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Abstract

Dynamics of ideal fluid with free surface can be effectively solved by perturbing the Hamiltonian in weak nonlinearity
limit. However it is shown that perturbation theory, which includes third and fourth order terms in the Hamiltonian, results in
the ill-posed equations because of short wavelength instability. To fix that problem we introduce the canonical Hamiltonian
transformation from original physical variables to new variables for which instability is absent.
© 2005 Published by Elsevier B.V.
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1. Introduction

The Euler equations describing dynamics of ideal fluid with free surface is a Hamiltonian system, which is
especially simple if the fluid motion is potential,v = ∇Φ, wherev is the fluid’s velocity andΦ is the velocity
potential. In this case[1–3] the Euler equations can be presented in the form:

∂η

∂t
= δH

δΨ
,

∂Ψ

∂t
= −δH

δη
. (1)

Herez = η(r ) is the shape of surface,z is vertical coordinate andr = (x, y) are horizontal coordinates,Ψ ≡ Φ|z=η
is the velocity potential on the surface. The HamiltonianH coincides with the total (potential and kinetic) energy
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of fluid. The Hamiltonian cannot be expressed in a closed form as a function of surface variablesη,Ψ , but it can be
presented by the infinite series in powers of surface steepness|∇η|:

H = H0 +H1 +H2 + · · · . (2)

HereH0, H1, H2 are quadratic, cubic and quartic terms, respectively.Eqs. (1) and (2)are widely used now for
numerical simulation of the fluid dynamics[4–14]. These simulations are performing by the use of the spectral
code, at the moment a typical grid is 512× 512 harmonics.

Canonical variables are used also for analytical study of the surface dynamics in the limit of small steepness. It
was shown[15–17]that the simplest truncation of the series(2), namely:

H = H0 +H1 (3)

leads to completely integrable model—complex Hopf equation. In framework of this approach one can develop the
self-consistent theory of singularity formation in absence of gravity and capillarity for two dimensions (one vertical
coordinatezand one horizontal coordinatex).

However, use of canonical variablesη,Ψ has a weak point, which becomes clear, if we concentrate our attention
on the complex Hopf equation:

∂Π

∂t
= −1

2

(
∂Π

∂x

)2

, (4)

which comes fromEqs. (1) and (3). Here:

Ψ = Re(Π) (5)

andΠ is the analytic function of the complex variablex in a strip−h ≤ Im(x) ≤ 0, h is the depth of the fluid.
The weak point is thatEq. (4) is ill-posed. A general complex solution of this equation is unstable with respect
to grow of small short-wave perturbations. The same statement is correct with respect to more exact fourth order
Hamiltonian:

H = H0 +H1 +H2, (6)

which is used in most numerical experiments. These experiments, which are easy become unstable: to arrest
instability one should include into equations strong artificial damping at high wave numbers. Even in presence of
such damping one can simulate only waves of a relatively small steepness (not more than 0.15).

In this article we show that these difficulties can be fixed by a proper canonical transformation to another canonical
variable. It is remarkable, but the property of nonlinear wave equation to be well- or ill-posed isnot invariant with
respect to choice of the variables.

In the present article we demonstrate that there are new canonical variables such that theEqs. (1) and (6)
are well-posed if we consider the nonlinearity up to the fourth order in the Hamiltonian. We call these variables
“optimal canonical variables”. We demonstrate in the present article that the choice of the optimal canonical
variables is unique provided we additionally require the Hamiltonian system to be free of short wavelength in-
stability for largest possible steepness of the surface, i.e., for the largest possible nonlinearity. We conjecture
that the optimal canonical variables allow numerical simulation with higher steepness compared with the stan-
dard variablesΨ, η. We can also formulate a conjecture that the optimal canonical variables exist in all orders of
nonlinearity.
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2. Basic equations and the Hamiltonian formalism

Consider the dynamics of an incompressible ideal fluid with free surface and constant depth. Fluid occupies the
region:

−h < z < η(r ), r = (x, y), (7)

where (x, y) are the horizontal coordinates andz is the vertical coordinate.
Viscosity is assumed to be absent and the fluid’s velocityv is potential one:

v = ∇Φ, (8)

whereΦ is the velocity potential. Incompressibility condition:

∇ · v = 0 (9)

results in the Laplace equation:

�Φ = 0. (10)

The potentialΦ satisfies also the Bernoulli equation:

Φt + 1
2(∇Φ)2 + p+ gz = 0, (11)

wherep is the pressure,g is the acceleration of gravity, and we set density of fluid to unity.
There are two types of boundary conditions at free surface forEqs. (10) and (11). First is the kinematic boundary

condition:

∂η

∂t
= (Φz − ∇η · ∇Φ)|z=η = vn

√
1 + (∇η)2, (12)

wherevn = n · ∇Φ is the normal component of fluid’s velocity at free surface, andn = (−∇η,1)[1 + (∇η)2]−1/2

is the interface normal vector.
Second is the dynamic boundary condition at free surface:

p|z=η = σ∇ · ∇η√
1 + (∇η)2

, (13)

whereσ is the surface tension coefficient which determines the jump of the pressure at free surface from zero value
outside of the fluid top|z=η value inside fluid.

Boundary condition at the bottom is

Φz|z=−h = 0. (14)

Eqs. (10)–(14)form a closed set of equations to determine the dynamics of free surface.
The total energy,H, of the fluid consists of the kinetic energy,T, and the potential energy,U:

H = T + U, (15)

T = 1

2

∫
dr

∫ η

−h
(∇Φ)2 dz, (16)

U = 1

2
g

∫
η2 dr + σ

∫
[
√

1 + (∇η)2 − 1] dr . (17)
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It is convenient to introduce the value of the velocity potential at interface as

Φ|z=η ≡ Ψ (r , t). (18)

It was shown in Ref.[2] that the free surface problem(10)–(14)can be written in the Hamiltonian form(1), with
the HamiltonianH defined in(15).

Fourier transform:

Ψk = 1

2π

∫
exp(−ik · r )Ψ (r ) dr (19)

is the canonical transformation which conserves the Hamiltonian structure andEq. (1)take the following form:

∂ηk

∂t
= δH

δΨ−k
,

∂Ψk

∂t
= − δH

δη−k
, η∗

k = η−k , Ψ∗
k = Ψ−k . (20)

3. Weak nonlinearity

If a typical slope of free surface is small,|∇η| � 1, the HamiltonianH can be series expanded (seeEq. (2)) in
powers of steepness|∇η| which gives[2,3]:

H0 = 1

2

∫
{Ak|Ψk |2 + Bk|ηk |2} dk, Ak = k tanh(kh), Bk = g+ σk2, k = |k|, (21)

H1 = 1

4π

∫
L

(1)
k1,k2

Ψk1Ψk2ηk3δ(k1 + k2 + k3) dk1 dk2 dk3, (22)

H2 = 1

2(2π)2

∫
[L(2)
k1,k2,k3,k4

Ψk1Ψk2 − σ

4
(k1 · k2)(k3 · k4)ηk1ηk2]

