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Abstract

The purpose of this article is to numerically verify the theory of weak turbulence. We have performed numerical simulations of
an ensemble of nonlinearly interacting free gravity waves (a swell) by two different methods: by solving the primordial dynamical
equations describing the potential flow of an ideal fluid with a free surface, and by solving the kinetic Hasselmann equation, de-
scribing the wave ensemble in the framework of the theory of weak turbulence. In both cases we have observed effects predicted
by this theory: frequency downshift, angular spreading and formation of a Zakharov–Filonenko spectrum Iω ∼ ω−4. To achieve
quantitative coincidence of the results obtained by different methods, we have to augment the Hasselmann kinetic equation by
an empirical dissipation term Sdiss modeling the coherent effects of white-capping. Using the standard dissipation terms from the
operational wave predicting model (WAM) leads to a significant improvement on short times, but does not resolve the discrep-
ancy completely, leaving the question about the optimal choice of Sdiss open. In the long run, WAM dissipative terms essentially
overestimate dissipation.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The theory of weak turbulence is designed to statistically describe weakly nonlinear wave ensembles in dispersive
media. The main tool of weak turbulence theory is the kinetic equation for squared wave amplitudes, or a system of
such equations. Since the discovery of the kinetic equation for bosons by Nordheim [1] (see also the paper [2] by
Peierls) in the context of solid state physics, this quantum-mechanical tool was applied to a wide variety of classical
problems, including wave turbulence in hydrodynamics, plasmas, liquid helium, nonlinear optics, etc. (see monograph
by Zakharov, Falkovich and Lvov [3]). Such kinetic equations have rich families of exact solutions describing weak-

* Corresponding author.
E-mail addresses: kao@itp.ac.ru (A.O. Korotkevich), andrei@cox.net (A. Pushkarev), zakharov@math.arizona.edu (V.E. Zakharov).

0997-7546/$ – see front matter © 2007 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.euromechflu.2007.08.004



Author's personal copy

362 A.O. Korotkevich et al. / European Journal of Mechanics B/Fluids 27 (2008) 361–387

turbulent Kolmogorov spectra. Also, kinetic equations for waves have self-similar solutions describing the temporal
or spatial evolution of weak-turbulent spectra.

However, in our opinion, the most remarkable example of weak turbulence is a wind-driven sea. The kinetic equa-
tion statistically describing the gravity waves on the surface of ideal liquid was derived by Hasselmann [4]. Since
this time, the Hasselmann equation has been widely used in physical oceanography as the foundation for developing
wave-prediction models such as WAM, SWAN and WAVEWATCH. Among the other applications of the theory of weak
turbulence, the Hasselmann equation stands out by virtue of its impact on industry.

In spite of the tremendous popularity of the Hasselmann equation, its validity and applicability for describing a real
wind-driven sea has never been completely proven. It was criticized by many respected authors, not only in the context
of oceanography. There are at least two reasons why the weak-turbulent theory could fail, or at least be incomplete.

The first reason is the presence of coherent structures. The weak-turbulent theory only describes weakly-nonlinear
resonant processes. Such processes are spatially extended, they provide weak phase and amplitude correlation on
distances significantly exceeding the wave length. However, nonlinearity also causes other phenomena, much more
strongly localized in space. Such phenomena – solitons, quasi-solitons and wave collapses – are strongly nonlinear
and cannot be described by the kinetic equations. Meanwhile, they may compete with weakly-nonlinear resonant
processes and make comparable or even dominating contributions to the energy, momentum and wave-action balance.
For gravity waves on the surface of a fluid, the most important coherent structures are white-cappings (or wave-
breakings), which are essentially responsible for the dissipation of wave energy.

The second reason that limits the applicability of the weak-turbulent theory is the finite size of any real physical
system. The kinetic equations are derived only for infinite media, where the wave vector runs along a continuous
d-dimensional Fourier space. The situation is different for wave systems with boundaries, e.g. boxes with periodical
or reflective boundary conditions. The Fourier space of such systems is an infinite lattice of discrete eigenmodes. If
the spacing of the lattice is not small enough, or the level of Fourier modes is not large enough, the whole physics of
nonlinear interaction becomes completely different from the continuous case. We shall call effects caused by a finite
size of a system mesoscopic effects. These effects may be important in nature and they should certainly be taken into
account when performing numerical simulations of wave turbulence.

For these two reasons, verifying the weak turbulent theory is an urgent problem, important for the whole physics
of nonlinear waves. The verification can be performed by a direct numerical simulation of the primordial dynamical
equations describing wave turbulence in a nonlinear medium.

So far, numerical experiments have been performed to check some predictions of the weak-turbulent theory, such as
weak-turbulent Kolmogorov spectra. For gravity wave turbulence the most important is the Zakharov–Filonenko spec-
trum Fω ∼ ω−4 [5]. This spectrum has already been observed in numerous numerical experiments [6–20]. Attempts
at verifying weak turbulent theory through numerical simulation of the primordial dynamical equations have been
started with a numerical simulation of 2D optical turbulence [21], which demonstrated, in particular, the co-existence
of weak-turbulent and coherent events.

A numerical simulation of 2D-turbulence of capillary waves was performed in [6–8]. The main results of the
simulation consisted in observing the classical regime of weak turbulence with the spectrum Fω ∼ ω−19/4, and the
discovery of a non-classical regime of so-called frozen turbulence, characterized by an absence of energy transfer from
low to high wave-numbers. The classical regime of turbulence was observed on a grid of 256×256 points at relatively
high levels of excitation, while the frozen regime was realized at lower levels of excitation, or more coarse grids. The
effect of frozen turbulence is explained by mesoscopic effects: sparsity of both exact and approximate resonances.
The classical regime of turbulence becomes possible due to a broadening of resonances by nonlinearity. The classical
and the frozen regime can coexist. We call this situation mesoscopic turbulence.

