulence theory then states that the 
energy is expected to flow from w 1 to higher wk 's (direct cascade with P > 0) while 
the particles mainly head for lower Wk 's (inverse cascade with Q < 0). Accordingly, 
we need to evaluate the fluxes in order to select, among the rich family of power 
laws (3.1) and (3.2), those which are likely to result from numerical simulations of 
equation (2.1) with damping and forcing. Only the cases 

f3 < -3/2 and f3 > 2o:- 3/2 
i.e: 

f3 < -3/2 and {3 > -1/2 if o: = 1/2 
are relevant because they correspond to a particle flux towards large scales ( Q < 0) 
and to an energy flux towards small scales ( P > 0). The signs of the fluxes are shown 
in Table 1 for o: = 1/2 [9]. Computations are performed in the range {3 > -1/2, 
which includes the case of simple cubic nonlinearity ({3 = 0) and the case of gravity 
waves ({3 = 3). 

4. Solitons, collapses and quasisolitons 

The numerical results presented below show that the weakly turbulent regime 
is strongly influenced by the presence of coherent structures. These are solitons, 
quasisolitons or collapses. The existence of solitons depends on the parameter >.. 
Looking for soliton solutions of (2.1) of the form 

,j;k(t) = ei(H-kV)t(!Jk 

with n and v constant leads to 

(4.1) Jk =-n _ k~ + wk j rl23k J1J2¢; 8(k1 + k2- k3- k) dk1dk2dk:1. 

Foro:< 1, the condition D-kV +lki" =/= 0, Vk E JR, implies that the propagating 
speed V is zero. Rewriting equation ( 4.1) in variational form: 

8(H + DN) = 0 
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one can conclude that 'stationary' solitons can exist only if A = -1. In that case an 
equilibrium between nonlinear and dispersive effects is possible. As for nonlinear 
Schrodinger-type equations, the linear stability criterion for solitons is given by 
8Nj8rl > 0 [4]. In our case this gives 

,B<a-1 
i.e. 

,8 < -1/2 if a= 1/2. 
Therefore the solitons are unstable in the regime of interest. 

In view of this result, it is natural to look at the formation of collapses. They 
are typically described by self-similar solutions of the form 

,(};k(t) =(to- t)P+i< X(0 

where 
,8-a+2 

p = '--..,---
2a 

E = arbitrary constant . 

An analysis of the convergence of the Hamiltonian and of the wave action integral 
as t -7 t 0 shows that necessary conditions for collapses to exist when a = 1/2 are 
,8 > -1/2 for A = -1, which coincides with the soliton instability criterion, and 
,8 > 0 for A = + 1. In spectral space, the self-similar solution behaves at t = t 0 like 
(4.2) nk ~ k-f3+o:- 2 

which is analogous to Phillips spectrum for deep water gravity w~ves [6]. 
In the case A= + 1, quasisolitons can exist. These are approximate solutions of 

equation ( 4.1) which look like envelope solitons. In the limit of a narrow spectrum 
centered at k = km, such as n - km v + k'::, =I= 0, these quasisolitons are given by 
(4.3) 7/!(x, t) ~ cjJ(x _ Vt) eirlt+ikm(x-Vt) 

with ¢, n and v given by 

¢(~) = a(l-a) "' 
k~-o:+ 2 cosh("'O' 

n = -(1- a) k'::,- ~a (1- a) k'::-,- 2 "'2 , v =a k'::-,- 1 • 

When "'/km is small, the quasisolitons look almost like true solitons and can persist 
for a long time. They can play an important role in weak turbulence. When "'/km 
is large, the quasisolitons can become unstable and develop into wave collapse. 

5. Numerical results 

The numerical computations are performed by adding to equation (2.1) a source 
term in a narrow spectral band as well as a damping term containing a wave action 
sink at large scales and an energy sink at small scales: 

(5.1) 

with 

wk;j;k + J T123k ,J;l ,(};2,(};~ J(k1 + k2- k3- k) dk1dk2dk3 

+ i (Fk + Dk) ,(};k 

Fk = ~fJJ(k- ki) 
j 
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FIGURE 1. Level of nonlinearity as a function of time. The param-
eters are a= 1/2,(3 = 0 and A= +1 (solid line); A= -1 (dashed 
line). 
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A pseudospectral code with 2048 modes is used to integrate equation (5.1). 
Details can be found in [9]. 

5.1. Numerical results for (3 = 0, A = ±1. The study is restricted to the 
direct cascade. Typical initial conditions are given by random noise. Simulations 
are run until a quasi-steady regime is established which is characterized by small 
fluctuations of the energy and the number of particles around some mean value. 
Then time averaging begins and continues for a length of time which significantly 
exceeds the characteristic time scale of the slowest harmonic from the inertial range 
(free of the source and the sink). In turn, the time-step of the integration has to 
provide, at least, accurate enough resolution of the fastest harmonic in the system. 
As our experiments show, one has to use an even smaller time-step than defined 
by the last condition: the presence of fast nonlinear events in the system requires 
the use of a time-step D.t = 0.005, which is 40 times smaller than the smallest 
linear frequency period. Time averaging with such a small time step leads to a 
computationally time-consuming procedure despite the one-dimensionality of the 
problem. Figure 1 shows the time evolution of the average nonlinearity E, which 
is defined as the ratio of the nonlinear part to the linear part of the Hamiltonian, 
each part being calculated over the whole field. Of course, this definition does not 
really make sense when external forces are applied but it provides a relatively good 
estimation of the level of nonlinearity once the system reaches the steady state. The 
mean values of E are 0.4 when A = + 1 and 0.2 when A = -1. They are relatively 
small. Thus, the condition of small nonlinearity required by the theory holds for 
both systems. However the theory cannot explain the difference in the values of E, 

since the same forcing is imposed in both systems. 
The difference between the focusing and the defocusing cases is even more 

obvious when one looks at the dissipation rates of particles and quadratic energy 
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TABLE 2. a = 1/2, f3 = 0. Time-averaged values of the wave 
action, quadratic energy and corresponding fluxes in the stationary 
state. 