× ηk3ηk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4, (23)

where matrix elements are given by

L
(1)
k1,k2

= −k1 · k2 − A1A2, L
(2)
k1,k2,k3,k4

= 1
4A1A2(A1+3 + A2+3 + A1+4 + A2+4) − 1

2(k2
1A2 + k2

2A1),

Aj ≡ Akj , Aj+l ≡ Akj+kl . (24)

The corresponding dynamical equations follow from(1), (6) and (21)–(23):

∂Ψ

∂t
= −gη+ σ�η+ 1

2
[(ÂΨ )2 − (∇Ψ )2] − (ÂΨ )Â[η(ÂΨ )] − (�Ψ )(ÂΨ )η− σ

2
∇ · [∇η(∇η · ∇η)],

∂η

∂t
= ÂΨ − ∇ · [(∇Ψ )η] − Â[ηÂΨ ] + Â{ηÂ[ηÂΨ ]} + 1

2
�[η2ÂΨ ] + 1

2
Â[η2�Ψ ], (25)

whereÂ is the linear integral operator which corresponds to multiplication onk tanh(kh) in Fourier space. For
two-dimensional flow,Ψ (x, y) = Ψ (x), η(x, y) = η(x), this operator is given by

Â = − ∂

∂x
R̂, (26)

R̂f (x) = 1

2h
P.V.

∫ +∞

−∞
f (x′)

sinh[(x′ − x)π/2h]
dx′, (27)
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where P.V. means Cauchy principal value of integral. In the limiting case of infinitely deep water,h → ∞, the
operatorÂ turns into the operator̂k

lim
h→∞

Â = k̂, (28)

which corresponds to multiplication on|k| in Fourier space while the operatorR̂ for two-dimensional flow turns
into the Hilbert transform:

lim
h→∞

R̂ = Ĥ, Ĥf (x) = 1

π
P.V.

∫ +∞

−∞
f (x′)
x′ − x

dx′. (29)

Ĥ can be also interpreted as a Fourier transform ofi sign(k).
If one neglects gravity and surface tension,g = 0, σ = 0, thenEqs. (1) and (2), at leading order over small

parameter|∇η|, result in[16,15,17]

∂η

∂t
= ÂΨ, (30a)

∂Ψ

∂t
= 1

2
[(ÂΨ )2 − (∇Ψ )2]. (30b)

Remarkable feature ofEqs. (30a) and (30b)is thatEq. (30b)does not depend onη thus one can first solve(30b)
and then findη from Eq. (30a). SubstitutingΠ ≡ Ψ + iR̂Ψ into Eq. (30b)results in the complex Hopf equation(4)
for two-dimensional flow[17] which is completely integrable.

Eqs. (30b) and (4)are ill-posed because they have short wavelength instability which is determined as follows:
we can analyzeEq. (30b)and takeΨ in the form:

Ψ = Ψ0 + (Ψ1 eik·r+νt + c.c.), (31)

whereΨ0(r , t) is a solution ofEq. (30b), Ψ1 is the amplitude of small perturbation, and c.c. means complex
conjugation. Then, in the limit|k| → ∞,Ψ0 evolves very slow in space compare to eik·r+νt and we get the dispersion
relation for small perturbations:

ν = AkÂΨ0 − ik · ∇Ψ0, (32)

which describes instability for Re(ν) = AkÂΨ0 > 0. For general initial condition such instability region always
exists. The instability growth rate, Re(ν) grows as|k| increases.

4. Short wavelength stability analysis of the fourth-order Hamiltonian

To study linear stability of the Hamiltonian system in respect to short wavelength perturbations one can set

ηk = η0k + δηk , Ψk = Ψ0k + δΨk , (33)

whereη0k , Ψ0k are solutions ofEqs. (1) and (6)andδηk , δψk are short wavelength perturbations localized around
wave vectork, |k| � q, q is a typical wavenumber forη0k , Ψ0k .

If we take into account contribution to the fourth-order Hamiltonian up to second order in amplitude of pertur-
bationsδηk , δΨk we get the following general form of the perturbed Hamiltonian:

δH0 = 1

2

∫
Ãk |δΨk |2 dk + 1

2

∫
B̃k |δηk |2 dk +

∫
(Fk + iGk )δΨkδη−k dk,

Ãk = Ã−k , B̃k = B̃−k , Fk = F−k , Gk = −G−k , (34)
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whereÃk , B̃k , Fk , Gk are real and depend onη0k , Ψ0k . Here we disregard linear contribution toδH0 because it
has no effect on linear stability analysis.

It follows from Eqs. (20) and (34)that equations of motion take the following form:

∂δηk

∂t
= ÃkδΨk + (Fk − iGk )ηk ,

∂δΨk

∂t
= −B̃kδηk − (Fk + iGk )Ψk . (35)

An assumption of exponential dependence on time:

δηk ∼ eνk t , δΨk ∼ eνk t (36)

gives a dispersion relation:

νk = −iGk ±
√
F2
k − Ãk B̃k , (37)

which describes instability providedF2
k − Ãk B̃k > 0.

5. Ill-posedness of the fourth-order Hamiltonian

Consider now a general case of nonzerog andσ and take into account all terms in the Hamiltonian up to fourth
order, i.e., consider fullEq. (25). At the leading order over steepnessΘ and wavenumberkwe obtain:

Ãk = Ak + (k2 − A2
k)η0 − Ak(k

2 − A2
k)η

2
0 + O(kΘ2), B̃k = Bk + Ak(ÂΨ0)2 + O(k0v2

0l
−1
0 ),

Fk = −AkÂΨ0 − (k2 − A2
k)(ÂΨ0)η0 + Ak(Â[η0ÂΨ0] + η0∇2Ψ0) + O(k0v0l

−1
0 ),

Gk = k · ∇Ψ0 + O(kv0Θ), (38)

whereη0 = (1/2π)
∫
ηk dk, Ψ0 = (1/2π)

∫
Ψk dk, and the steepness is defined asΘ ∼ |∇η0|. We introduced here

the typical value of fluid velocity,v0 ∼ |∇Ψ0| and the typical scale,l0, of variation ofv0 andη0: Θ ∼ η0/l0,
|∇v0| ∼ v0/l0.

Eqs. (37) and (38)give instability growth rate. We consider particular cases. Ifσ �= 0 then in the limit|k| → ∞,
we have

νk = ±i
√
σk3, (39)

i.e., instability is absent. In derivation ofEq. (39) we used exponential smallness of expressionk2 − A2
k =

k2/(coshkh)2 � 4k2 exp(−2kh) � 4k2 because limit|k| → ∞ implies kh � 1. Thus finiteσ makes problem
(20)–(23)well-posed.