In fact, the frozen turbulence is close to a KAM regime, when the dynamics of turbulence is close to the behavior
of an integrable system [8].

Simulations of surface gravity waves turbulence were first done simultaneously by Tanaka [9] and Onorato at
al. [10]. Due to the computational limitations of computers of the time, the simulations were limited to dynamical
equations and fairly short simulation times. Many articles later developed these pioneering results [11–17]. Nonlinear
effects for gravity waves are weaker than for capillary waves; as a result, the influence of mesoscopic effects is
stronger. This makes the simulations much more difficult. In the experiments mentioned above, the grid was fine
enough to resolve the spectral tails and observe the weak turbulent Kolmogorov asymptotics Ik ∼ k−4, but it was too
coarse to avoid mesoscopic effects in the area of the spectral peak. The finest grid 2048 × 4096 was used by Tanaka,
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however, in his experiments the spectral peak was posed at k = 68, while the level of nonlinearity was quite small
(typical steepness μ � 0.07). Moreover, his experiment was very short in terms of characteristic wave time (only
several tens periods of the leading wave). Had he continued his calculations, he would have observed the formation
of the weak turbulent Kolmogorov tail as in the work by Onorato at al. [10]. However, his spectral peak was seriously
distorted by mesoscopic effects.

In this article, we present the results of a simulation of surface gravity wave turbulence, namely, we model swell
propagation. All previous researchers since Tanaka [9] and Onorato at al. [10] performed only one type of experiment
– solution of the primordial dynamical equations. We performed two experiments simultaneously. We solved not only
the dynamical equations but also the Hasselmann kinetic equation and compared the results. We think that our results
can be considered as the first attempt to directly verify the Hasselmann kinetic equation.

In the dynamic experiment, we used a coarser grid than Tanaka (512 × 4096) but we posed the spectral peak
at k = 300, and our initial steepness was much higher than in Tanaka’s case (μ � 0.15). Due to much higher k and
stronger nonlinearity we basically managed to suppress mesoscopic effects. According to the weak-turbulent scenario,
the bulk of energy containing modes satisfies the Rayleigh distribution. The distribution has a heavy tail of abnormally
intensive harmonics (oligarchs, according to the terminology introduced in the article [15]), but they contain no more
than 5% of total energy.

One important point should be mentioned. In our experiments we not only observed weak turbulence, but also
additional nonlinear dissipation of the wave energy, which may be identified as the dissipation due to white-capping.
We observed a rapid broadening of the spectra due to multiple harmonics generation. The formation of a broad
spectrum with strong small scale tails can be explained by the formation of rather sharp structures on wave crests.
Further development of these tails is suppressed by an artificial dissipation used in our dynamical experiment. One
can say that in such a way we roughly simulated the phenomenon of white-capping (continuous in time dissipation
of energy due to multiple acts of wave braking on the very edge of wave crest, arresting formation of derivative
singularities on the sharp wave crest). Of course, we cannot directly simulate wave breaking, but our method may
provide a rough but reasonable simulation of this effect.

To reach agreement with dynamic experiments, we had to add to the kinetic equation a phenomenological dissi-
pation term Sdiss. In this article we examined the dissipation terms used in the operational wave-prediction models
WAM cycle 3 and WAM cycle 4 (hereafter referred to as WAM3 and WAM4 correspondingly). Both of these terms
significantly overestimate nonlinear dissipation. The term given in WAM3 gives acceptable results for short periods
of time (less than 1000T0, where T0 is the time period of the leading wave of the initial condition). But at the end
of simulation (t = 3378T0) the error in wave action approached 30%. For WAM4 the situation is even worse. If the
characteristic wave length of the initial conditions is equal to 22 m, then 3378T0 is only slightly more than 3 hours
of wave development. Even a primitive viscous dissipative term without any simulation of strongly nonlinear events
gives us better results. This means that the question about a reasonable formula for Sdiss remains open.

2. Deterministic and statistic models

In the dynamical part of our experiment, the surface of the fluid is described by two functions of horizontal variables
x, y and time t : the surface elevation η(x, y, t) and the velocity potential on the surface ψ(x, y, t). They satisfy the
canonical equations [24]

∂η

∂t
= δH

δψ
,

∂ψ

∂t
= −δH

δη
. (1)

The Hamiltonian H is given by the first three terms in the power expansion on the nonlinearity ∇η

H = H0 + H1 + H2 + · · · ,
H0 = 1

2

∫
(gη2 + ψk̂ψ)dx dy,

H1 = 1

2

∫
η
[|∇ψ |2 − (k̂ψ)2]dx dy,

H2 = 1

2

∫
η(k̂ψ)

[
k̂
(
η(k̂ψ)

) + η∇2ψ
]

dx dy. (2)
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Here k̂ is the linear integral operator k̂ = √−∇2, defined in Fourier space as

k̂ψ�r = 1

2π

∫
|k|ψ�ke−i�k�r d�k, |k| =

√
k2
x + k2

y. (3)

Using the Hamiltonian (2) and Eqs. (1) we obtain the dynamical equations [6]:

η̇ = k̂ψ − (∇(η∇ψ)
) − k̂[ηk̂ψ] + k̂

(
ηk̂[ηk̂ψ]) + 1

2
∇2[η2k̂ψ] + 1

2
k̂[η2∇2ψ] + F̂−1[γkηk],

ψ̇ = −gη − 1

2

[
(∇ψ)2 − (k̂ψ)2] − [k̂ψ]k̂[ηk̂ψ] − [ηk̂ψ]∇2ψ + F̂−1[γkψk]. (4)

Here F̂−1 corresponds to the inverse Fourier transform. We introduced artificial dissipative terms F̂−1[γkηk] and
F̂−1[γkψk], corresponding to pseudo-viscous high frequency damping, following the recent work [19].

