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Abstract

Dynamics of ideal fluid with free surface can be effectively solved by perturbing the Hamiltonian in weak nonlinearity
limit. However it is shown that perturbation theory, which includes third and fourth order terms in the Hamiltonian, results in
the ill-posed equations because of short wavelength instability. To fix that problem we introduce the canonical Hamiltonian
transformation from original physical variables to new variables for which instability is absent.
© 2005 Published by Elsevier B.V.
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1. Introduction

The Euler equations describing dynamics of ideal fluid with free surface is a Hamiltonian system, which is
especially simple if the fluid motion is potential,= V&, wherev is the fluid’'s velocity andd is the velocity
potential. In this casfl—3] the Euler equations can be presented in the form:

on SH o 6H
=0, = (2)
o Sw ot &n
Herez = n(r) is the shape of surfacejs vertical coordinate and= (x, y) are horizontal coordinate¥, = @|._,
is the velocity potential on the surface. The Hamiltonkhooincides with the total (potential and kinetic) energy
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of fluid. The Hamiltonian cannot be expressed in a closed form as a function of surface vafjab)ésit it can be
presented by the infinite series in powers of surface steepviess

H=Ho+Hy+Hy+ . 2)

Here Hp, H1, H» are quadratic, cubic and quartic terms, respectiviegs. (1) and (2pare widely used now for
numerical simulation of the fluid dynami¢4—14]. These simulations are performing by the use of the spectral
code, at the moment a typical grid is 5%%512 harmonics.

Canonical variables are used also for analytical study of the surface dynamics in the limit of small steepness. It
was showrj15-17]that the simplest truncation of the ser{@3, namely:

H = Ho+ H1 (3

leads to completely integrable model—complex Hopf equation. In framework of this approach one can develop the
self-consistent theory of singularity formation in absence of gravity and capillarity for two dimensions (one vertical
coordinatez and one horizontal coordinakg.

However, use of canonical variablgs¥ has a weak point, which becomes clear, if we concentrate our attention
on the complex Hopf equation:

o1 1 (8M\? @
o 2\ox) "’

which comes fronkgs. (1) and (3)Here:
¥ = Re(l) )

and [T is the analytic function of the complex variabten a strip—h < Im(x) < 0, h is the depth of the fluid.

The weak point is thaEq. (4)is ill-posed. A general complex solution of this equation is unstable with respect

to grow of small short-wave perturbations. The same statement is correct with respect to more exact fourth order
Hamiltonian:

H = Ho+ H1+ H», (6)

which is used in most numerical experiments. These experiments, which are easy become unstable: to arres
instability one should include into equations strong artificial damping at high wave numbers. Even in presence of
such damping one can simulate only waves of a relatively small steepness (not more than 0.15).

Inthis article we show that these difficulties can be fixed by a proper canonical transformation to another canonical
variable. It is remarkable, but the property of nonlinear wave equation to be well- or ill-posetifsariant with
respect to choice of the variables

In the present article we demonstrate that there are new canonical variables such thas.t(®) and (6)
are well-posed if we consider the nonlinearity up to the fourth order in the Hamiltonian. We call these variables
“optimal canonical variables”. We demonstrate in the present article that the choice of the optimal canonical
variables is unique provided we additionally require the Hamiltonian system to be free of short wavelength in-
stability for largest possible steepness of the surface, i.e., for the largest possible nonlinearity. We conjecture
that the optimal canonical variables allow numerical simulation with higher steepness compared with the stan-
dard variables; n. We can also formulate a conjecture that the optimal canonical variables exist in all orders of
nonlinearity.
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2. Basic equations and the Hamiltonian formalism

Consider the dynamics of an incompressible ideal fluid with free surface and constant depth. Fluid occupies the
region:

—h<z<n(r), r=(x1y), (7)

where §, y) are the horizontal coordinates ani$ the vertical coordinate.
Viscosity is assumed to be absent and the fluid’s velacit/potential one:

V=V, 8
where is the velocity potential. Incompressibility condition:

V.v=0 9)
results in the Laplace equation:

AD =0. (10)
The potentiakp satisfies also the Bernoulli equation:

@+ (VO + p+gz=0, (11)

wherep is the pressure is the acceleration of gravity, and we set density of fluid to unity.
There are two types of boundary conditions at free surfacédisr (10) and (11)irst is the kinematic boundary
condition:

an /
5 = (P, —Vn- V®)|z=n =upy/1+ (VU)Z’ (12)

wherev, = n- V& is the normal component of fluid’s velocity at free surface, ard (—Vn, 1)[1 + (Vn)3]~ 12
is the interface normal vector.
Second is the dynamic boundary condition at free surface:

Vi
Y1+ ()2

whereo is the surface tension coefficient which determines the jump of the pressure at free surface from zero value
outside of the fluid tg|,—, value inside fluid.
Boundary condition at the bottom is

P:|;=—n =0. (14)

Pli=y =0V (13)

Egs. (10)—(14Jorm a closed set of equations to determine the dynamics of free surface.
The total energyH, of the fluid consists of the kinetic enerdy,and the potential energy;:

H=T+U, (15)

1 ! 2
T_Z/m/;W¢)m, (16)

U:%g/fm+a/[1+wmz—um. (17)
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It is convenient to introduce the value of the velocity potential at interface as
Dl—y = P(r,1). (18)

It was shown in Ref]2] that the free surface proble(h0)—(14)can be written in the Hamiltonian forifd), with
the HamiltoniarH defined in(15).
Fourier transform:

P = % / expik - r)w(r)dr (29)

is the canonical transformation which conserves the Hamiltonian structurgcarfi) take the following form:
ok _ SH oWk SH

__’ :—_’ *: _ N W*:W7 . 20
o oWy or I e = 11k k k (20)

3. Weak nonlinearity

If a typical slope of free surface is smdli/n| « 1, the HamiltoniarH can be series expanded (€& (2)) in
powers of steepne$¥n| which gives[2,3]:

1
Ho = 3 /{Ak|l11k|2 + Belmkl? ok, Ag = ktanhgh), By = g+ ok2, k = |K|, (21)
1 1
Hy= o / L\ Wi, Yoz (K1 + Kz + ka) dky ok dka, (22)
1