Note that for finite depthAk < kwe could still have instability at finite range of wavenumberskh ∼ 1. In that case
kη0 ∼ η0/h � 1 because a typical variation of surface elevation,η0, should be small to allow weak nonlinearity
approximation used throughout this article. Becausekη0 � 1, Eqs. (37) and (38)are reduced to

νk = −ik · ∇Ψ0 ± A
1/2
k [−Bk + 2(k2 − A2

k)(ÂΨ0)2η0]1/2, kh ∼ 1, (40)

which gives instability provided

Bk < 2(k2 − A2
k)(ÂΨ0)2η0, kh ∼ 1, (41)

e.g., instability occurs forg = σ = 0:

νk = −ik · ∇Ψ0 ± k(ÂΨ0)η0

√
k2 − A2

k, kh ∼ 1. (42)
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We can estimate inequality(41)as

(
g+ σ

h2

)
�
v2

0η0

h2
, (43)

wherev0 ∼ |∇Ψ0| is the typical velocity of fluid.
It follows from (43) that instability occurs for large values ofv0 (becauseη0 is small). If gravity dominates,g >

σ/h2, then(43) givesgh/v2
0 � η0/h but weak nonlinearity approximation implies thatη0/h � 1 which indicates

that the kinetic energy strongly exceed the potential energy. Fluid has enough kinetic energy to easily move upward
at distance∼ h. As a result, at later stage of evolution weak nonlinearity approximation is violated and surface is
strongly perturbed at scales∼ h.

If capillarity dominates,g < σ/h2, inequality(43)givesσ/v2
0η0 � 1 and the kinetic energy again strongly exceed

the potential energy. Assume now that, because of instability forkh ∼ 1, at later time of evolution the potential
energy will be of the same order as the kinetic energy, namely,η0v

2
0 ∼ σΘ2, Θ ∼ |∇η|. Thenσ/v2

0η0 � 1 results
in inequalityΘ � 1 which again violates weak nonlinearity approximation. Thus for arbitrary relations betweeng
andσ/h2, and forkh ∼ 1, the instability is possible for strong enough velocity of fluid and this instability results
in violation of weak nonlinearity approximation in course of fluid evolution. In that sense there is no surprise
that for large velocity there is an instability forkh ∼ 1. This instability is purely physical which leaves problem
well-posed.

Outside capillary scale we can setσ = 0 and get fromEqs. (37) and (38)that zero capillarity makesEq. (25)
ill-posed fork → ∞:

νk = −ik · ∇Ψ0 ± 21/2(ÂΨ0)1/2k(Â[η0ÂΨ0] + η0∇2Ψ0)1/2 ∼ −ik · ∇Ψ0 ± kv0Θ
1/2. (44)

An expression̂AΨ0(Â[η0ÂΨ0] + η0∇2Ψ0) in Eq. (44)is not sign-definite which results in instability of the system
(20)–(23). From comparison ofEqs. (44) and (32)we see that the fourth-order Hamiltonian does not prevent
short-wavelength instability but makes instability weaker by the small factorΘ1/2 compared with instability of the
third-order Hamiltonian[18]. Instability(44)has been observed numerically[18]. We conclude that full fourth-order
system(20)–(23)is ill-posed for zero capillarity,σ = 0.

Ill-posedness ofEqs. (20)–(23)can be also interpreted as violation of perturbation expansion(2) for k → ∞.
Namely, short wavelength contribution to the quadratic Hamiltonian(34) and (38)is not small compared with the
other terms in the Hamiltonian(21)–(23)providedkη0 � 1.

Ill-posedness makesEqs. (20)–(23)(or, equivalently,Eq. (25)) difficult for numerical simulations. There are a
few ways to cope with that problem. One way is to resolve all scales down to capillary scales which is extremely
costly numerically, e.g., if we want to study water waves in gravitation region (scale of meters and larger), we
would have to simultaneously resolve capillary scale∼ 1 cm. Other way is to introduce artificial damping for short
wavelengths, i.e., to replaceEq. (20)by

∂ηk

∂t
= δH

δΨ−k
+ γ1(k)ηk ,

∂Ψk

∂t
= − δH

δη−k
+ γ2(k)Ψk , (45)

where functionsγ1(k), γ2(k) are zero for small and intermediate values ofk but they tend to−∞ for k → ∞. Also
it is possible to introduce finite viscosity of the fluid. However in that case we would have to resolve very small
scales and, in addition, the Hamiltonian is not conserved for finite viscosity so that we cannot use the Hamiltonian
formalism.

In this paper we use another way which is to completely remove short wavelength instabilities and make problem
well-posed by appropriate canonical transformation from variablesη,Ψ to new canonical variablesξ, R.
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6. Canonical transformation

Canonical transformation from variablesΨ, η to new variablesR, ξ is determined by a generating functionalS:

S =
∫
Rkη−k dk + 1

8π

∫
A3ηk1ηk2Rk3δ(k1 + k2 + k3) dk1 dk2 dk3

+ 1

4(2π)2

∫
Vk1,k2,k3,k4Rk1ηk2ηk3ηk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4, (46)

Ψk = δS

δη−k
= Rk + 1

4π

∫
A1Rk1ηk2δ(k1 + k2 − k) dk1 dk2

+ 3

4(2π)2

∫
Vk1,k2,k3,−kRk1ηk2ηk3δ(k1 + k2 + k3 − k) dk1 dk2 dk3, (47a)

ξk = δS

δR−k
= ηk + 1

8π

∫
Akηk1ηk2δ(k1 + k2 − k) dk1 dk2

+ 1

4(2π)2

∫
V−k,k2,k3,k4ηk2ηk3ηk4δ(k2 + k3 + k4 − k) dk2 dk3 dk4, (47b)

whereVk1,k2,k3,k4 is the symmetric function ofk2, k3, k4. This is the most general form of canonical transformation
up to terms of the fourth order. The only condition which we use here is thatS is chosen to be linear functional of
R to preserve the quadratic dependence of the Hamiltonian on canonical momentumR.

The quantityη can be found fromEq. (47b)as the functional ofξ by iterations (here and below we take into
account only corrections up to the fourth order in the Hamiltonian):

ηk = ξk − 1

8π

∫
Akξk1ξk2δ(k1 + k2 − k) dk1 dk2 + 1

8(2π)2

×
∫

[AkA1+2 − 2V−k,k1,k2,k3]ξk1ξk2ξk3δ(k1 + k2 + k3 − k) dk1 dk2 dk3. (48)

Eqs. (47a) and (48)give:

Ψk = Rk + 1

4π

∫
A1Rk1ξk2δ(k1 + k2 − k) dk1 dk2 + 1

8(2π)2

∫
[−A1A2+3 + 6Vk1,k2,k3,−k ]Rk1ξk2ξk3

× δ(k1 + k2 + k3 − k) dk1 dk2 dk3. (49)

UsingEqs. (21)–(23), (47a) and (48)we get:

H0 = 1

2

∫
{Ak|Rk |2 + Bk|ξk |2} dk, (50)

H1 = 1

4π

∫
[−(k1 · k2)Rk1Rk2 − 1

6
(A1B1 + A2B2 + A3B3)ξk1ξk2]ξk3δ(k1 + k2 + k3) dk1 dk2 dk3,

(51)
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H2 = 1

8(2π)2

∫
{(k1 · k2)(A1+2 − A1 − A2) − k2

1A2 − k2
2A1 + 1

4
A1A2[A1+3 + A2+3 + A1+4 + A2+4]

+ 3[A1Vk2,k3,k4,k1 + A2Vk1,k3,k4,k2]}Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4