The model (1)–(4) was used in the numerical experiments [6–8,12,13,15,17,18].
We introduce the complex normal variables a�k

a�k =
√

ωk

2k
η�k + i

√
k

2ωk

ψ�k, (5)

where ωk = √
gk, to transform Eqs. (1) into

∂a�k
∂t

= −i
δH

δa∗
�k
. (6)

To proceed with the statistical description of the wave ensemble, we first need to perform the canonical transfor-
mation a�k → b�k , which excludes the cubical terms in the Hamiltonian. The details of this transformation can be found
in the paper (1999) [25] by Zakharov. After the transformation, the Hamiltonian takes the form

H =
∫

ω�kb�kb
∗
�k d�k + 1

4

∫
T�k�k1�k2�k3

b∗
�kb

∗
�k1

b�k2
b�k3

δ�k+�k1−�k2−�k3
d�k1 d�k2 d�k3, (7)

where T is a homogeneous function of third order:

T (ε�k, ε�k1, ε�k2, ε�k3) = ε3T (�k, �k1, �k2, �k3). (8)

The relation between a�k and b�k , together with an explicit expression for T�k�k1�k2�k3
can be found, for example, in [25].

Introduce the pair correlation function

〈a�ka
∗
�k′ 〉 = gN�kδ(�k − �k′), (9)

where N�k is the spectral density of the wave function. This definition of the wave action is common in oceano-
graphy.

We also introduce the correlation function for transformed normal variables

〈b�kb
∗
�k′ 〉 = gn�kδ(�k − �k′). (10)

The functions n�k and N�k can be expressed in terms of each other by cumbersome power series [25] of expansion on
μ, where μ is the characteristic steepness, defined as follows:

μ = E2

N2

√
2E, (11)

where E is the wave energy and N is the wave action. Following this definition, for a Stokes wave of small ampli-
tude

η = a cos(kx),

μ � ak.

On deep water, the relative difference between n�k and N�k is of the order of μ2 and can be neglected (in most cases,
experimental results give μ � 0.1).
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The spectrum n�k satisfies the Hasselmann (kinetic) equation [4]

∂n�k
∂t

= Snl[n] + Sdiss + 2γkn�k,

Snl[n] = 2πg2
∫

|T�k,�k1,�k2,�k3
|2(n�k1

n�k2
n�k3

+ n�kn�k2
n�k3

− n�kn�k1
n�k2

− n�kn�k1
n�k3

)δ(ωk + ωk1 − ωk2 − ωk3)

× δ(�k + �k1 − �k2 − �k3)d�k1 d�k2 d�k3. (12)

Here Sdiss is an empirical dissipation term that corresponds to white-capping.
The stationary conservative kinetic equation

Snl = 0 (13)

has a rich family of Kolmogorov-type [26] exact solutions. Among them is the Zakharov–Filonenko spectrum [5] for
the direct cascade of energy

nk ∼ 1

k4
, (14)

and the Zakharov–Zaslavskii [27,28] spectra for the inverse cascade of wave action

nk ∼ 1

k23/6
. (15)

3. Deterministic numerical experiment

3.1. Setup of the problem

The dynamical equations (4) are solved in the real-space domain 2π × 2π on a 512 × 4096 grid with the gravity
acceleration set to g = 1. The solution has been performed by the spectral code developed in [22] and previously used
in [23,12,13,15]. We stress that in the current computations the resolution in the Y -direction (long axis) is better than
the resolution in the X-direction by a factor of 8.

This approach is reasonable if the swell is essentially anisotropic, almost one-dimensional. This assumption will
be validated by a proper choice of the initial data for computation. As the initial condition, we used a Gaussian-shaped
distribution in Fourier space (see Fig. 1):⎧⎨

⎩
|a�k| = Ai exp

(− 1
2

|�k−�k0|2
D2

i

)
, |�k − �k0| � 2Di,

|a�k| = 10−12, |�k − �k0| > 2Di,

Ai = 0.92 × 10−6, Di = 60,

�k0 = (0;300), ω0 = √
gk0. (16)

The initial phases of all harmonics are random. The average steepness of this initial condition is μ � 0.15 (defined in
accordance with Eq. (11)).

To realize a similar experiment in a laboratory wave tank, it would be required to generate the waves with wave-
length 300 times less than the length of the tank. The width of the tank would have to be no less than 1/8 of its length.
The minimal wave length of the gravitational wave in the absence of capillary effects can be estimated as λmin � 3 cm.
The leading wavelength is be an order of magnitude larger: λ � 30 cm.

In such a large tank, 200 × 25 meters in dimension, experimenters can observe the evolution of the swell until
approximately 700T0 – still less than in our experiments. In tanks of smaller size, the effects of discreetness in the
Fourier space dominate, and either frozen or mesoscopic wave turbulence will be observed, qualitatively different
from the wave turbulence in the ocean.