2 o
Hy = 22172 /[L(kl),kz,kg,k4l1/k1lpk2 — Z(kl - K2)(K3 - Ka)nk, k]
X NkaMka8(K1 + K2 + k3 + K4) dk1 dk2 dkz dka, (23)
where matrix elements are given by
L(kll),k2 = —k1-ka — A142, Lﬁzl)’kz,kg,k4 = 2A142(A143 + Aoz + Arya + Azia) — 3(K2 A2 + K3Aq),
Aj= Akj, Ajp = Akj+k,~ (24)

The corresponding dynamical equations follow fr¢hj, (6) and (21)—(23)

1 - A A -
aa—f = —gn+ oAy + S[(Aw)? — (V)] — AV)A[AW)] - (A¥)AW)y = 2V - [Va(Vn - V)],
B—’Z = AW — V- [(VO)] — A[nA¥] + A{nA[nAv]} + %A[nZAw] + %A[nzw], (25)

where A is the linear integral operator which corresponds to multiplicatiork tamh#) in Fourier space. For
two-dimensional flow (x, y) = ¥(x), n(x, y) = n(x), this operator is given by

~ 0 ~
” _ 1 +oo f(x/) /
RI() = 2, PV- /_oo sinhe — 20 & @7
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where P.V. means Cauchy principal value of integral. In the limiting case of infinitely deep waterco, the
operatorA turns into the operatadr

lim A=k, (28)

h— o0

which corresponds to multiplication dk| in Fourier space while the operatgrfor two-dimensional flow turns
into the Hilbert transform:

lim R=H, Hf(x)= %P.V. / s (fi dy’. (29)

h— o0 —00 x'

H can be also interpreted as a Fourier transformsign ().
If one neglects gravity and surface tensigns= 0, o = 0, thenEgs. (1) and (2)at leading order over small
parametetVy|, result in[16,15,17]

an

5= Ay, (30a)
1 -
% = E[(Aw)2 — (V¥)?]. (30b)

Remarkable feature digs. (30a) and (30L} thatEq. (30b)does not depend omthus one can first solv80b)
and then find; from Eq. (30a) Substitutingl7 = ¥ + i R¥ into Eq. (30b)results in the complex Hopf equati¢#)
for two-dimensional flow17] which is completely integrable.
Egs. (30b) and (4are ill-posed because they have short wavelength instability which is determined as follows:
we can analyz&q. (30b)and take? in the form:

U =W+ (P KT 4 e, (31)

where ¥y(r, 1) is a solution ofEq. (30b) ¥ is the amplitude of small perturbation, and c.c. means complex
conjugation. Then, in the limjk| — oo, ¥y evolves very slow in space compare e and we get the dispersion
relation for small perturbations:

v = AAYp — ik - Vi, (32)

which describes instability for Re{ = Ay A%, > 0. For general initial condition such instability region always
exists. The instability growth rate, R§(grows agk| increases.

4. Short wavelength stability analysis of the fourth-order Hamiltonian

To study linear stability of the Hamiltonian system in respect to short wavelength perturbations one can set

Nk = nok + o1k Yk = Yok + 8%, (33)

wherengk, Yok are solutions oEgs. (1) and (6andsnk, sy are short wavelength perturbations localized around
wave vectok, |k| > g, gis a typical wavenumber fofok, Yok.

If we take into account contribution to the fourth-order Hamiltonian up to second order in amplitude of pertur-
bationssny, §¥ we get the following general form of the perturbed Hamiltonian:

1 (- 1 (. .
SHo = E/Ak|3t1rfk|2dk+5/Bk|<sr,k|2dk+/(Fk+|c;k)51,szan,k dk,

Ax = A_y, Bx = B_x, Fk = F_x, Gk = —G_x, (34)
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whereAy, By, Fk, Gk are real and depend ok, Yok. Here we disregard linear contribution &é/y because it
has no effect on linear stability analysis.
It follows from Egs. (20) and (34that equations of motion take the following form:

Bk~ . 05Uk ~ .
= Akd% + (Fx — iGk)nk, = —Byénk — (Fk +1Gk)Wk. (35)

An assumption of exponential dependence on time:
ank ~ th’ ka ~ aVk! (36)

gives a dispersion relation:

vkz—in:I:,/sz—AkEk, (37)

which describes instability provideg? — Ay Bx > 0.

5. lll-posedness of the fourth-order Hamiltonian

Consider now a general case of nonzgando and take into account all terms in the Hamiltonian up to fourth
order, i.e., consider fulEq. (25) At the leading order over steepne3sand wavenumbek we obtain:

Ak = Ap + (K% — A2no — Ar(k? — ADn3 +O(kO?), Bk = Bi + Ax(A¥0)* + O3l h),

Fic = —ArAWo — (k2 — A2)(A%0)no + Ar(AlnoA%o] + noV2%o) + Okvoly ),

Gk =k - V¥ + O(kvoB), (38)
whereng = (1/2n) [ nk dk, ¥ = (1/27) [ ¥ dk, and the steepness is definedas- |Vng|. We introduced here
the typical value of fluid velocitypg ~ |V@¥p| and the typical scaldp, of variation ofvg andng: ® ~ no/lo,
[Vvo| ~ vo/ lo.

Egs. (37) and (38jive instability growth rate. We consider particular cases.# 0 then in the limitk| — oo,
we have

vk = £ivok3, (39)

i.e., instability is absent. In derivation dq. (39) we used exponential smallness of expressién- A,f =
k2/(coshkh)? ~ 4k? exp(—2kh) < 4k? because limitk| — oo implies ki >> 1. Thus finitec makes problem
(20)—(23)well-posed.

Note that for finite depthi; < k we could still have instability at finite range of wavenumbérs- 1. In that case
kno ~ no/h < 1 because a typical variation of surface elevatigy),should be small to allow weak nonlinearity
approximation used throughout this article. Becauge< 1, Eqgs. (37) and (38re reduced to

o = —ik - V¥ + A [~ By + 202 — AD(Awo)Pno] 2, kh ~ 1, (40)
which gives instability provided
By < 2(k% — A2)(AWo)?no, kh ~ 1, (41)

e.g., instability occurs fog = o = O:

v = —ik - VW + k(AWo)no k2 — A2, kh ~ 1. (42)
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We can estimate inequalif¢l) as

wherevg ~ | V| is the typical velocity of fluid.

