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The pulse of freak waves on the surface of deep water can be a breather-type solution of the Euler
equation. The shape of surface is periodic function of time in a moving frame. Only in the limit of very
small steepness its shape is described by the Nonlinear Shredinger Equation (NLSE). For moderately
small steepness we derived more exact envelope nonlocal equation similar to well-known Dysthe
equation (DE), which is more convenient for analytical and numerical study. We have found approximate
solution of this equation by the use of the variational approach.

� 2009 Published by Elsevier Masson SAS.
1. Introduction

In our previous paper Dyachenko and Zakharov [1] we have
shown numerically that the localized periodic in time high-
amplitude breather, or giant breather could propagate along the
surface of deep fluid without losing energy by radiation for a very
long time (many thousands of periods). These breathers can be
used for explanation of the freak wave phenomenon. Our numerical
experiments show that the breathers can be identified with the
NLSE-solitons only for very small values of steepness
m¼maxjhxj � 0.035. Meanwhile breather do exist up m x 0.4 at
least. How to describe analytically the shape of breather in the
‘‘grey zone’’, 0.035< m< 0.4 that covers whole decade of steepness
value? This is a challenging and very hard problem. The first step in
this direction is derivation of more accurate (that NLSE) envelope
equation which includes higher-order terms in expansion by power
of m, at least one extra term is necessary. First version of such
equation was offered by K. Dysthe in 1979 Dysthe [2].

The Dysthe equation was actively solved numerically Akylas
[3,4]; Clamond and Grue [5] and breather-type solution were
observed. However, nobody tried to solve the Dysthe equation
analytically and to determine the shape of giant breather. We do
this in the present article.
.E. Zakharov), alexd@landau.

e, Tucson, AZ, 85718, USA

Elsevier Masson SAS.
There are several different versions of the Dysthe equation.
Originally it was written for envelope of surface elevation. This
choice of variable is very natural from the view-point of physics,
but not optimal from mathematical view-point. Original Dysthe
equations are not Hamiltonian, they do not admit any variational
approach. In our next article we will show that this weak point
can be fixed by a proper renormalization of variables. So far we
derive a version of the Dysthe equation in the framework ‘‘Dya-
chenko equations’’ arising after conformal mapping of the
domain filled with fluid to the lower half-plane. A new version of
the Dysthe equation is non-Hamiltonian also, but it admits
variational approach for construction of solitonic solution. We
have implemented this approach using the most simple probe
function – shape of NLSE soliton with indefinite amplitude. Even
this primitive approach leads to fundamental conclusion –
deviations from the NLSE are very important! They completely
reshape the shape of breathers in the ‘‘grey zone’’ of steepness.
Our analytical results are confirmed by comparison with the
numerical data.

2. Conformal Dysthe equation

We assume that the fluid fills the area

LN < y < hðx; tÞ ½LN < x < N�:

The velocity field is potential, hence

V ¼ Vf; VV ¼ 0: (2.1)
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Hydrodynamic potential f(x, y, t) and shape of the surface h(x, t)
satisfy the equations

vf

vt
þ 1

2

�
f2

x þ f2
y

�
þ gh ¼ �P

r
at y ¼ h;

vh

vt
þ hxfx ¼ fy at y ¼ h:

(2.2)

We perform the conformal transformation to map the domain
filled with fluid on Z-plane (Z¼ xþ iy) to the lower half of the
mathematical plane W, (v< 0, w¼ uþ iv).

The transformation is realized by function Z(w, t). Potential f

is a harmonic function (Df¼ 0). Together with the stream
function it is transformed to the complex velocity potential
F(w, t).

Omitting the details equations (2.2) transform to the following
ones:

Zt ¼ iUZu; Ft ¼ iUFu � Bþ igðZ � uÞ: (2.3)

Here U and B are

U ¼ bPðVRþ VRÞ
B ¼ bPðVVÞ:

(2.4)

Here V and R mean complex conjugate of V and R.
In (2.4) bP is the projector operator generating a function that is

analytical in a lower half-plane

bPðf Þ ¼ 1
2

�
1þ ibH�f ;

where bH – is the Hilbert transformation.
Then we introduce standard ‘‘Dyachenko variables’’ Dyachenko

[6]

R ¼ 1
Zw
; and V ¼ iFz ¼ i

Fw

Zw
(2.5)

In new variables the Euler equations read

Rt ¼ iðURw � RUwÞ; Vt ¼ iðUVw � RBwÞ þ gðR� 1Þ: (2.6)

We must stress that

R/1; V/0; at v/�N:

R and V are periodic functions of u (or vanishing at u /�N). All
four functions R, V, U and B are analytic ones in the lower half-plane
v< 0. R has no zeros at v< 0.