.A N E Q-

+1 3 19 0.1957 

-1 1 9 0.0098 

for small wavenumbers: 

Q- = 2 { IF lkl-d- l¢kl2 dk, 
Jk<ki 

and for large wavenumbers 

Q+ = 2 r v+ lkld+ l¢kl 2 dk' 
Jk>kj 

Q+ p- p+ 

0.0090 0.276 0.258 

0.0478 0.014 1.430 

where k 1 is the characteristic wavenumber of forcing. Their time-averaged values 
in the stationary state are collected in Table 2. 

The stationary isotropic spectra of turbulence are displayed in Figures 2 and 3. 
Again the results depend on the value of .A. For both cases the theoretical spectrum 
provides a higher level of turbulence than the observed one. In the focusing case 
(.A = -1) this difference is almost of one order of magnitude but the slope fits 
the predicted value -1 well. For .A = + 1, the observed spectrum almost coincides 
with the weak turbulence one at low frequencies and then decays faster at higher 
wavenumbers. In this range, the slope is close to -5/4 as found in [5]. Note that 
a new derivation of the Majda et al.'s spectrum is proposed in [9]. 

Comparison of the turbulence levels and fluxes of particles Q+ for both signs 
of nonlinearity leads to a paradoxa! result. At .A = -1 the total number of particles 
is three times less than at .A= +1, while the dissipation rate of particles is higher 
by one order of magnitude. It can be explained only by the presence in this case 
of a much more powerful mechanism of nonlinear interactions, which provides very 
fast wave particles transport to high frequencies. In our opinion, this mechanism is 
wave collapse. Sporadic collapsing events developing on top of the weak turbulence 
background could send most of particles to high wavenumbers without violation 
of energy conservation, because in each self-similar collapse structure the amount 
of total energy is zero. Such a collapsing event is shown in Figure 4. Note that 
the contribution of collapses to the high-frequency spectrum is weak because they 
produce a Phillips-type spectrum which decays very fast as k ~ +oo. In our case, 
equation ( 4.2) becomes 

nk ~ k-3/2. 

Hence, only the weakly turbulent component k- 1 survives at large wavenumbers. 
The coexistence of wave collapse and weak turbulence was also observed in [2] for 
the nonlinear Schrodinger equation. 

At .A = + 1 the picture of turbulence matches the weak turbulence predic-
tion both quantitatively and qualitatively. Meanwhile, the spectrum at high k's is 
steeper than the theoretical one. So far we cannot give a consistent explanation of 
this fact. We can just guess that it is somehow connected with quasisolitons. 
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FIGURE 2. (3 = 0, A = -1. Stationary and isotropic spectra nk 

vs. wavenumber. We compare the computed spectrum with the 
predicted one of Kolmogorov-type nk = ck- 1 with c = a 2P 113 

(straight line). 

10' 10' 
k 

FIGURE 3. (3 = 0, A = + 1. Stationary and isotropic spectra nk 

vs. wavenumber. We compare the computed spectrum with the 
predicted one of Kolmogorov-type nk = c k- 1 with c = a 2P 113 

(straight line). 

k 
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FIGURE 4. {3 = 0, >. = -1. Evolution towards collapse at x -::::: 1 
between t = 4999.980 and t = 5000.205. 

1.1 

X 

5.2. Numerical results for {3 = 3, >. = +1. Computations were performed 
with {3 = 3 because this case is analogous to gravity water waves. Moreover the 
strength of the interactions is larger than in the case {3 = 0. 

Equation (5.1) was again integrated numerically over long times. The system 
is first separated into several soliton-like structures and low-amplitude quasi-linear 
waves. Processes of mutual interactions slowly redistribute the number of waves 
in a way leading to the growth of initially bigger quasisolitons and the decay of 
initially smaller quasisolitons. The final state then consists of one big quasisoliton 
moving in a sea of small quasilinear waves as shown in Figure 5. The shape of 
the quasisoliton is well described by the formula ( 4.3). The reader is referred to 
our paper [9] for more detail on quasisolitons. This phenomenon is similar to the 
'droplet' effect observed in the non-integrable nonlinear Schrodinger equation [11]. 
The soliton solution turns out to be a statistical attractor for the system: long time 
evolution leads to the condensation of the number of particles into a single soliton 
which minimizes the Hamiltonian. 

6. Conclusions 

In conclusion, the numerical results show a discrepancy with the theory, which 
is mainly due to the presence of localised coherent structures, collapses in the 
focusing case (.X= -1) and quasisolitons in the defocusing case (.X= +1). In other 
words, both mechanisms, weak turbulence and coherent structures, are present and 
lead to a complex mixed picture. The discrepancy between numerics and theory 
may also be due to the sparsity of resonances in one dimension and the numerical 
discretization. Four-wave interactions are not as efficient and localised structures 
become dominant. Therefore equation (2.1) is not such a good model to assess the 
validity of weak turbulence theory. 
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FIGURE 5. !3 = 3, A = + 1. Snapshot of a quasisoliton at x :::::: 3. 7 
and t = 10880. 

Time~ 1.088e+04 

X 
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