It follows from (43) that instability occurs for large values af (becauseyg is small). If gravity dominateg; >
o/ h2, then(43)give3gh/v§ < no/ h but weak nonlinearity approximation implies that/ 4 <« 1 which indicates
that the kinetic energy strongly exceed the potential energy. Fluid has enough kinetic energy to easily move upward
at distance~ h. As a result, at later stage of evolution weak nonlinearity approximation is violated and surface is
strongly perturbed at scalesh.

If capillarity dominatesg < o/ h?, inequality(43)givesv/vgno < 1 and the kinetic energy again strongly exceed
the potential energy. Assume now that, because of instabilit¢/for 1, at later time of evolution the potential
energy will be of the same order as the kinetic energy, nam@i% ~ @2, 0~ |Vn. Thena/v%no < 1results
in inequality® = 1 which again violates weak nonlinearity approximation. Thus for arbitrary relations between
anda/ h?, and forkh ~ 1, the instability is possible for strong enough velocity of fluid and this instability results
in violation of weak nonlinearity approximation in course of fluid evolution. In that sense there is no surprise
that for large velocity there is an instability féh ~ 1. This instability is purely physical which leaves problem
well-posed.

Outside capillary scale we can set= 0 and get fromEgs. (37) and (38)hat zero capillarity makeEq. (25)
ill-posed fork — oo:

vk = —ik - VW £ 2Y2(Aw) Y2k (A[noA¥o] + noV2Wo)Y? ~ —ik - VW + kvg®@Y/2. (44)

An expressiom ¥y(A[noAW] + noV2W¥) in Eq. (44)is not sign-definite which results in instability of the system
(20)—(23) From comparison oEgs. (44) and (32ve see that the fourth-order Hamiltonian does not prevent
short-wavelength instability but makes instability weaker by the small fa@t6t compared with instability of the
third-order Hamiltoniafl18]. Instability (44) has been observed numericdlly]. We conclude that full fourth-order
system(20)—(23)is ill-posed for zero capillarityy = 0.

Ill-posedness oEgs. (20)—(23kan be also interpreted as violation of perturbation expan@pfor k — oo.
Namely, short wavelength contribution to the quadratic Hamilto(®d) and (38)s not small compared with the
other terms in the Hamiltoniaf21)—(23)providedkno = 1.

lll-posedness makdsgs. (20)—(23)or, equivalentlyEq. (25) difficult for numerical simulations. There are a
few ways to cope with that problem. One way is to resolve all scales down to capillary scales which is extremely
costly numerically, e.g., if we want to study water waves in gravitation region (scale of meters and larger), we
would have to simultaneously resolve capillary scal& cm. Other way is to introduce artificial damping for short
wavelengths, i.e., to replaésy. (20)by

ank 6H Ik 6H
)1k, - k)W, 45
ar Sy y(k)mk o I y2(k) ¥ (45)

where functiong (k), y2(k) are zero for small and intermediate values bfit they tend to-oo for k — oco. Also
it is possible to introduce finite viscosity of the fluid. However in that case we would have to resolve very small
scales and, in addition, the Hamiltonian is not conserved for finite viscosity so that we cannot use the Hamiltonian
formalism.

In this paper we use another way which is to completely remove short wavelength instabilities and make problem
well-posed by appropriate canonical transformation from variaplésto new canonical variables R.
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6. Canonical transformation

Canonical transformation from variablésy to new variable®, & is determined by a generating functioi®al

1
S = / Rkn_k dk + g / Agr)klnszk35(k1 + k2 + k3) dkq dk2 dk3

* 2@ / Vi1 ko,ka.ks Rk ko TkaTka8(K1 + K2 + K3 + Ka) dk1 dk2 dk dka, (46)
68
Y = e =Rk + — f A1Ri;nk,8(K1 + k2 — k) dkq dka
3
+ W / Vk]_,kz,ks,—kRklnkznke,a(kl + k2 + k3 — k) dk1 dk2 dks, (47a)
S 1
& = SR =k + o / AxnkyNk,0(K1 + ko — k) dkq dko
1
2 / V_k Kaka kaTlka ks Mka(K2 + K3 + K4 — k) dka dk3 dka, (47b)

whereVk, k,.ks k, iS the symmetric function df, k3, k4. This is the most general form of canonical transformation
up to terms of the fourth order. The only condition which we use here isStisathosen to be linear functional of
Rto preserve the quadratic dependence of the Hamiltonian on canonical monfentum

The quantityn can be found frontq. (47b)as the functional of by iterations (here and below we take into
account only corrections up to the fourth order in the Hamiltonian):

1 1
=& —— | A k ko — k) dkq dk
Mk = &k 871/ kEkik,0(K1 + k2 — k) dkadkz + ——— 820
X f[AkAl+2 — 2V_k kKo, k3] Eki EkoEka (K1 + K2 + k3 — k) dkq dko dks. (48)

Egs. (47a) and (48)ive:

1
W = R + ym / A1Ri, Ek,8(k1 + ko — k) dkq dko + 8(271)2 f[ A1A213 + 6V, kp ks, —k] RkiEkobks
X 5(k1 + ko + ks — k) dk4 dk, dks. (49)

UsingEgs. (21)—(23), (47a) and (48)e get:

1
Ho = f (Ael Rl + Belé ) ok, (50)

1 1
Hy = y /[_(kl - k2) Rk, Rk, — é(AlBl + A2B2 + A3B3)&k, &k,]ék;0(K1 + K2 + k3) dky dk dKg,

(51)
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Hy = 8@ {(k1-k2)(A142 — A1 — Ag) — kTA2 — k5A1 + ZAlAZ[A1+3 + A243+ Arra+ Aoyd]

+ 3[A1Vkp, ks ka ki + A2Vky ks ka ko] } Rky RkoEkséka0(K1 + K2 4 k3 4 Kka) dk1 dk2 dkz dkg4

1 1
+ 82 22 f {—o(k1 - k2)(ks - Ka) + ZA% ' 2B142 + A3B3A142 — 2B1 Vi ko ks ka toka EkoEkadka

Canonical transformation conserves the Hamiltonian structure so the dynamical equations in new Wi§aries
given by:
a oH JR 6H
o _oH AR __MA (53)
ot~ SR ot SE

7. From complex to real Hopf equation

We choose the cubic term of the generating functi@ia such a way to remove linear instability at leading
order. Similar tceqgs. (30a) and (30bjve get fromEgs. (50), (51) and (53t leading order of small paramet&&|:

& -
P AR, (54a)
IR 1 5
— = —Z(VR)
= 5(VR) (54)

Thus instead of the complex Hopf equatid) (or Eq. (30b) we got the real Hopf equatidd4b)for new canonical
variableR. It is important that the real Hopf equation is well-posed.