+ 1

8(2π)2

∫
{−σ(k1 · k2)(k3 · k4) + 1

4
A2

1+2B1+2 + A3B3A1+2 − 2B1Vk1,k2,k3,k4}ξk1ξk2ξk3ξk4

× δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4, Bj ≡ Bkj , Bj+l ≡ Bkj+kl . (52)

Canonical transformation conserves the Hamiltonian structure so the dynamical equations in new variablesR, ξ are
given by:

∂ξ

∂t
= δH

δR
,

∂R

∂t
= −δH

δξ
. (53)

7. From complex to real Hopf equation

We choose the cubic term of the generating functionalS in such a way to remove linear instability at leading
order. Similar toEqs. (30a) and (30b), we get fromEqs. (50), (51) and (53)at leading order of small parameter|∇ξ|:

∂ξ

∂t
= ÂR, (54a)

∂R

∂t
= −1

2
(∇R)2. (54b)

Thus instead of the complex Hopf equation(4) (or Eq. (30b)) we got the real Hopf equation(54b)for new canonical
variableR. It is important that the real Hopf equation is well-posed.

Additional advantage ofEq. (54b)is that it can be integrated by the method of characteristics not only in two
dimensions asEq. (4)but for three-dimensional flow also.

8. Removal of instability from fourth order term

Next step is to remove instability from the fourth order terms in the Hamiltonian(52) by a proper choice of
matrix elementV. We can takeVk1,k2,k3,k4 in the following form:

Vk1,k2,k3,k4 = α1k
2
1 + α2A1(A2+3 + A2+4 + A3+4), (55)

whereα1, α2 are the real constants. TheEqs. (50)–(52)give

H0 = 1

2

∫
{Ak|Rk |2 + Bk|ξk |2} dk, (56)

H1 = 1

4π

∫ [
−(k1 · k2)Rk1Rk2 − 1

6
(A1B1 + A2B2 + A3B3)ξk1ξk2

]
ξk3δ(k1 + k2 + k3) dk1 dk2 dk3,

(57)

H2 = 1

8(2π)2

∫ {
(k1 · k2)(A1+2 − A1 − A2) + (3α1 − 1)(k2

1A2 + k2
2A1)

[
1

4
+ 3α2

]

× A1A2[A1+3 + A2+3 + A1+4 + A2+4] + 3α2A1A2(A1+2 + A3+4)

}
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×Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4 + 1

8(2π)2

×
∫ {

−σ(k1 · k2)(k3 · k4) + 1

4
A2

1+2B1+2 + A3B3A1+2 − 2B1[α1k
2
1 +α2A1(A2+3 + A2+4 + A3+4)]

}
× ξk1ξk2ξk3ξk4 × δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4, Bj ≡ Bkj , Bj+l ≡ Bkj+kl . (58)

The dynamical equations, as follows from(53) and (56)–(58), are

∂R

∂t
= −B̂ξ − 1

2
(∇R)2 + 1

2
ξÂB̂ξ + 1

4
ÂB̂ξ2 + 1

4
ξÂ(∇R)2 − 1

2
ξ∇R · ∇ÂR− 1

2
(1 − 3α1)ξ(�R

)
ÂR

−
(

1

4
+ 3α2

)
(ÂR)Â(ξÂR) − 3α2

2
ξÂ[(ÂR)2] − σ

2
∇ · [∇ξ(∇ξ · ∇ξ)] − 1

8
ξÂ2(B̂ξ2)

− 1 − 6α2

8
(ÂB̂ξ)Âξ2 − 1 − 6α2

8
ÂB̂(ξÂξ2) − 1 − 6α2

4
ξÂ(ξÂB̂ξ) − 3

4
α1ξ

2�B̂ξ − α1

4
�B̂ξ3,

(59)

∂ξ

∂t
= ÂR− ∇ · [(∇R)ξ] + 1

4
∇ · [(∇R)Âξ2] − 1

4
∇ · Â(ξ2∇R) − 1

4
∇ · (ξ2Â∇R) + 1 − 3α1

4
�(ξ2ÂR)

+ 1 − 3α1

4
Â(ξ2�R) +

(
1

4
+ 3α2

)
Â[ξÂ(ξÂR)] + 3

2
α2Â[(Âξ2)(ÂR)], (60)

whereB̂ ≡ g− σ�,� ≡ (∂2/∂x2) + (∂2/∂y2).
To study linear stability of the Hamiltonian system in new variable in respect to short wavelength perturbations

one can set, similar toEq. (33), variablesξ, R in the following form:

ξk = ξ0k + δξk , Rk = R0k + δRk (61)

with an assumption of an exponential dependence on time:

δξk ∼ eνk t , δRk ∼ eνk t . (62)

Hereξ0k ,R0k are solutions ofEqs. (59) and (60)andδξk , δRk are short wavelength perturbations localized around
wave vectork, |k| � q, q is a typical wavenumber forξ0k , R0k .

We get, similar toEqs. (34), (35) and (37), for the perturbed Hamiltonian:

δH0 = 1

2

∫
Ãk |δRk |2 dk + 1

2

∫
B̃k |δξk |2 dk +

∫
(Fk + iGk )δRkδξ−k dk,

Ãk = Ã−k , B̃k = B̃−k , Fk = F−k , Gk = −G−k , (63)

the following expressions:

Ãk = Ak + k2ξ0 + Ak[ 3
2α1k

2 + ( 1
4 + 3α2)A2

k]ξ
2
0 + O(k2Θξ0),

B̃k = Bk − AkBkξ0 + ( 1
4 + 3α2)Ak(ÂR0)2 + 3Bk[( 1

4 − α2)A2
k − 1

2α1k
2]ξ2

0 + O(gkΘξ0)

+ O(σk3Θξ0) + O(k0v2
0l

−1
0 ),

Fk = [−1
2k

2(1 − 3α1) + ( 1
4 + 6α2)A2

k](ÂR0)ξ0 + O(kv0Θ), Gk = k · ∇R0 + O(kv0Θ), (64)
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whereξ0 = (1/2π)
∫
ξk dk, R0 = (1/2π)

∫
Rk dk, andΘ ∼ |∇ξ0| is the steepness. Similar toEq. (38), we in-

troduced here the typical value of fluid velocity,v0 ∼ |∇R0| and the typical scale,l0 of variation ofv0 andξ0:
Θ ∼ ξ0/l0, |∇v0| ∼ v0/l0.