To stabilize high-frequency numerical instability, the damping function has been chosen as

γk =
{

0, k < kd,

−γ (k − kd)2, k � kd,

kd = 1024, γ = 5.65 × 10−3. (17)
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Fig. 1. The initial distribution of |a�k |2 on �k-plane.

The simulation was performed until t = 1225, which is equivalent to 3378T0, where T0 = 2π/
√

k0 is the period of
the wave, corresponding to the maximum of the initial spectral distribution.

3.2. Zakharov–Filonenko spectra

As in the previous papers [10,12,13,15], we observed the rapid formation of the spectral tail, described by
Zakharov–Filonenko law for the direct cascade nk ∼ k−4 [5] (see Fig. 2). In agreement with [15], the spectral maxi-
mum slowly downshifts to the large-scale region, which corresponds to the inverse cascade [27,28].

We also directly measured the energy spectrum during the final stage of the simulation, when the spectral downshift
was sufficiently slow. This experiment can be interpreted as an ocean buoy record – we recorded the time series of
the surface elevation at one point of the surface during Tbuoy � 300T0. The Fourier transform of the autocorrelation
function

E(ω) = 1

2π

Tbuoy/2∫
−Tbuoy/2

〈
η(t + τ)η(τ )

〉
eiωt dτ dt. (18)

allows us to detect the direct cascade spectrum tail proportional to ω−4 (see Fig. 3), well-known from experimental
observations [29–31].

In this paper we had no intention of improving the results of the previous papers. The inertial interval of the angle-
averaged spectra (the ω-spectrum is also angle-averaged because it depends only on the frequency ω ∼ √

k ) is limited
due to the anisotropy of the integration domain. In this case we have less than one decade interval and we cannot
securely detect an exponent of the Kolmogorov tail, however, this work has already been done in several previous
articles (see, for instance, [13]). Here we limit our observations to qualitative correspondence.



Author's personal copy

A.O. Korotkevich et al. / European Journal of Mechanics B/Fluids 27 (2008) 361–387 367

Fig. 2. Angle-averaged spectrum nk = 〈|a�k |2〉 in a double logarithmic scale. The tail of distribution fits the Zakharov–Filonenko spectrum.

Fig. 3. The energy spectrum in a double logarithmic scale. The distribution tail fits to the asymptotic ω−4.

3.3. Is the weak-turbulent scenario realized?

The presence of the Kolmogorov asymptotic in spectral tails, however, is not enough to validate the applicability of
the weak-turbulent scenario to the description of the wave ensemble. We also have be sure that the statistical properties
of the ensemble correspond to the assumptions of the weak-turbulent theory.
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Fig. 4. The surface |a�k |2 before (left) and after (right) a low-pass filter at the moment of time t � 67T0.

We stress that at the beginning of our experiments, |a�k|2 is a smooth function of �k. Only the phases of the indi-
vidual waves are random. As the numerical simulation shows, the initial condition (16) (see Fig. 1) does not preserve
its smoothness – it becomes rough virtually immediately (see Fig. 4). The picture of this roughness is remarkably
preserved in many details, even as the spectrum down-shifts as a whole. This roughness does not contradict the weak-
turbulent theory. According to this theory, the wave ensemble is almost Gaussian, and both the real and the imaginary
parts of each separate harmonic are non-correlated. However, also according to the weak-turbulent theory, the spectra
must become smooth after averaging over a sufficient period of time, greater than 1/μ2 periods. Earlier, we observed
such a restoration of smoothness in the numerical experiments of the MMT model (see [47–50]). However, in the
experiments discussed in the article, the roughness persists and the averaging does not suppress it completely. This
can be explained by the sparsity of the resonances.

The conditions of resonance are defined by the system

ωk + ωk1 = ωk2 + ωk3,

�k + �k1 = �k2 + �k3. (19)

These conditions define a five-dimensional hypersurface in six-dimensional space �k, �k1, �k2. In a finite system, (19)
becomes a Diophantine equation. Some solutions of this equation are known [32,17]. In reality, however, energy
transport is realized by approximate, rather that exact, resonances, posed in a layer near the resonant surface and
defined by

|ωk + ωk1 − ωk2 − ωk+k1−k2 | � Γ, (20)

where Γ is a characteristic inverse time of nonlinear interaction.
In finite systems, �k, �k1, �k2 take values on the nodes of a discrete grid. The weak turbulent approach is valid if the

density of discrete approximate resonances inside the layer (20) is high enough. In our case the lattice constant is

k = 1, and the typical relative deviation from the resonance surface is


ω

ω
� ω′

k

ω

k = ω′

k

ω
� 1

600
� 2 × 10−3. (21)

The inverse interaction time Γ can be estimated from our numerical experiments: wave amplitudes change essentially
during 30 periods, and we can assume that Γ/ω � 10−2 � δω

ω
. This means that the applicability condition of the

weak turbulent theory is typically satisfied, but the reserve for its validity is rather modest. As a result, some particular
harmonics, posed in certain privileged points of the k-plane may form a network of almost resonant quadruples and
be responsible for a significant part of energy transport. The amplitudes of these harmonics essentially exceed the
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average level. This effect was described in the article [15], where these few selected harmonics were called oligarchs.
If the oligarchs are responsible for the greater part of the energy flux, the turbulence is mesoscopic, rather than weak.