Additional advantage dtq. (54b)is that it can be integrated by the method of characteristics not only in two
dimensions a&q. (4)but for three-dimensional flow also.

8. Removal of instability from fourth order term

Next step is to remove instability from the fourth order terms in the Hamilto(B&hby a proper choice of
matrix element/. We can takéy, k, ks k4 iN the following form:

Vi koka ke = @1k? + @2A1(A243 + Aoa + Azia), (55)

wherea1, a2 are the real constants. Thgs. (50)—(52pive

1
Ho=5 [ (AIRG? + Bule ) ok (56)

1 1
Hy = ym f [—(kl -K2) Ry, R, — E(AlBl + A2B; + A3B3)Ek1§k2:| £k30(K1 + K2 + k3) dk1 dko dks,
(57)

Hp / {(kl -K2)(A142 — A1 — A2) + (301 — 1)(kZ A + k3 A1) E + 30!2}

8@

X A1A2[A143 + A243+ A1pa + Aoga] + 302A1A2(A142 + A3+4)}
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1
X Rk Rk,Ekk,8(K1 + K2 + k3 + Ka) dkp dko dkz dks + —— 8(21)2

1
X/{—U(kl -k2)(k3 - kg) + ZAiLzBHz + A3B3A1y2 — 2B1[a1k? + apA1(Azy3 + Azya + A3+4)]}

X EkyEkobkabky X 8(K1 + k2 + k3 +kg)dkydkodkzdkg,  Bj = By, Bj+1 = Bkj+k,- (58)

The dynamical equations, as follows frds8) and (56)—(58)are

R _ pe_Ywmes Yeames Lanezo Leaovm?— Live. vir— Ta— y
> = BE 2(VR) + 2$AB$+4AB$ +4EA(VR) ZEVR VAR 2(1 3a1)é(AR)AR
1 A A A 309~ 1 ~5 4
- (Z + 3a2> (AR)A(EAR) — {sA[(AR)Zl — SV - [VE(VE - VE)] - SeA%(BE)
2 (ABe)AE? - 86“ AB(£AE?) — 6“2521(52\35) - ZalszABs — ‘%Aéé,
(59)
gf = AR — V- [(VR)E] + 1v [((VR)A£?] — v A(E°VR) — v (E2AVR) + 43“ A(E2AR)
1-— 301~ 1 AL A 3 ~ - N
+ TR + (4 302) AEAEAR) + SAIAAR), (60

whereB = g — oA, A = (92/3x2) + (82/9y?).
To study linear stability of the Hamiltonian system in new variable in respect to short wavelength perturbations
one can set, similar tBq. (33) variables;, Rin the following form:

&k = ok + k. Ry = Rok + S8R« (61)
with an assumption of an exponential dependence on time:
8E ~ e, SRy ~ e, (62)

Hereé&pk, Rok are solutions oEgs. (59) and (60Ands&&k, § Rk are short wavelength perturbations localized around
wave vectok, |K| > ¢, qis a typical wavenumber faipk, Rok-
We get, similar tdegs. (34), (35) and (37jor the perturbed Hamiltonian:

SHo = %/Ak|8Rk|2dk + % / By |8&ic|? dk +/(Fk +1GK)S R 86—k dk,
Ac = A_x, B« = B_x, Fx = F_x, Gk = —G_x, (63)
the following expressions:
Ak = Ax + K80 + Ar[3ak? + (5 + 302) AZ)E3 + O(K20%0),
By = Bi — AxBiéo + (5 + 302) Ak(AR0)? + 3Bi[(§ — a2)AZ — 31k?]&% + O(gkOko)
+ O(ok>O%0) + Ok vhlg ™).
Fic = [-3Kk2(1 — 3a1) + (3 + 602)AZ](AR0)éo + O(kvo®), Gk =k - VRo + O(kvo®), (64)
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where§o = (1/27) [ & dk, Ro = (1/27) [ Rk dk, and ©® ~ |V&| is the steepness. Similar tq. (38) we in-
troduced here the typical value of fluid velociby ~ |V Rg| and the typical scalég of variation ofvg and&p:
©® ~ &/ lo, [Vvo| ~ vo/lo.

Egs. (37) and (64yive instability growth rate. Our purpose is to make these equations well-posed for zero
capillarity so that we assunae= 0 and consider limit — oo which means that; = k. Itis convenient to rewrite
Egs. (37) and (64in dimensionless form as follows:

= 3 1
Ak =14+A14+ |:§O[1+1+30[2i| )LZ—FO()L(")),

. 1 1
Bx =1—,\+<Z+3a2)p+3[z—a2—%},\2+0(x@)+0(r1p@),

. 1 3 2 o ap Eom
= [_Z + 501+ 6(x2i| 120 + O(\p0), 72 = F2 — Ax B, (65)
Where;h< Ay /k, Bk = By/g, F, k = Fk/gk = (vk +1Gk)?/gk. The system(65) is described by the two

independent dimensionless parametets k&g and,o = k(ARg)?/g which reflects the freedom of choice of an
initial surface elevation and an initial velocity. Condition of applicabilityEd. (64)is klp > 1, which gives
[A] > © in dimensionless variables 1. Parametep can take any nonnegative value because it depends on the
fluid velocity which can be arbitrary. We want to choasganda; to ensure thakgs. (53) and (56)—(58re
well-posed and stable, which means tb{ak 0, for any value of. and any nonnegative value pf

First step is to analyze the systé6b) in the limit ® — 0 which means that we first neglect.O(®) terms
|n (65). Assume thag ;é 0 then the > necessary condition ﬁzﬁ" <O0isto haveAkBk > 0 which means that either
Ak >0 andBk > 0,0rdx <0 andBk <0.lteasyto show that the second case cannot be realleahchBS)so
we consider the first case of positite andBk InequalltyAk > 0 givespy > —+/3/6 and |nequaI|t3Bk|p,o >0
givesp1 < +/3/12 which together result in
V3 V3 V3 <3 1)