Eqs. (37) and (64)give instability growth rate. Our purpose is to make these equations well-posed for zero
capillarity so that we assumeσ = 0 and consider limitk → ∞ which means thatAk = k. It is convenient to rewrite
Eqs. (37) and (64)in dimensionless form as follows:

˜̃Ak = 1 + λ+
[

3

2
α1 + 1

4
+ 3α2

]
λ2 + O(λΘ),

˜̃Bk = 1 − λ+
(

1

4
+ 3α2

)
ρ + 3

[
1

4
− α2 − α1

2

]
λ2 + O(λΘ) + O(λ−1ρΘ),

F̃2
k =

[
−1

4
+ 3

2
α1 + 6α2

]2

λ2ρ + O(λρΘ), ν̃2
k = F̃2

k − ˜̃Ak ˜̃Bk , (65)

where ˜̃Ak = Ãk/k, ˜̃Bk = B̃k/g, F̃2
k = F2

k /gk, ν̃
2
k = (νk + iGk )2/gk. The system(65) is described by the two

independent dimensionless parametersλ ≡ kξ0 andρ ≡ k(ÂR0)2/g which reflects the freedom of choice of an
initial surface elevation and an initial velocity. Condition of applicability ofEq. (64) is kl0 � 1, which gives
|λ| � Θ in dimensionless variablesρ, λ. Parameterρ can take any nonnegative value because it depends on the
fluid velocity which can be arbitrary. We want to chooseα1 andα2 to ensure thatEqs. (53) and (56)–(58)are
well-posed and stable, which means thatν̃2

k < 0, for any value ofλ and any nonnegative value ofρ.
First step is to analyze the system(65) in the limit Θ → 0 which means that we first neglect O(. . . Θ) terms

in (65). Assume thatg �= 0 then the necessary condition forν̃2
k < 0 is to have˜̃Ak ˜̃Bk > 0 which means that either

˜̃Ak > 0 and ˜̃Bk > 0, or ˜̃Ak < 0 and ˜̃Bk < 0. It easy to show that the second case cannot be realized forEq. (65)so
we consider the first case of positive˜̃Ak and ˜̃Bk . Inequality ˜̃Ak > 0 givesβ1 > −√

3/6 and inequalitỹ̃Bk |ρ=0 > 0
givesβ1 <

√
3/12 which together result in

−
√

3

6
< β1 <

√
3

12
, β1 =

√
3

2

(
3

2
α1 + 3α2 − 1

3

)
. (66)

Provided(66) is satisfied, the sufficient condition for absence of instability,ν̃2
k < 0, is to have term∝ ρ in ν̃2

k to be
negative for anyλ, which means that

[−1
4 + 3

2α1 + 6α2]2λ2 − ( 1
4 + 3α2) ˜̃Ak < 0. (67)

This inequality is satisfied for anyλ provided

β2
1 + β2

2 <
1
12, β2 = 1

4(−1 + 3α1 + 18α2). (68)

Thusν̃2
k < 0 for anyλ andρ ≥ 0 provided inequalities(66) and (68)hold. It corresponds in (α1, α2) plane to the

inner part of the ellipse defined by(68) and bounded by two parallel lines defined by(66) (see the filled area in
Fig. 1). The center of the ellipse is located atα1 = 1/6, α2 = 1/36 (point A inFig. 1). So the choice ofα1 andα2
is not unique forg �= 0 in the limitΘ → 0 and is determined by(66) and (68).

Forg = 0 Eq. (65)are reduced to

˜̃Ak = 1 + λ+
[

3

2
α1 + 1

4
+ 3α2

]
λ2 + O(λΘ),

˜̃ν2
k =

[
−1

4
+ 3

2
α1 + 6α2

]2

λ2 −
[

1

4
+ 3α2 + O(λ−1Θ)

]
˜̃Ak + O(λΘ), ˜̃ν2

k = ξ2
0

λ2(ÂR0)2
(νk + iGk )2.

(69)
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Fig. 1. Eqs. (53) and (56)–(58)with g �= 0 are stable for any (α1, α2) inside the filled area. Point A corresponds to the center of ellipse,
(α1, α2) = (1/6,1/36). Point B corresponds to the most stable system(65), (α1, α2) = (0,1/12). Points C, (α1, α2) = (1/2,−1/12), and D,
(α1, α2) = (1/6,1/12), correspond to intersections of the ellipse defined in(68)with the line 3α1 + 6α2 = 1.

It follows from Eq. (69)that ˜̃ν2
k < 0 in the limitΘ → 0 provided condition(68) is satisfied, which corresponds in

(α1, α2) plane to the inner part of the ellipse defined by(68)(seeFig. 2) in contrast with the case of nonzero gravity.
Fork → ∞ we get from(64) for g �= 0:

νk = −ik · ∇R0 ± ik5/2g1/231/2
[

3

2
α1 + 1

4
+ 3α2

]1/2

×
[

1

4
− α2 − α1

2

]1/2

ξ2
0 (70)

Fig. 2. Eqs. (53) and (56)–(58)with g = 0 are stable for any (α1, α2) inside the filled area. The filled area is bounded by the ellipse defined in
(68). Point A corresponds to the center of ellipse, (α1, α2) = (1/6,1/36). Point E, (α1, α2) = (−1/2 + 3−1/2,1/4 − 33/2), corresponds to the
most stable system(69).
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and

νk = −ik · ∇R0 ± ik22−3/23[−2α2
1 + 4α2(1 − 6α2) + α1(1 − 12α2)]1/2ξ0ÂR0 (71)

for g = 0.
Note that for parameters satisfying inequalities(66) and (68), the real part ofνk is zero even forkh ∼ 1, where

νk takes the following form:

νk = −ik · ∇R0 ± iA1/2
k [g+ ( 1

4 + 3α2)Ak(ÂR0)2]1/2 (72)

so that in new canonical variables(55), (66) and (68)the instability is absent even for intermediate values ofk ∼ 1/h.
Another remark is that these variables leave problem well-posed forσ �= 0 also but that case is not so interesting
becauseEqs. (53) and (56)–(58)well-posed even in original variablesη,Ψ for σ �= 0.

Now we make the second step and assume thatΘ is small but nonzero inEqs. (65) and (69). Terms O(. . . Θ) in
Eqs. (65) and (69)are not sign-definite and their values depend on horizontal coordinatesx, y and time according
to dynamical equations(53) and (56)–(58). Generally these terms result in shrinking of the area of stability,ν̃2

k < 0
in (α1, α2) plane.Figs. 3 and 4show shrinking of the stability area for the particular choice of terms O(. . . Θ) for
g �= 0. Each curve inFig. 4corresponds to the stability boundary, max

λ,ρ
ν̃2
k = 0, for the particular value ofΘ. The

additional requirement is that

b1

12
Θ(2 + b1Θ) < α2 + α1

2
<

1

6
+ b2

12
Θ(2 − b2Θ), (73)

which is a generalization of(66) for nonzeroΘ. Here we assume O(λΘ) = b1λΘ and O(λΘ) = b2λΘ in the right
hand side ofEq. (65)for ˜̃Ak and ˜̃Bk , respectively. Calculating curves inFigs. 3 and 4we setb1 = b2 = −1 as a
typical example. Condition(73) result in additional cutting of curves max

λ,ρ
ν̃2
k = 0 in Figs. 3 and 4for Θ = 0, 0.01,

0.02, 0.025 and 0.05. The system(65) is stable inside each curve inFig. 4 for givenΘ. ForΘ < 0.1, the width of
region between solid curve (Θ = 0) and curves withΘ �= 0 scales approximately asΘ. ForΘ > 0.1 the region of
stability quickly shrinks to zero asΘ approaches�0.1389. Note that these numerical values are non-universal and