3.4. Statistics of the harmonics

According to the weak-turbulent scenario, the statistics of the a�k(t) in any given �k should be close to Gaussian.
This presumes that the PDF for the squared amplitudes is

P
(|a�k|2

) � 1

D
e−|a�k |2/D, (22)

where D = 〈|a�k|2〉 is the mean square amplitude.
To check Eq. (22), we need to find a way to calculate D(�k). If the ensemble is stationary in time, D(�k) can be

found for any given �k by averaging over time. In our case, the process is non-stationary, and we have a problem with
determining D(�k).

To resolve this problem, we used low-pass filtering instead of time averaging. The low-pass filter was taken in the
form

f (�n) = e−(|�n|/
)3
,


 = 0.25 · Nx/2, Nx = 4096, (23)

where �n is an integer vector running along K-space.
This choice of low-pass filter preserves the values of total energy, wave action and the total momentum within three

percent accuracy. The shape of low-pass filtered function is given on Fig. 4. It is now possible to average the PDF over
different areas of k-space. The results for two different moments of time t � 67.1T0 and t � 925T0 are shown in Fig. 5
and Fig. 6. The thin line gives the PDF after averaging over dissipation region harmonics, while the bold line gives
averaging over the non-dissipative area |�k| < kd = 1024. We can see that the statistics in the last case is quite close to
the Gaussian, while in the dissipation region it deviates from the Gaussian distribution. However, deviation from the
Gaussian in the dissipation region does not create any problems, since the dissipative harmonics do not contain any
essential amount of the total energy, wave action and momentum.

We stress that the bold lines in Figs. 5 and 6 are the results of averaging over a million harmonics. Among them
there is a population of selected few, or oligarchs, with amplitudes exceeding the average value by a factor of more
than ten. The oligarchs exist because our grid is still not fine enough. The contribution of such oligarchs in our case
to the total wave action does not exceed 4%.

3.5. Two-stage evolution of the swell

Figs. 7–10 demonstrate the time evolution of the main characteristics of the wave field: wave action, energy, char-
acteristic slope and mean frequency.

We specially comment Fig. 9. Here and further, we define the characteristic slope as defined in Eq. (11). According
to this definition of steepness, for the classical Pierson–Moscowitz spectrum μ = 0.095. Our initial steepness μ � 0.15
essentially exceeds this value.

The observed evolution of the spectrum can be conventionally separated into two phases. In the first stage, we
observe a rapid drop of wave action, slope and especially energy. The drop then stabilizes, and we observe a slow
downshift of mean frequency together with angular spreading. The level lines of smoothed spectra in the first and in
the last moments of time are shown in Figs. 11–12.

The two stages can be understood through the study of the Probability Distribution Functions (PDFs) of the ele-
vations of the surface. In all figures, we compare the distribution in experimental results with Gaussian distribution
and Tayfun distribution [33]. The latter case is just a first correction to Gaussian distribution due to small nonlinearity.
We use an explicit form of Tayfun distribution following [16]. In the initial moment of time, the PDF is Gaussian
(see Fig. 13). No nonlinear interaction is involved, so the Tayfun distribution does not fit at all. However, very soon
intensive super-Gaussian tails appear (see Fig. 14). They are well described by the Tayfun distribution. The tails then
decrease slowly (Fig. 15), and in the last moment of the simulation, when the characteristics of the sea are close to
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Fig. 5. The probability distribution function for the relative squared amplitudes |ak |2/〈|ak |2〉. t � 67T0. The thin and bold lines correspond to
averaging over dissipation and dissipation-free regions of �K-space, correspondingly.

Peirson–Moscowitz, the statistics is close to Gaussian again (Fig. 16). Moderate tails do exist and, in good agreement
with Tayfun correction, troughs are more probable than crests which, in turn, can be much larger in absolute value.
PDF for ηy – the longitudinal gradients in the first moment of time is Gaussian (Fig. 17). Then, in a very short period
of time, strong non-Gaussian tails appear and reach their maximum at t � 14T0 (Fig. 18). Here T0 = 2π/

√
k0 is period

of initial leading wave. After this moment the non-Gaussian tails decrease. In the last moment of simulation they are
essentially reduced (Fig. 19).

The rapid growth of non-Gaussian tails can be explained by the formation of coherent harmonics. Indeed, 14T0 �
2π/(ω0μ) is a characteristic time of nonlinear processes due to quadratic nonlinearity. Note that the fourth harmonic
in our system is strongly decaying, hence we cannot see real white caps.

Figs. 20–22 show PDFs for the gradients in the orthogonal direction.
Figs. 23, 24 are snapshots of the surface in the initial and final moments of simulation. Fig. 25 is a snapshot of the

surface in the moment of maximal roughness T = 4.94 � 14T0.

4. Statistical numerical experiment

4.1. A numerical model for the Hasselmann equation

The numerical integration of the kinetic equation for gravity waves on deep water (the Hasselmann equation) was
the subject of considerable efforts over the last three decades. The ultimate goal of the effort was the creation of an
operational wave model for wave forecasting based on a direct solution of the Hasselmann equation. This happened
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Fig. 6. The probability distribution function for relative squared amplitudes |ak |2/〈|ak |2〉. t � 925T0. The thin and bold lines correspond to,
averaging over dissipation and dissipation-free regions of �K-space correspondingly.

to be an extremely difficult computational problem due to mathematical complexity of the Snl term, which requires
calculating a three-dimensional integral at every moment of time.

Historically, numerical methods of integrating the kinetic equation for gravity waves come in two flavors.
The first one is associated with the works [34–39], and is based on transforming the 6-fold into 3-fold integrals

using δ-functions. Such transformations lead to the appearance integrable singularities, which creates additional diffi-
culties in calculating the Snl term.