_ @ e N2 (=2 3o — =
6 <ﬂ1<12, B 5 20t1+ 23

Provided(66)is satisfied, the sufficient condition for absence of instabiuiy,< 0, is to have termx p in T)ﬁ to be
negative for any., which means that

(66)

[3 + 3o + 602]24% — (3 + 302) Ay < 0, (67)
This inequality is satisfied for anyprovided
Bi+B5 <15 Bo=g(—1+ 3w+ 18x). (68)

Thusf)ﬁ < 0 foranyx andp > 0 provided inequalitie$66) and (68hold. It corresponds ino, a2) plane to the
inner part of the ellipse defined {$8) and bounded by two parallel lines defined (6¥) (see the filled area in
Fig. 1). The center of the ellipse is locatedoat= 1/6, 2 = 1/36 (point A inFig. 1). So the choice o&; anda>
is not unique forg # 0 in the limit® — 0 and is determined b§66) and (68)

Forg = 0 Eq. (65)are reduced to

% 3
Ak=l+k+|:§

1
g+ 3a2:| 22+ 0(.0),

. 13 2 1 s 5
e = [_Z + 501 + 60{2] 22— |:Z + 300 + O()»_l@)] Ak + O(0O), Vﬁ =
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0.15 1

0.10

0.054

-0.05

Fig. 1. Egs. (53) and (56)—(58)ith g # 0 are stable for anyof, ) inside the filled area. Point A corresponds to the center of ellipse,
(1, @2) = (1/6, 1/36). Point B corresponds to the most stable syst@s), (a1, «2) = (0, 1/12). Points C, ¢1, ) = (1/2, —1/12), and D,
(a1, @2) = (1/6, 1/12), correspond to intersections of the ellipse defing@®) with the line 31 + 6ap = 1.

It follows from Eq. (69)that§§ < 0inthelimit® — 0 provided conditior{68) is satisfied, which corresponds in
(o1, a2) plane to the inner part of the ellipse defined 68) (seeFig. 2) in contrast with the case of nonzero gravity.
Fork — oo we get from(64) for g £ O:

3 1 1/2 1 a2
vk = —ik-VRg £ ik5/2g1/231/2 [Eal + 2 + 3052:| X [— -2 — —] 53 (70)

0.15+
0.10
0.05
0.00

-0.05+

Fig. 2. Egs. (53) and (56)—(58yith ¢ = 0 are stable for any, «y) inside the filled area. The filled area is bounded by the ellipse defined in
(68). Point A corresponds to the center of ellipsey,(@2) = (1/6, 1/36). Point E, §1, a2) = (—1/2 + 3712, 1/4 — 3%2), corresponds to the
most stable systel(©9).
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and

e = —iK - VR £ ik2273/23[— 202 + 4ara(1 — 6at2) + a1 (1 — 1202)]¥2E0 A Ro (71)

forg =0.

Note that for parameters satisfying inequalitig§) and (68)the real part ofy is zero even fokh ~ 1, where
vk takes the following form:

vk = —ik - VR £i1A}[g + (% + 302) Ar(AR0)Y /2 (72)

so thatin new canonical variablgss), (66) and (68)he instability is absent even for intermediate valugssf1/ h.
Another remark is that these variables leave problem well-posed 60 also but that case is not so interesting
becauségs. (53) and (56)—(58yell-posed even in original variables ¥ for o # 0.

Now we make the second step and assumedhatsmall but nonzero igs. (65) and (69)Terms O(.. ®) in
Egs. (65) and (69are not sign-definite and their values depend on horizontal coordinatesd time according
to dynamical equation®3) and (56)—(58)Generally these terms result in shrinking of the area of stab";ﬁt)q 0
in (a1, a2) plane.Figs. 3 and 4how shrinking of the stability area for the particular choice of terms @) for
g # 0. Each curve irFig. 4 corresponds to the stability boundary,pmfix: 0, for the particular value ob. The

additional requirement is that

o1 1 b
which is a generalization ¢66) for nonzero®. Here we assume @) = 1160 and O¢.O) = b1 in the right

hand side oEq. (65)for A, and By, respectively. Calculating curves igs. 3 and 4ve sethy = b = —1 as a
typical example. Conditioi73) result in additional cutting of curve§ mé;ﬁ = 0inFigs. 3and 4or ® = 0, 0.01,
P

0.02, 0.025 and 0.05. The syst¢6b) is stable inside each curve kfig. 4for given®. For ® < 0.1, the width of
region between solid curv&X(= 0) and curves witl® # 0 scales approximately @&. For® > 0.1 the region of
stability quickly shrinks to zero a® approaches-0.1389. Note that these numerical values are non-universal and

b
1—;@(2 +010) < a2+

0.15+
0.10 1
0.05 +
0.00 +

-0.05

-0.10 T T T T

Fig. 3. Shrinking of the stable region for small but nonz@ror g # 0. Solid curve corresponds&® = 0. Area inside dotted curve corresponds to
the stable region fap = 0.025. Dotted curve is obtained humerically Ex. (65)where we setas exampleX®) = —10, 0L~ 1p0) = 17 1pO,
O(Lp®) = —1p®. Points A, B are defined iRig. 1
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——6=0.00
0154 e 6=0.01
s ---6=0.02
--=-6=0.05
0104 N AL, 6=0.10
e 620,12
------- 6=0.13
0.05-
al
0.00 N,
-0.05
-010 T T T T T T T T T
02 00 0.2 0.4 0.6

Fig. 4. A series of curves corresponding to shrinking of the stable region as a funcéidiong # 0. For® < 0.1, the width of region between
solid curve ® = 0) and curves witl® # 0 scales approximately &. For® > 0.1, the stable region quickly shrinks to zero@sipproaches
~0.1389. Similar tcFig. 3, all curves are calculated numerically with assumptions®)(= —16, O "1pO) = 1716, O(hpO) = —ip6.

depend on the numerical coefficient in.O(®) terms. In a similar waykigs. 5 and &how shrinking of the stability
area for zero gravity case.