Fig. 3. Shrinking of the stable region for small but nonzeroΘ forg �= 0. Solid curve corresponds toΘ = 0. Area inside dotted curve corresponds to
the stable region forΘ = 0.025. Dotted curve is obtained numerically forEq. (65)where we set as example O(λΘ) = −λΘ, O(λ−1ρΘ) = λ−1ρΘ,
O(λρΘ) = −λρΘ. Points A, B are defined inFig. 1.
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Fig. 4. A series of curves corresponding to shrinking of the stable region as a function ofΘ for g �= 0. ForΘ < 0.1, the width of region between
solid curve (Θ = 0) and curves withΘ �= 0 scales approximately asΘ. ForΘ > 0.1, the stable region quickly shrinks to zero asΘ approaches
�0.1389. Similar toFig. 3, all curves are calculated numerically with assumptions O(λΘ) = −λΘ, O(λ−1ρΘ) = λ−1ρΘ, O(λρΘ) = −λρΘ.

depend on the numerical coefficient in O(. . . Θ) terms. In a similar way,Figs. 5 and 6show shrinking of the stability
area for zero gravity case.

Our objective is to find parametersα1, α2 corresponding to stability,̃ν2
k < 0, with the largest possibleΘ. For

the caseg �= 0 this is achieved if the maximum ofν̃2
k |Θ=0, as a function ofλ, ρ, is not only negative but minimum

as a function ofα1 andα2, i.e., we want to find min
α1,α2

max
λ,ρ

ν̃2
k |Θ=0. This ensures that the system(65) is the most

Fig. 5. Shrinking of the stable region for small but nonzeroΘ for g = 0. Solid curve corresponds toΘ = 0. Area inside dotted curve corresponds
to the stable region forΘ = 0.025. Dotted curve is obtained numerically forEq. (65)where we set as example O(λΘ) = −λΘ, O(λ−1Θ) = λ−1Θ.
Points A, E are defined inFig. 2.
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Fig. 6. A series of curves corresponding to shrinking of the stable region as a function ofΘ for g = 0. ForΘ < 0.1, the width of region between
solid curve (Θ = 0) and curves withΘ �= 0 scales approximately asΘ. ForΘ > 0.1, the stable region quickly shrinks to zero asΘ approaches
�0.1389. Similar toFig. 5, all curves are calculated numerically with assumptions O(λΘ) = −λΘ, O(λ−1Θ) = λ−1Θ.

stable system forΘ → 0 or, in other words, the system is the most rigid one. Becauseρ ≥ 0 we have to set
ρ = 0 to find max

λ,ρ
ν̃2
k . Then we obtain that min

α1,α2
max
λ,ρ

ν̃2
k = ν̃2

k |ρ=0,λ=0 = −1. This minimum is attained provided

3α1 + 6α2 = −1/2 and (1/6)(1− √
5)< α1 < 1/3. We also want to have the most stable system fork → ∞

(ρ → ∞ andλ → ∞). This is achieved provided the coefficients in front of the leading order termsλ4 andλ2ρ in
ν̃2
k are minimums. The coefficient forλ4 is already minimum from condition 3α1 + 6α2 = 1/2, while the coefficient

for λ2ρ is −3/16+ 9α2
1/4, i.e., we have minimum for

α1 = 0, α2 = 1/12, g �= 0, (74)

which corresponds to point B inFig. 1. This choice of parametersα1 andα2 is optimal to keep the system(65)
stable for the largest possibleΘ, i.e., for the largest possible nonlinearity.

Dynamical equations(59) and (60)for nonzero gravityg �= 0 and zero capillarityσ = 0 and the optimal choice
(74)of α1 andα2 take the following form:

∂R

∂t
= −gξ − 1

2
(∇R)2 + 1

2
gξÂξ + 1

4
gÂξ2 + 1

4
ξÂ(∇R)2 − 1

2
ξ∇R · ∇ÂR− 1

2
ξ(�R)ÂR

− 1

2
(ÂR)Â(ξÂR) − 1

8
ξÂ[(ÂR)2] − 1

8
gξÂ2(ξ2) − 1

16
g(Âξ)Âξ2 − 1

16
gÂ(ξÂξ2) − 1

8
gξÂ(ξÂξ), (75)

∂ξ

∂t
= ÂR− ∇ · [(∇R)ξ] + 1

4
∇ · [(∇R)Âξ2] − 1

4
∇ · Â(ξ2∇R) − 1

4
∇ · (ξ2Â∇R) + 1

4
�(ξ2ÂR)

+ 1

4
Â(ξ2�R) + 1

2
Â[ξÂ(ξÂR)] + 1

8
Â[(Âξ2)(ÂR)]. (76)
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In a similar way, for zero gravity,g = 0, the system(69)is the most stable provided we findα1, α2 which correspond
to min
α1,α2

max
λ

˜̃ν2
k |Θ=0 for Eq. (69). Maximum max

λ

˜̃ν2
k |Θ=0 is attained for

λ = 1 + 12α2

9
[2α2

1 + 4α2(6α2 − 1) + α1(12α2 − 1)]−1

and min
α1,α2

max
λ

˜̃ν2
k |Θ=0 = (2/3)(−2 +

√
3) is attained provided

α1 = −1
2 + 3−1/2, α2 = 1

4 − 33/2, g = 0, (77)

which corresponds to point E inFig. 2. This choice of parametersα1 andα2 is optimal to keep the system(65)
stable for the largest possibleΘ, i.e., for the largest possible nonlinearity.

Dynamical equations(59) and (60)for zero gravity and capillarityg = σ = 0 and the optimal choice(77)of α1
andα2 take the following form:

∂R

∂t
= −1

2
(∇R)2 + 1

4
ξÂ(∇R)2 − 1

2
ξ∇R · ∇ÂR− 1

2

(
5

2
−

√
3

)
ξ(�R)ÂR− (1 − 35/2)(ÂR)Â(ξÂR)

− 3

2

(
1

4
− 33/2

)
ξÂ[(ÂR)2], (78)

∂ξ

∂t
= ÂR− ∇ · [(∇R)ξ] + 1

4
∇ · [(∇R)Âξ2] − 1

4
∇ · Â(ξ2∇R) − 1

4
∇ · (ξ2Â∇R) + 1

4

(
5

2
−

√
3

)
�(ξ2ÂR)

+ 1

4

(
5

2
−

√
3

)
Â(ξ2�R) + (1 − 35/2)Â[ξÂ(ξÂR)] + 3

2

(
1

4
− 33/2

)
Â[(Âξ2)(ÂR)]. (79)

First term in the right hand side ofEq. (78)results from the third-order Hamiltonian and corresponds to the real
Hopf equation(54b)while other terms in this equation result from the fourth-order Hamiltonian.