The second type of model was developed in [40–42] and is currently known as the Resio–Tracy model. It uses
direct calculation of resonant quadruplet contribution into Snl integral, based on the following property: given two
fixed vectors �k, �k1, another two �k2, �k3 are uniquely defined by the point moving along the resonant curve – the lo-
cus.

The numerical simulation in the present work was performed using a modified version of the second type algorithm.
Calculations were made on a 71×36 grid in the frequency-angle domain [ω,θ ] with exponential distribution of points
in the frequency domain and uniform distribution of points in the angle direction.

To date, Resio–Tracy model has undergone rigorous testing and is currently considered to have a high degree
of trustworthiness. It has been tested with respect to motion integrals conservation in “clean” tests, wave action
conservation in wave spectrum down-shift, realization of self-similar solution in pure swell and wind-forced regimes
(see [44,43,45]).

We give a description of scaling procedures from dynamical equations to Hasselmann kinetic equation variables in
Appendix A.
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Fig. 7. Total wave action as a function of time. The solid line corresponds to the dynamical equations, dashed–dotted line – to the kinetic equation
with artificial viscosity, dashed line – to the kinetic equation with a WAM3 damping term, dotted line – to the kinetic equation with a WAM4
damping term.

Fig. 8. Total wave energy as a function of time. The solid line corresponds to the dynamical equations, dashed–dotted line – to the kinetic equation
with artificial viscosity, dashed line – to the kinetic equation with a WAM3 damping term, dotted line – to the kinetic equation with a WAM4
damping term.
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Fig. 9. Average wave slope as a function of time. The solid line corresponds to the dynamical equations, dashed–dotted line – to the kinetic equation
with artificial viscosity, dashed line – to the kinetic equation with a WAM3 damping term, dotted line – to the kinetic equation with a WAM4 damping
term.

Fig. 10. Mean wave frequency as a function of time. The solid line corresponds to the dynamical equations, dashed–dotted line – to the kinetic
equation with artificial viscosity, dashed line – to the kinetic equation with a WAM3 damping term, dotted line – to the kinetic equation with a
WAM4 damping term.
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Fig. 11. Initial spectrum |a�k |2. t = 0.

Fig. 12. Final spectrum |a�k |2. t = 3378T0.

4.2. The setup of the statistical model

We augmented the numerical model used for solving the Hasselmann equation with a damping term in three
different forms:

1. Pseudo-viscous high frequency damping (17) used in dynamical equations;
2. WAM3 viscous term;
3. WAM4 viscous term.

Two last viscous terms are the white-capping terms, describing energy dissipation by surface waves due to white-
capping, as used in WAM wave forecasting models (in the SWAN model, the term used has different but similar
tunable parameters), see [46]:

γ�k = Cdsω̃
k

k̃

(
(1 − δ) + δ

k

k̃

)(
S̃

S̃pm

)p

(24)

where k and ω are the wave number and frequency, tilde denotes mean value; Cds, δ and p are tunable coefficients;
S = k̃

√
H is the overall steepness; S̃pm = (3.02×10−3)1/2 is the value of S̃ for the Pierson–Moscowitz spectrum (note
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Fig. 13. PDF for the surface elevation η at the initial moment of time. t = 0.

Fig. 14. PDF for the surface elevation η at the moment of maximum surface roughness. t � 14T0.

that the characteristic steepness is μ = √
2S). It is worth noting that according to [51] theoretical value of steepness

for Pierson–Moscowitz spectrum is SPM � (4.57 × 10−3)1.2. This gives us μ � 0.095.
The values of the tunable coefficients for the WAM3 case are:

Cds = 2.36 × 10−5, δ = 0, p = 4 (25)

and for the WAM4 case are:

Cds = 4.10 × 10−5, δ = 0.5, p = 4. (26)
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Fig. 15. PDF for the surface elevation η at an intermediate moment of time. t � 67.1T0.

Fig. 16. PDF for the surface elevation η at the final moment of time. t = 3378T0.

In all three cases, we used as initial data smoothed (filtered) spectra (see Fig. 19) obtained in the dynamical run at
time T∗ = 3.65 min = 24.3 � 67.1T0, which can be considered as the end moment of the first, rapid stage of spectral
evolution.

The natural question arising in this point is: why do not we calculate the dynamical and Hasselmann model from
the initial conditions (16) simultaneously?

There are good reasons for that:
As it was mentioned before, the time evolution of the initial conditions (16) in the presence of the damping term can

be separated into two stages: a relatively fast total drop of energy at the beginning of the evolution and relatively slow
succeeding total energy decrease as a function of time, see Fig. 8. We explain this phenomenon by the existence of an
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Fig. 17. PDF for (∇η)y at the initial moment of time. t = 0.

Fig. 18. PDF for (∇η)y at the moment of maximum surface roughness. t � 14T0.

effective channel of energy dissipation due to strong nonlinear effects, which can be associated with the white-capping
we mentioned in the introduction.

We have started with relatively steep waves μ � 0.167. As we see, at that steepness white-capping is the leading
effect. This fact is confirmed by numerous field and laboratory experiments. From the mathematical viewpoint, the
white-capping is a formation of coherent structures – strongly correlated multiple harmonics. The spectral peak is
initially situated in our experiments at k � 300, while the edge of the damping area is kd � 1024. Hence, only the
second and the third harmonic can develop, whereas higher harmonics are suppressed by strong dissipation. The
formation of the second and the third harmonic is in any case enough to create an intensive non-Gaussian tail of the
PDF for longitudinal gradients. This process is very fast. At the moment of time T = 14T0 we see fully developed
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Fig. 19. PDF for (∇η)y at the final moment of time. t = 3378T0.