Our objective is to find parametess, o2 corresponding to stability}ﬁ < 0, with the largest possibl®. For
the casg # 0 this is achieved if the maximum ®E|@:o, as a function of., p, is not only negative but minimum

as a function ofx; andao, i.e., we want to find mirr?ax D§|@=o. This ensures that the systdBb) is the most
01,02 A,p

0.154 —— 6=0.000

0.10
0.05
0.00

-0.05

-0.10 T T T T T

Fig. 5. Shrinking of the stable region for small but nonzerfor g = 0. Solid curve corresponds & = 0. Area inside dotted curve corresponds
to the stable region fa® = 0.025. Dotted curve is obtained humerically . (65)where we set as exampleX¥) = —10, O(.~10) = A~16.
Points A, E are defined iRig. 2
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——6=0.00
0.154 e 6=0.01
ey ---6=0.02
---=--6=0.05
0104 NA =Ny, 6=0.10
e §=0.12
———-0=0.13
0.05
0[2
0.00
-0.05
-0.10 T T v T v T T
0.2 0.0 0.2 0.4 0.6
ol

Fig. 6. A series of curves corresponding to shrinking of the stable region as a funcébiog = 0. For® < 0.1, the width of region between
solid curve ® = 0) and curves witl® = 0 scales approximately @&. For® > 0.1, the stable region quickly shrinks to zero@spproaches
~0.1389. Similar tdFig. 5, all curves are calculated numerically with assumptions@)(= —16, O ~10) = 1~16.

stable system fo® — 0 or, in other words, the system is the most rigid one. BecauseD we have to set

p = 0 to find rpaxf)ﬁ Then we obtain that mimax 2 = 2l p=0.1=0 = —1. This minimum is attained provided
0 1,02 Ap

31+ 6ap = —1/2 and (I6)(1— +/5) < a1 < 1/3. We also want to have the most stable systemkfes oo
(0 — oo andi — oo). This is achieved provided the coefficients in front of the leading order tefraadi2p in
TJE are minimums. The coefficient faf is already minimum from conditionid + 6a> = 1/2, while the coefficient

for A2p is —3/16 + 9a§/4, i.e., we have minimum for
a1 =0, az =1/12, g#0, (74)

which corresponds to point B iRig. 1L This choice of parametets, anda> is optimal to keep the syste(B5)
stable for the largest possibt®, i.e., for the largest possible nonlinearity.

Dynamical equationé9) and (60¥or nonzero gravity # 0 and zero capillarity = 0 and the optimal choice
(74) of @1 anda; take the following form:

R 1, 5 1« 1ay, 1. 5 1 RO D
= = —8E = 5(VR? 4 SebA + JeAE% + ZEA(VR)? — SEVR - VAR — SE(AR)AR
P T A N
—E(AR)A@AR) - ééA[(AR) 1- égEA (&) - 1—6g(AE)A%' - 1—6814(5145 ) — égEA(%‘AE)» (75)
% AR_V. 1y 16— v . AEvR) - Sv . (22 1 23
o = AR=V - [(VR)E] + 7V - [(VR)AE] - 2V - A(’VR) — 7V - (E°AVR) + S A(AR)

+ ZA@AR) + SAEAEAR) + SAIAEIAR). (76)
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In a similar way, for zero gravity = 0, the systenf69)is the most stable provided we find, a2 which correspond
to min max 52| o—0 for Eq. (69) Maximum nlaxf)ﬁ@:o is attained for

1,02
14120

5 [202 + 4ap(6az — 1)+ a1 (1202 — 1)] 71

A
and min mftx 5§|(-):o = (2/3)(—=2 + +/3) is attained provided
01,02

w=-3+3Y2  ap=7-3%2  g=0, (77)

which corresponds to point E ifig. 2 This choice of parameters anda; is optimal to keep the syste(85)
stable for the largest possibtg i.e., for the largest possible nonlinearity.

Dynamical equationg9) and (60¥or zero gravity and capillaritg = o = 0 and the optimal choic€’7) of a1
anda take the following form:

R _ Lom2y Yaawm?_ Yevr.var_ (2 _ AR (1 352\(AR)A(E
o = —5(VR?+ 2EA(VR)? — SEVR - VAR 2(2 Jé) E(AR)AR — (1 — 3”?)(AR)A(EAR)
31 3/2\ £ A1/ A p\2
‘5(2‘3 )SA[(AR) 1, (78)
% _ AR_V. 1. 1521 — 1y AGE2VR) — 1V . (£24 1(5_ 23
5 = AR-V [(VR)S]+4V [(VR)AE] 2V A(E°VR) 2V (& AVR)+4<2 «/é) A(E%AR)
+ % (g — Jé) A(E2AR) + (1 — 39 A[EA(EAR)] + ; G - 33/2> A[(AED)(AR)]. (79)

First term in the right hand side &q. (78)results from the third-order Hamiltonian and corresponds to the real
Hopf equation54b)while other terms in this equation result from the fourth-order Hamiltonian.

Thus we can choosey, a2 from the conditiong66) and (680 makeEgs. (53) and (56)—(58pr, equivalently,
Egs. (59) and (6Q)well-posed for any value af, g and arbitrary depth of fluid. To find dynamics of free surface,
one can solve equations fBr & usingEgs. (53) and (56)—(5&nd conditiong66) and (68) This is the main result
of this article. To recover physical variablésn from givenR, & one can us&gs. (48), (49) and (55)

Now we can return to the comment in Section 5 about interpretation of ill-posednésgsof20)—(23)as
violation of perturbation expansid@) for ko = 1. For the new canonical variabl&sR perturbation expansion is
still formally violated forkég 2 1 because contribution from the quadratic Hamiltor(@8) and (64)s not smalll
compared with other terms in the Hamiltonigz6)—(58) However this violation does cause any problem because
there is no short wavelength instability in the new canonical variables and the fEggand (56)—(58)s well-
posed. In other words, the new canonical variab)ésprovide purely physical way to regularize short wavelengths
without introduction of any artificial viscosity.