Thus we can chooseα1, α2 from the conditions(66) and (68)to makeEqs. (53) and (56)–(58)(or, equivalently,
Eqs. (59) and (60)) well-posed for any value ofσ, g and arbitrary depth of fluid. To find dynamics of free surface,
one can solve equations forR, ξ usingEqs. (53) and (56)–(58)and conditions(66) and (68). This is the main result
of this article. To recover physical variablesΨ, η from givenR, ξ one can useEqs. (48), (49) and (55).

Now we can return to the comment in Section 5 about interpretation of ill-posedness ofEqs. (20)–(23)as
violation of perturbation expansion(2) for kη0 � 1. For the new canonical variablesξ,Rperturbation expansion is
still formally violated forkξ0 � 1 because contribution from the quadratic Hamiltonian(63) and (64)is not small
compared with other terms in the Hamiltonian(56)–(58). However this violation does cause any problem because
there is no short wavelength instability in the new canonical variables and the system(53) and (56)–(58)is well-
posed. In other words, the new canonical variablesξ,Rprovide purely physical way to regularize short wavelengths
without introduction of any artificial viscosity.

As follows from Eqs. (66) and (68), the new canonical variablesξ, R are not uniquely determined from the
condition of well-posedness of the dynamical equations(53) and (56)–(58)because parameters (α1, α2) can take
any valued from filled area inFigs. 1 and 2. However the choice of (α1, α2) is unique provided we additionally
require the system(53) and (56)–(58)to be free of short wavelength instability for the largest possible slopes
Θ, i.e., for the largest possible nonlinearity. This gives the conditions(74) for g �= 0 and(77) for g = 0. We
refer to the variablesξ, R, defined inEqs. (48), (49), (55), (74) and (77), as the optimal canonical variables.
We conjecture that the optimal canonical variables, which allow well-posedness of the dynamical equations, ex-
ist in all orders of nonlinearity. However additional research necessary to decide if the optimal canonical vari-
ables exist and unique in higher (fifth, etc.) order of nonlinearity. We also conjecture that the optimal canoni-
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cal variablesξ, Rwould allow numerical simulation with higher steepness compared with the standard variables
Ψ, η.

9. Special cases

There are a number of important special cases of the optimal canonical variables. Here we use(74) and (77).
We give here expression for the Hamiltonian only. The dynamical equations can be obtained either from(53) or
directly fromEqs. (59) and (60).

9.1. Deep water limit

Forg �= 0,h → ∞, Ak = k andEqs. (56)–(58)take the form:

H0 = 1

2

∫
{k|Rk |2 + Bk|ξk |2} dk, Bk = g+ σk2, (80)

H1 = 1

4π

∫ [
−(k1 · k2)Rk1Rk2 − 1

6
(k1B1 + k2B2 + k3B3)ξk1ξk2

]
ξk3δ(k1 + k2 + k3) dk1 dk2 dk3,

(81)

H2 = 1

8(2π)2

∫ {
(k1 · k2)(|k1 + k2| − k1 − k2) − (k2

1k2 + k2
2k1) + 1

2
k1k2[|k1 + k3| + |k2 + k3|

+ |k1 + k4| + |k2 + k4|] + 1

4
k1k2[|k1 + k2| + |k3 + k4|]}Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4)

× dk1 dk2 dk3 dk4 + 1

8(2π)2

∫
{−σ(k1 · k2)(k3 · k4) + 1

4
|k1 + k2|2B1+2 + k3B3|k1 + k2|

− 1

6
B1k1(|k2 + k3| + |k2 + k4| + |k3 + k4|)

}
ξk1ξk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4.

(82)

9.1.1. Zero gravity and capillarityg = σ = 0

H0 = 1

2

∫
k|Rk |2 dk, (83)

H1 = − 1

4π

∫
(k1 · k2)Rk1Rk2ξk3δ(k1 + k2 + k3) dk1 dk2 dk3, (84)

H2 = 1

8(2π)2

∫ {
(k1 · k2)(|k1 + k2| − k1 − k2) +

(
−5

2
+

√
3

)
(k2

1k2 + k2
2k1)

+ (1 − 35/2)k1k2[|k1 + k3| + |k2 + k3| + |k1 + k4| + |k2 + k4|]

+
(

3

4
− 35/2

)
k1k2[|k1 + k2| + |k3 + k4|]

}
Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4.

(85)
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9.1.2. Zero gravity,g = 0, and nonzero capillarityσ �= 0

H0 = 1

2

∫
{k|Rk |2 + σk2|ξk |2} dk, (86)

H1 = 1

4π

∫ [
−(k1 · k2)Rk1Rk2 − σ

6
(k3

1 + k3
2 + k3

3)ξk1ξk2

]
ξk3δ(k1 + k2 + k3) dk1 dk2 dk3, (87)

H2 = 1

8(2π)2

∫ {
(k1 · k2)(|k1 + k2| − k1 − k2) +

(
−5

2
+

√
3

)
(k2

1k2 + k2
2k1)

+ (1 − 35/2)k1k2[|k1 + k3| + |k2 + k3| + |k1 + k4| + |k2 + k4|]

+
(

3

4
− 35/2

)
k1k2[|k1 + k2| + |k3 + k4|]

}
Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4

+ σ

8(2π)2

∫ {
−(k1 · k2)(k3 · k4) + 1

4
|k1 + k2|4 + k3

3|k1 + k2| − k3
1[(−1 + 3−1/2)k1

+
(

1

2
− 33/22

)
(|k2 + k3| + |k2 + k4| + |k3 + k4|)]

}
× ξk1ξk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4. (88)

9.1.3. Nonzero gravity,g �= 0, and zero capillarityσ = 0

H0 = 1

2

∫
{k|Rk |2 + g|ξk |2} dk, (89)

H1 = 1

4π

∫ [
−(k1 · k2)Rk1Rk2 − g

6
(k1 + k2 + k3)ξk1ξk2

]
ξk3δ(k1 + k2 + k3) dk1 dk2 dk3, (90)

H2 = 1

8(2π)2

∫ {
(k1 · k2)(|k1 + k2| − k1 − k2) − (k2

1k2 + k2
2k1) + 1

2
k1k2[|k1 + k3| + |k2 + k3|

+ |k1 + k4| + |k2 + k4|] + 1

4
k1k2[|k1 + k2| + |k3 + k4|]

}
×Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4

+ g

8(2π)2

∫ {
1

4
|k1 + k2|2 + k3|k1 + k2| − 1

6
k1(|k2 + k3| + |k2 + k4| + |k3 + k4|)

}
× ξk1ξk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4. (91)

9.2. Shallow water limit

Shallow water limit corresponds tokh → 0. In that limitAk → k2h. Eqs. (56)–(58)take the following form for
g �= 0:

H0 = 1

2

∫
{k2h|Rk |2 + Bk|ξk |2} dk, Bk = g+ σk2, (92)