Fig. 20. PDF for (∇η)x at the initial moment of time. t = 0.

tails. Relatively sharp gradients mimic the formation of white caps. Certainly, the pure Hasselmann equation is not
applicable on this early stage of spectral evolution, when energy intensively dissipates.

As the steepness decreases and spectral maximum of the swell downshifts, the efficiency of this mechanism of
energy absorption decreases. When the steepness value drops down to μ � 0.1, at approximately T � 280T0, white-
capping is negligibly small. Therefore, we decided to start comparing deterministic and statistical modeling at some
intermediate moment of time T � 67.1T0.
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Fig. 21. PDF for (∇η)x at the moment of maximum surface roughness. t � 14T0.

Fig. 22. PDF for (∇η)x at the final moment of time. t = 3378T0.

5. A comparison of deterministic and statistical experiments

5.1. Statistical experiment with pseudo-viscous damping term

The first series of statistical experiments were performed with a pseudo-viscous damping term (17).
Figs. 7–10 show total wave action, total energy, mean wave slope and mean wave frequency as functions of time.
Fig. 31 shows the time evolution of angle-averaged wave action spectra as functions of frequency for dynamical

and Hasselmann equations. We see a similar downshift of the spectral maximum both in dynamic and Hasselmann
equations. The correspondence of the spectral maxima amplitudes is not good at all.
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Fig. 23. Surface elevation at the initial moment of time. t = 0.

Fig. 24. Surface elevation at the final moment of time. t = 3378T0.

Fig. 25. Surface elevation at the moment of maximum surface roughness. t � 14T0. Gradients are more conspicuous.
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Fig. 26. Level lines of the dynamic (left) and the kinetic (right) spectra at t = 67.1T0.

It is quite obvious that the influence of the artificial viscosity is not strong enough to give a correspondence of the
two models.

5.2. Statistical experiments with a WAM3 damping term

The second series of statistical experiments were done with the WAM3 damping term.
The temporal behavior of total wave action, energy and average wave slope (see Figs. 7–10) for the WAM3 damping

term is in better correspondence with the dynamical model than in the case of an artificial viscosity term. For the initial
50 min duration of the experiment we observe a decent correspondence between the dynamical and Hasselmann
equations. For longer times, the WAM3 model, however, deviates from the dynamical model significantly.

As in the artificial viscosity case, the angle-averaged wave action spectra exhibit, as function of frequency, a
distinct down-shift of the spectral maxima both for the dynamical and the Hasselmann equations (see Fig. 32). The
correspondence between time evolution of the amplitudes of the spectral maxima is also much better for a WAM3
choice of damping than in the artificial viscosity case.

Presumably, the WAM3 damping term underestimates the effects of real damping at the very beginning of the
evolution (when the effects of white capping are relatively important), and overestimates them in the later stages of
swell evolution.

5.3. Statistical experiments with the WAM4 damping term

The final third series of experiments were performed with a WAM4 damping term.
Figs. 7–10 show the temporal evolution of the total wave action, total energy, mean wave slope and mean wave

frequency, which are divergent in time in this case.
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Fig. 27. Level lines of the dynamic (left) and the kinetic (right) spectra at t = 3378.2T0.

Fig. 33 show the time evolution of the angle-averaged wave action spectra as functions of frequency for the dy-
namical and the Hasselmann equations. While we also observe a down-shift of the spectral maxima, as in the artificial
viscosity and WAM3 cases, the correspondence of the time evolution of the amplitudes of the spectral maxima is worse
than in the WAM3 case.

This observation is especially surprising in view of the fact that historically the WAM4 damping term was invented
as an improvement to the WAM3 damping term. It is quite obvious that the WAM4 damping is too strong for describing
reality at all stages of the swell evolution.

6. Down-shift and angular spreading

The major process of time-evolution of the swell is frequency down-shift. During T = 933T0 the mean frequency
has decreased from ω0 = 2 to ω1 = 0.6. During the last stage of the process, the mean frequency slowly decays as

〈ω〉 ∼ t−0.067 � t−1/15. (27)

The Hasselmann equation has a self-similar solution, describing the evolution of the swell n(�k, t) ∼ t4/11F(�k/t2/11)

(see [43,45]). For this solution

〈ω〉 ∼ t−1/11. (28)

The difference between (27) and (28) can be explained as follows. What we observed is not a self-similar behavior.
Indeed, self-similarity presumes that the angular structure of the solution is constant in time. Meanwhile, we have
observed intensive angular spreading of the initially narrow-in-angle, almost one-dimensional wave spectrum.

Level lines of the low-pass filtered dynamic and kinetic spectrum at the beginning of the simulation are presented
on Fig. 26. There are ten isolines on every figure. The values of level at maximum and minimum isolines are shown on
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Fig. 28. (left) Level lines of the kinetic spectra in the WAM3 (right) WAM4 and damping cases at t = 3378.2T0.

every picture. Level lines of the low-pass filtered dynamic and kinetic spectrum for three different damping terms at the
end of the simulation are presented on Figs. 27–28. We observed the development of bimodality in both experiments.
This is in accordance with field observations [53,54].