As follows from Egs. (66) and (68)the new canonical variablés R are not uniquely determined from the
condition of well-posedness of the dynamical equati@8 and (56)—(58pecause parameters;( «2) can take
any valued from filled area ifigs. 1 and 2However the choice of«f, «2) is unique provided we additionally
require the systenfs3) and (56)—(58}0 be free of short wavelength instability for the largest possible slopes
O, i.e., for the largest possible nonlinearity. This gives the conditi@ds for ¢ # 0 and(77) for g = 0. We
refer to the variableg, R, defined inEqgs. (48), (49), (55), (74) and (77asthe optimal canonical variables
We conjecture that the optimal canonical variables, which allow well-posedness of the dynamical equations, ex-
ist in all orders of nonlinearity. However additional research necessary to decide if the optimal canonical vari-
ables exist and unique in higher (fifth, etc.) order of nonlinearity. We also conjecture that the optimal canoni-
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cal variablest, R would allow numerical simulation with higher steepness compared with the standard variables
.

9. Special cases

There are a number of important special cases of the optimal canonical variables. Here(\#4) asel (77)
We give here expression for the Hamiltonian only. The dynamical equations can be obtained eith@&3from
directly fromEqgs. (59) and (60)

9.1. Deep water limit

Forg # 0,h — oo, Ay = k andEgs. (56)—(58jake the form:

1
Ho =3 f{k|Rk|2 + Bil&|? dk, By = g + ok?, (80)

1 1
Hy = . / [—(kl - k2) Rk, Rk, — é(lel + koBo + k333)$k1§k2} &k38(ka + k2 + k3) dky dkz dk3,

(81)

1 1
Hy = 8o f {(kl -k2)(Ike 4 Ka| — k1 — ko) — (k2kp + k3k1) + Skakallke +ks| + kz + ks

1
+ k1 + Kka| + |k2 + Kkal] + Zklkz[lkl + Ka| + |k3 + Kal]} Rk, Rk, EkaEk,8(K1 + K2 + k3 + Ka)

1

k1 dk> dk3 dk —
x dkq dk dk3 d 4+8(271)2

1
/ (~oka - ko)(ks - a) + 7K1 +Kol?Brsz + ksBalks + kel

1
- éBlkl(“(Z + k3| + |k2 + Kka| + |kz + k4|)} k1 8k EkaEk 0(Ke + K2 + k3 + ka) dk 1 dko dk3 dka.

(82)
9.1.1. Zero gravity and capillaritg =0 =0
1 2
Ho = E/kum ok, (83)
1
Hi=—— / (K1 - k2) Riy RiyEksd(Ka + K2 + k3) dkq dko dka, (84)

! 5
Hy = o5 k1 -Kko)(|ky +Ko| — k1 — _> 2 2
27 8202 / {( 1-k2)(Ike +Ka| — k1 — ko) + ( >+ ~/§) (k2ka + k3k1)
+(1- 35/2)k1k2[|k1 + k3| + |k2 + k3| + k1 + ka| + |k2 + ka]]
3
+ (Z - 35/2> kiko[lky + Ko| + |k + k4|]} R, RiyEksék,8(Ka + Ko + k3 + kg) dkq dko dkz dkg.

(85)
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9.1.2. Zero gravityg = 0, and nonzero capillarity £ 0

1
Ho = /{k|Rk|2 + ok2lE?) dk, (86)

1
Hi= f [—(kl -K2) R Riy — %(kf +I3 4+ kg)gklgkz] Es8(Ka + K2 + ka) dky dko dk, (87)

1 5
Hy= ——— Ky -Ko)(IKy 4+ Ko| — k1 — k —= 3) (K2ky + K3k
2= g | Kkl kel =k = )+ (=3 + V3) G+ )
+ (1 — 3%2)knko[ |k + K| + [K2 + K| + IK1 + Kal + [K2 + Kal]
3
+ <4_1 — 35/2> kiko[|k1 + Ko| + |K3 + k4|]} Rk Ry 8k38k,8(K1 + K2 + k3 + k4) dk 1 dk2 dkz dks4

o _ 1 4, .3 _ 3r ~1/2
+ 820y / { (k1 -k2)(ks - ka) + 4|k1+ kKo™ + k3lk1 + ko| — k{[(=14 377 )k1
1
+ (5 — 33/22> (k2 + k| + [kz2 + Kal + |k3 + k4|)]}
X Ek1 EkrEkaEka0(K1 + Ko + k3 + ka) dk1 dko dk3 dk4. (88)

9.1.3. Nonzero gravity # 0, and zero capillarityeg = 0

1
Ho= 5 [ (IR + glél?) ok, (89)
1
Hi= o [ [0 k)RR, = Sla + ko + kot | s + Ko + Ka) o (90)
1
He = g / {(kl -Ka)(Ika + ka| — ki — ko) — (Kka + k3k1) + Skikallka + ksl + ka + Kal

1
+ k1 + Ka| + [k2 + kal] + Zk1k2[|k1 +ko| + ks + k4l]}

X Ri; RkoEksék,8(K1 + K2 + k3 + ka) dk1 dko dks dkg

g 1 2 1
S5 —lk1+k k1 + ko] — =ka(lk2 + k ko +k k k
+8(2n)2f{4| 1+ Ka|” 4 kalky + Kz 6k1(| 2+ kal + [k2 + k4| + [k3 + 4|)}
X k1 EkoEkaEka8(K1 + K2 + K3 + ka) dk1 dk 2 dk3 dks. (91)

9.2. Shallow water limit

Shallow water limit corresponds & — 0. In that limit Ay — k2h. Egs. (56)—(58)ake the following form for
g#0:

1
Ho = E/{1<2h|Rk|2+Bk|sk|2}dk, B = g + ok, (92)

1 h
Hy = o f [—(kl -k2) Ry, Rk, — 6(1«531 + k3Ba + k%Bg)$k1§k2:| Ekgd(K1 + k2 + k3) dky dk dk,

(93)
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h

"2 = gy

1
/ {2('(1 -ko)? — 2Kk3k5 + hzék%kg[lh + ksl + k2 + k3l?