H1 = 1

4π

∫ [
−(k1 · k2)Rk1Rk2 − h

6
(k2

1B1 + k2
2B2 + k2

3B3)ξk1ξk2

]
ξk3δ(k1 + k2 + k3) dk1 dk2 dk3,

(93)
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H2 = h

8(2π)2

∫ {
2(k1 · k2)2 − 2k2

1k
2
2 + h2 1

2
k2

1k
2
2[|k1 + k3|2 + |k2 + k3|2

+ |k1 + k4|2 + |k2 + k4|2] + h2 1

4
k2

1k
2
2[|k1 + k2|2 + |k3 + k4|2]

}
×Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4

+ 1

8(2π)2

∫ {
−σ(k1 · k2)(k3 · k4) + h2

4
|k1 + k2|4B1+2 + h2k2

3B3|k1 + k2|2

− B1k
2
1h

2

6
(|k2 + k3|2 + |k2 + k4|2 + |k3 + k4|2)

}

× ξk1ξk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4. (94)

9.2.1. Zero gravity and capillarityg = σ = 0

H0 = 1

2

∫
k2h|Rk |2 dk, (95)

H1 = − 1

4π

∫
(k1 · k2)Rk1Rk2ξk3δ(k1 + k2 + k3) dk1 dk2 dk3, (96)

H2 = h

8(2π)2

∫ {
2(k1 · k2)2 +

(
−5

2
+

√
3

)
2k2

1k
2
2 + h2(1 − 35/2)k2

1k
2
2[|k1 + k3|2 + |k2 + k3|2

+ |k1 + k4|2 + |k2 + k4|2] + h2
(

3

4
− 35/2

)
k2

1k
2
2[|k1 + k2|2 + |k3 + k4|2]

}
×Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4. (97)

9.2.2. Zero gravity,g = 0, and nonzero capillarityσ �= 0

H0 = 1

2

∫
{k2h|Rk |2 + σk2|ξk |2} dk, (98)

H1 = 1

4π

∫ [
−(k1 · k2)Rk1Rk2 − σh

6
(k4

1 + k4
2 + k4

3)ξk1ξk2

]
ξk3δ(k1 + k2 + k3) dk1 dk2 dk3, (99)

H2 = h

8(2π)2

∫ {
2(k1 · k2)2 +

(
−5

2
+

√
3

)
2k2

1k
2
2 + h2(1 − 35/2)k2

1k
2
2[|k1 + k3|2 + |k2 + k3|2

+ |k1 + k4|2 + |k2 + k4|2] + h2
(

3

4
− 35/2

)
k2

1k
2
2[|k1 + k2|2 + |k3 + k4|2]

}
×Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4

+ σ

8(2π)2

∫ {
−(k1 · k2)(k3 · k4) + h2

4
|k1 + k2|6 + h2k4

3|k1 + k2|2 − k4
1

×
[
(−1 + 3−1/2) +

(
1

2
− 33/22

)
h2(|k2 + k3|2 + |k2 + k4|2 + |k3 + k4|2)

]}
× ξk1ξk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4. (100)
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9.2.3. Nonzero gravity,g �= 0, and zero capillarityσ = 0

H0 = 1

2

∫
{k2h|Rk |2 + g|ξk |2} dk, (101)

H1 = 1

4π

∫ [
−(k1 · k2)Rk1Rk2 − gh

6
(k2

1 + k2
2 + k2

3)ξk1ξk2

]
ξk3δ(k1 + k2 + k3) dk1 dk2 dk3, (102)

H2 = h

8(2π)2

∫ {
2(k1 · k2)2 − 2k2

1k
2
2 + h2 1

2
k2

1k
2
2[|k1 + k3|2 + |k2 + k3|2 + |k1 + k4|2 + |k2

+ k4|2] + h2 1

4
k2

1k
2
2[|k1 + k2|2 + |k3 + k4|2]

}
Rk1Rk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4

+ g

8(2π)2

∫ {
h2

4
|k1 + k2|4 + h2k2

3|k1 + k2|2 − k2
1h

2

6
(|k2 + k3|2 + |k2 + k4|2 + |k3 + k4|2)

}

× ξk1ξk2ξk3ξk4δ(k1 + k2 + k3 + k4) dk1 dk2 dk3 dk4. (103)

10. Kolmogorov spectrum in the optimal variables

Canonical transformation(47a) and (47b)to the optimal canonical variables does not qualitatively change phys-
ical behaviour of dynamics of water free surface at large and intermediate scales but rather it provides a way to treat
very small scales in physically appropriate manner by ensuring that dynamical equations are well-posed. It means
that we should expect that the important property of wave turbulence, the Kolmogorov spectrum, should not qualita-
tively change in new variables. Indeed, matrix elements of quadratic,(80), third-order,(81), and fourth-order,(82),
Hamiltonian terms in the optimal canonical variables for infinite depth water have the same scaling laws (as function
of wavenumber) as the scaling laws for respective terms for the Hamiltonian in the standard variablesη,Ψ . In a sim-
ilar way to Ref.[3], we can derive the kinetic equation for wave action in the optimal canonical variables for nonzero
gravityg �= 0. Matrix elements of the kinetic equation will be different compared with matrix elements of the kinetic
equation for the standard variables. However scaling dependence of matrix elements will be the same for both the
standard and the optimal canonical variables. Kolmogorov power-laws solutions of the kinetic equation for spectrum
of wave turbulence depend on the scaling laws of matrix elements only (except normalization factors in front of
power-law dependences). We conclude that the Kolmogorov spectrum is the same for both the standard and the opti-
mal canonical variables (see Ref.[3] for review of the Kolmogorov spectrum derivation for the standard variables).

Note also that the optimal canonical variables are specially chosen here for optimization of numerical simulations
but not for derivation of the kinetic equation. For gravity waves (σ = 0, g �= 0) dispersion relationωk = √

gk is of
“non-decay type” so that the equations:

ωk = ωk1 + ωk2, k = k1 + k2 (104)

have no real solution. This means that third-order terms in the Hamiltonian(22)can be excluded by a proper canonical
transformation (see Ref.[3]). This transformation results in the Zakharov equation for water waves. This canonical
transformation is different from canonical transformation(47a) and (47b)because in this article our purpose was to
make water wave equations well-posed for both zero and nonzero gravity. Thus range of applicability ofEqs. (53)
and (56)–(58)in the optimal canonical variables is wider compared with range of applicability of the Zakharov
equation. But the Zakharov equation is better suited for derivation of the kinetic equation. It is possible to derive
kinetic equation for the optimal canonical variables also but detailed consideration of this question is outside the
scope of this article.
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11. Conclusion

In conclusion, we found the optimal canonical variables for which the water wave problem is well-posed in
the approximation which keeps terms up to fourth order in the Hamiltonian. The choice of the optimal canonical
variables is uniquely determined from the requirement of well posedness of the system(53) and (56)–(58)for the
largest possible slopes of free surface of ideal fluid, i.e., for the largest possible nonlinearity. We expect that the
optimal canonical variables would allow numerical simulations with higher steepness compared with the standard
surface variables. The important question remain open if it is possible to make water wave equations well-posed by
proper choice of canonical transformation for higher-order corrections (fifth and higher order). We conjecture that
such optimal canonical variables exist in all orders of nonlinearity.
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