Consider evolution of weakly nonlinear wave train. We will use r
instead of R

r [ R L 1:

Then equations (2.6) transform into

rt þ iV 0 ¼ i
�
� U0 þ Vr0 � V 0r þ Ur0 � rU0

�
;

Vt � gr ¼ i
�
VV 0 � B0 þ UV 0 � rB0

�
: ð2:7Þ

(Here and below prime 0 means derivative with respect to the
conformal space variable u).

Now complex transport velocity U

U ¼ bPðVr þ VrÞ: (2.8)

We will look for the breather solution. It is periodic in some
reference frame moving with velocity c. In this reference frame
equations (refr-V) read
rt � cr0 þ iV 0 ¼ i
�
� U0 þ Vr0 � V 0r þ Ur0 � rU0

�
¼ F;

Vt � cV 0 � gr ¼ i
�
VV 0 � B0 þ UV 0 � rB0

�
¼ G:

We look for the solution of these equations in the following form

r ¼
XN
n¼0

rnðu; tÞeinðUt�kuÞ; k > 0

V ¼
XN
n¼0

Vnðu; tÞeinðUt�kuÞ: (2.9)

Thereafter we will put k¼ 1, c¼½ U¼½. The leading terms in
expansion (2.9) are

r1; V1we� 1:

Then

rnwVnwen; r0wV0we3: (2.10)

The idea of expansion (2.9) is the following: rn, Vn are ‘‘slow’’
functions of u. In other words

r0n
rn

w
V 0n
Vn

we� 1: (2.11)

Slow dependence on u does not guarantee slow dependence on
time. Strictly speaking, they should be presented as follow

rn ¼
XN

m¼�N

rm
n eimUt ;Vn ¼

XN
m¼�N

Vm
n eimUt :

However, one can show that the ‘‘fast’’ components in rn and Vn

are exponentially small rm
n xe�m=ewVm

n and can be neglected. Only
‘‘slow’’ components (m¼ 0) survive if e / 0. For the slow
components

_rn

rn
w

_Vn

Vn
we2 � 1: (2.12)

Here _rn and _Vn mean time-derivatives of rn and Vn.
To proceed in derivation of envelope equation we have to learn

how to calculate projective operator of functions like a(u)eimu. Here
a(u) – any ‘‘slow’’ function of u. ‘‘Slowness’’ of a(u) means that its
singularities are posed on the distance of the order of 1/km, may be
in both half-planes. Let us assume for the simplicity that a(u) is
rational. Projection on the lower half-plane means that we elimi-
nate all poles of the function a(u)eimu in the lower half-plane, and
keep untouched all poles in the upper half-plane. Let m< 0. Now all
residues in lower half-plane are exponentially small of the order of
e�m/e and can be neglected. In this case projection is just a cosmetic
operation. If m> 0, it is much more serious surgery, but surviving
poles in the upper half-plane have exponentially small residues,
which can be neglected. We ended up with the following rule for
calculation of projectors

bP�eikmaðuÞ
�
¼
�

0; if m > 0;
eikmaðuÞ; if m < 0:

(2.13)

Only if m¼ 0, projection is a nontrivial operation.
Thereafter we put

V1 ¼ ej

and replace
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v

vu
/e

v

vu
;

v

vt
/e2 v

vt
: (2.14)

Using the rule (2.13) we find with accuracy up to e3

V2 ¼ e2
�
� ij2 þ e

2
jj0
�
; r2 ¼ e2

�
j2 þ ijj0

�
;

r0 ¼ ie3bP�jjj2�0; V0 ¼ e2bP�jjj2�0 ð2:15Þ

r1 and V1 are related with relation

r1 ¼ V1 �
e

2
V 01 (2.16)

By the use of the relations (2.15) and (2.16) we end up with the
following equation for j:

2i _jþ 1
4

j00 þ jjj2j ¼ e
h

_j
0 � jbH�jjj2�0�2i

�
jjj

2
j
�0i

(2.17)

This is the Dysthe equation in our variables. In the limit of e /

0 it gives standard NLSE.
3. Shape of breathers

j ¼ fðuÞe
it
2 :
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Fig. 1. Envelope from Dysthe equation fits breather from the exact equations.
f(u) – is complex function satisfying the equation

�fþ 1
4

f00 þ jfj2f ¼ e

�
i
2

j0 � 2i
�
jfj

2
f
�0
�fbK�jfj2��: (3.18)

Here bK ¼ bHðv=vuÞ.
After separation of the amplitude and phase

f ¼ AeiF;

we got two equations:

1
4

v

vu
A2F ¼ e

�
1
4

�
A2
�0
�3

2

�
A4
�0�

;

hence

F0 ¼ e
�

1� 6A2
�
: (3.19)