1
+ |kq + kal? + [k2 + ka|?] + hzzkfkg[lkl + kol + ks + k4|2]}

X Ri; RkoEks6k,8(K1 + K2 + K3 + K4) dk1 dk dkz dka4

1 h?
+ 8o / {—a(kl k2)(kz - ka) + Z|kl + ko|*B1y2 + h2k3Bslky + ko2
B1k2h?
-5 (Ik2+k3|2+|k2+k4I2+|k3+k4lz),
X &k, Ekabkabk,8(K1 + K2 + k3 + ka) dkq dkz dk3 dka. (94)
9.2.1. Zero gravity and capillaritg = o =0
1
Ho = éfk2h|Rk|2dk, (95)
1
Hy= - / (K1 - K2) Riy Ripéks8(Ka + k2 + k3) dkq dkz dks, (96)
h

5
H> / {2(|<l - k2)? + (—5 - @) 2k2k3 + h?(1 — 3¥2)K2K3[ k1 + kal? + |k2 + k3|2

82

3
ke + Kal? + ko + kaf2] + B2 (Z - 35/2) K2K2[1Ka + kol + [ks + k4|2]}

X Ry, Riy6ksék,8(K1 + k2 + k3 + ka) dkq dko dk3 dk4. 97)
9.2.2. Zero gravityg = 0, and nonzero capillarityr # 0
Ho= 5 [ UPhIR? + 0k%l5c) k. (98)
Hy— % / [—(kl  K2) R, Ry — %(k;*wgwg)sklskz} esd(Ka + ko -+ k) dky dkz dka, (99)
h

5
Hy = / {Z(kl ko) + <_§ + \/§> 2U5K5 + h?(1 — 372)kgk3 ke + kal? + [k2 + ksf?

82y
3
ke + Kal? 4 [kp + kaf2] + B2 (Z - 35/2) K2K2[1Ka + kol + [ks + k4|2]}

X Ri; RkoEk36k,8(K1 + K2 + K3 + K4) dk1 dk dkz dks

o

h2
8 / {—(kl k2)(ks - ka) + —-Ik1 + Kal® + hZkG[ke + kol — &

1
x [(—1 +37 Y2 4 (5 — 33/22) h2(kz + Ka|? + |k2 + kal? + [k3 + k4|2)} }

X &k Ek6kaEk,0(K1 + K2 + k3 + ka) dkq dko dkz dk 4. (100)
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9.2.3. Nonzero gravity # 0, and zero capillarityy = 0

1
Ho = 3 /{k2h|Rk|2 + gl&k %) ok, (101)
1 oh
Hi= / [—(kl k2)Riy Ry = - (5 + 15 + k%)eklskz} ficsd(Ka + K2 + k) dky dkz dks, (102)
h 2 2.2 21 2,2 2 2 2
H2 = W/ {2('(1 . k2) — 2k1k2 + I’l Eklkz['kl + k3| + |k2 + k3| + |k1 + k4| + |k2

1
+kal?] + hzzkik%nkl + kol?+ ks + k4|21} Ri; RiyEkséka (K1 + K2 4 K3 4 kg) dky dko dkg dkg

2

8 h? 4, 12,2 2 k1h2 2 2 2
+ —— —|k1 + ko|™ 4+ hok5lk1 + Kko|© — ——(|k2 + k3|* + |k2 + ka|® + |kz + k
8(2n)2f{4| 1+ Kzl 3lk1 + k2 5 (Ik2 + k3|“ + |k2 + k4| + |k3 + k4[)

X Ek1 EkrEka €k 0(K1 + Ko + k3 + kg) dk1 dko dk3 dk4. (103)

10. Kolmogorov spectrum in the optimal variables

Canonical transformatiof#7a) and (47bjo the optimal canonical variables does not qualitatively change phys-
ical behaviour of dynamics of water free surface at large and intermediate scales but rather it provides a way to treat
very small scales in physically appropriate manner by ensuring that dynamical equations are well-posed. It means
that we should expect that the important property of wave turbulence, the Kolmogorov spectrum, should not qualita-
tively change in new variables. Indeed, matrix elements of quad¢@@y;,third-order,(81), and fourth-order82),
Hamiltonian terms in the optimal canonical variables for infinite depth water have the same scaling laws (as function
of wavenumber) as the scaling laws for respective terms for the Hamiltonian in the standard variéblesa sim-
ilar way to Ref[3], we can derive the kinetic equation for wave action in the optimal canonical variables for nonzero
gravity g # 0. Matrix elements of the kinetic equation will be different compared with matrix elements of the kinetic
equation for the standard variables. However scaling dependence of matrix elements will be the same for both the
standard and the optimal canonical variables. Kolmogorov power-laws solutions of the kinetic equation for spectrum
of wave turbulence depend on the scaling laws of matrix elements only (except normalization factors in front of
power-law dependences). We conclude that the Kolmogorov spectrum is the same for both the standard and the opti
mal canonical variables (see REf] for review of the Kolmogorov spectrum derivation for the standard variables).

Note also that the optimal canonical variables are specially chosen here for optimization of numerical simulations
but not for derivation of the kinetic equation. For gravity wawes< 0, g # 0) dispersion relationy, = +/gk is of
“non-decay type” so that the equations:

wy = w, +or,, K=Kk +ka (104)

have no real solution. This means that third-order terms in the Hamilt@@230an be excluded by a proper canonical
transformation (see RdR]). This transformation results in the Zakharov equation for water waves. This canonical
transformation is different from canonical transformat{diia) and (47blpecause in this article our purpose was to
make water wave equations well-posed for both zero and nonzero gravity. Thus range of applicabdgy &f3)

and (56)—(58)n the optimal canonical variables is wider compared with range of applicability of the Zakharov
equation. But the Zakharov equation is better suited for derivation of the kinetic equation. It is possible to derive
kinetic equation for the optimal canonical variables also but detailed consideration of this question is outside the
scope of this article.



P.M. Lushnikov, V.E. Zakharov / Physica D 203 (2005) 9-29 29

11. Conclusion

In conclusion, we found the optimal canonical variables for which the water wave problem is well-posed in
the approximation which keeps terms up to fourth order in the Hamiltonian. The choice of the optimal canonical
variables is uniquely determined from the requirement of well posedness of the $p8eamd (56)—(58jor the
largest possible slopes of free surface of ideal fluid, i.e., for the largest possible nonlinearity. We expect that the
optimal canonical variables would allow numerical simulations with higher steepness compared with the standard
surface variables. The important question remain open if it is possible to make water wave equations well-posed by
proper choice of canonical transformation for higher-order corrections (fifth and higher order). We conjecture that
such optimal canonical variables exist in all orders of nonlinearity.
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