We observe good correspondence between the results of both experiments. A comparison of time-evolution of the
mean angular spreading, calculated from action and energy spectra is shown on Figs. 29–30.

We see a growing divergence between dynamic and kinetic models. However, using the WAM3 and the WAM4
models leads to worse divergence. This is an additional argument against these variants of white-cap damping.

One can expect that the angular spreading will be arrested at later times, and the spectra will take on a universal
self-similar shape.

7. Conclusion

1. Our numerical experiment shows that the Hasselmann equation without any additional terms is applicable for
describing gravity wave turbulence in an infinite basin only if the nonlinearity is small enough. The average wave
steepness μ = (E2/N2)

√
2E should be significantly less a certain critical level μ0 = 0.095. To describe the wave

turbulence of a moderate steepness 0.095 < μ < 0.15, one should augment the Hasselmann equation by an ad-
ditional term Sdiss modeling dissipation due to white-capping. So far, there no any theory making it possible to
find Sdiss analytically. This is a great challenge for hydrodynamics. So far we can suggest that Sdiss depends on
steepness very sharply. Hence, the conjecture that white-capping is a threshold phenomenon formulated by Ban-
ner, Babanin, and Young [52] looks very plausible. We did not model overly steep waves, but we can conjecture
that if μ > 0.15, white capping is the leading nonlinear process and the weak-turbulent approach is not applicable
at all.
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Fig. 29. Average angular spreading (
∫ |θ |n(�k)d�k)/(

∫
n(�k)d�k) as a function of time, calculated from wave action. The solid line corresponds to

WAM3, the dotted line to WAM4, the dashed line to artificial viscosity, the stars to the dynamical equations.

Fig. 30. Average angular spreading (
∫ |θ |ωn(�k)d�k)/(

∫
ωn(�k)d�k) as a function of time, calculated from wave energy. The solid line corresponds to

WAM3, the dotted line to WAM4, the dashed line to artificial viscosity, the stars to the dynamical equations.

2. Our results are not a surprise for designers of operational models for wave forecasting. They understood the
necessity of introducing extra dissipative terms into the models many years ago. It is a different story altogether
that the models of Sdiss routinely used in the WAM and WAVEWATCH models are too crude and do not grasp
the most important feature of white-capping – its threshold nature. In our opinion, the existing models of Sdiss
overestimate dissipation at small values of steepness and underestimate it at large μ. Moreover, they overestimate
dissipation in the area of the spectral peak and underestimate it in the spectral region of high wave numbers. We
plan to offer our own form of Sdiss extracted from our massive numerical simulation of the Euler equation, but
this will take some time and toil.

3. We stress that we have solved a maximally idealized model. We did not take into account the interaction of the
swell with atmosphere (see, for instance, [55,56]), the interaction with ocean currents, the deviation of the wave
motion from potentiality as well as influence of turbulence in the surface–atmosphere boundary layer. In the
future, we plan to establish contact with experimentalists to develop a more realistic model of swell propagation
in the real ocean.
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Fig. 31. Angle-averaged spectrum as a function of time for dynamical and Hasselmann equations for the artificial viscosity case.

Fig. 32. Angle-averaged spectrum as a function of time for dynamical and Hasselmann equations a function of time for the WAM3 case.

4. In one aspect our conclusions are very resolute. All existing experimental wave tanks cannot be used for modeling
wave propagation in an open sea. The mesoscopic effects in wave tanks are too strong for reasonable values
of steepness. This pertains only to the modeling of the kinetics of the energy containing region in the vicinity
of spectral peak. The rear faces of spectral distributions, spectral tails, can be successfully modeled. This was
demonstrated by Toba in his classical work [29]. Toba observed the Zakharov–Filonenko spectrum Iω ∼ ω−4 in
a wave tank of moderate size. In our opinion, this conclusion is very important. Some authors, trying to find a
universal law of fetch dependence of mean energy and mean frequency, have put together data collected in the
ocean and in experimental tanks. This mixed data can hardly be compared with any self-sufficient theory. This
question is discussed in detail in [57].

Another conclusion is more pessimistic. The results of numerical experiments show that it is very difficult to reproduce
real ocean conditions in a laboratory wave tank. Even a size of 200 × 200 meters is insufficient to model the ocean
due to the discreteness of the wave number grid.
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Fig. 33. Angle-averaged spectrum as a function of time for dynamical and Hasselmann equations a function of time for the WAM4 case.
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Appendix A. From dynamical equations to Hasselmann equation

The standard setup for numerical simulation of the dynamical equations (4) implies a 2π × 2π domain in real
space and gravity acceleration g = 1. The use of a domain size equal 2π is convenient because in this case the wave
numbers are integers.

Contrary to the dynamical equations, the kinetic equation (12) is formulated in terms of real physical variables and
it is necessary to describe the transformation from the dynamical variables into to the physical ones.

Eq. (4) are invariant with respect to a stretching transformation from the dynamical to the real variables:

η�r = αη′
�r ′, �k = 1

α
�k′, �r = α�r ′, g = νg′, (A.1)

t = √
α/νt ′, Lx = αL′

x, Ly = αL′
y, (A.2)

where prime denotes variables corresponding to dynamical equations.
In our simulation, we used a stretching coefficient of α = 800.00, which allows us to reformulate the statement

of the problem in terms of real physics: we considered 5026 m × 5026 m periodic boundary conditions domain of
statistically uniform ocean with the same resolution in both directions and characteristic wave length of the initial
condition at around 22 m. In oceanographic terms, this statement corresponds to a duration-limited experiment.
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