Second equation (for amplitude) reads

�Aþ 1
4

A00 þ A3 � 1
4

AF02 ¼ �e

��
1
2
þ 2A2

�
F0 þ AbKA2

	
: (3.20)

Keeping in (3.20) terms of the order of e2 is exceeding of accu-
racy. Thus it can be simplified up to the form

�A þ 1
4

A00 þ A3 þ e AbKA2 ¼ 0: (3.21)

Operator bK is pure negative. It acts on exponents as follow

bKeiku ¼ �jkjeiku:

It means that cubic terms in (3.21) have opposite effective signs
and, as a result, this equation have solitonic solution only if e< e0, e0

– is some critical value of e.
We have reason to think that e0 is a relatively small number.

Here is the explanation. bK is symmetric operator and equation
(3.21) realize minimum of the functional
vH
vA
¼ 0; H ¼

ZN
�N

�1
2

A2 � 1
8

A02 þ 1
4

A4 þ e

4
A2 bKA2: (3.22)

Let us implement the variational approach and will find solution
in the form

A ¼ a
cosh 2u

: (3.23)

a – is still unknown value. We plug (3.23) into (3.22). The last term
can be easily calculated in terms of Fourier Transform by the
following formulae:

1ffiffiffiffiffiffiffi
2p
p

ZN
�N

e�ikx

cosh22x
dx ¼

ffiffiffiffiffiffiffi
2p
p

8
k

sinh kp
4

;

and

ZN
0

k3dk
sinh22k

¼ 3
32

zð3Þ:

As a result

H ¼ �2
3

a2 þ
�

1
6
� 0:22e

�
a4:

Condition vH/vA¼ 0 gives

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1� 1:32e

r
: (3.24)

In the limit e / 0 we get the NLSE result, a ¼
ffiffiffi
2
p

. One can see
that relatively small e leads to the strong deviation from the NLSE
limit.
4. Comparison with numerical experiment

To check the theory presented in this article we compared
breather-type solution described in our paper Dyachenko and
Zakharov [1] with the soliton shape (3.23). In the Fig. 1 envelope is
the following:
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Fig. 2. Solitons for NLSE and Dysthe equation. l¼ 4.0, e¼ 0.290.
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Fig. 4. Solitons for NLSE and Dysthe equation. l¼ 15.0, e¼ 0.070.
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A ¼ a
cosh lx

:

with a¼ 0.0084, and l¼ 17. If it were NLSE envelope with the same
l¼ 17, than a would be 0.0048. So, one can see increasing of the
breather amplitude according to the formulae (3.24).

5. Stationary solutions of the Dysthe equation

The main goal of this section is to compare soliton solutions of
the Dysthe and the Shredinger equations. Instead of equation of
(2.17) it is more convenient to deal with standard NLSE equation
with additional nonlocal term, namely

�l2Aþ A00 þ A3 þ eAbKA2 ¼ 0: (5.25)

We will look for the soliton solution of equation (5.25) with
various values of e. It is usual to apply iterative numerical algorithm
to solve this nonlinear equation. The simplest algorithm might be
the following (written for Fourier harmonics): 

Asþ1
k ¼ M�

l2 þ k2
�hAsðAs2 þ ebKAs2Þ

i
k

!
(5.26)
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Fig. 3. Solitons for NLSE and Dysthe equation. l¼ 8.0, e¼ 0.144.
Here M is the factor to provide convergence of the iteration, in
particular

M ¼

Z
As2duZ

As
k�

l2 þ k2
�hAsðAs2 þ ebKAs2Þ

i
k
dk

We look for solution which are symmetric with respect to y-axis,
so it can be expanded as cosine Fourier series with real Fourier
coefficients.

Parameter e, which is equal to

e ¼ 1

ðk0LÞ2

corresponds to the inverse squared number of carrier waves per
dimensionless length. The above algorithm provides absolute
accuracy of the order of 10�14 (close to round-off errors) with
couple of thousands of iterations. It takes a few seconds on usual PC.

In all Figs. 2–4 NLSE-solitons are lower and more narrow with
respect to solitons for Dysthe equation. This is in qualitative
agreement with formula (3.24).
6. Conclusion

According to estimation (3.24) higher nonlinear approximation,
the Dysthe equation, leads to wider and higher soliton. One can see
from (3.24) that it might exist critical value of 3 for which soliton
solution breaks. It corresponds to limiting breather that we
observed in fully nonlinear simulation, see Dyachenko and
Zakharov [1], and Fig. 1. Local steepness for such breather is close
the steepness of limiting Stokes wave, mx1=

ffiffiffi
3
p

.
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