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Abstract. Two alternative scenarios pertaining to the evolution
of nonlinear wave systems are considered: solitons and wave
collapses. For the former, it suffices that the Hamiltonian be
bounded from below (or above), and then the soliton realizing its
minimum (or maximum) is Lyapunov stable. The extremum is
approached via the radiation of small-amplitude waves, a pro-
cess absent in systems with finitely many degrees of freedom.
The framework of the nonlinear Schrodinger equation and the
three-wave system is used to show how the boundedness of the
Hamiltonian — and hence the stability of the soliton minimizing
it— can be proved rigorously using the integral estimate meth-
od based on the Sobolev embedding theorems. Wave systems
with the Hamiltonians unbounded from below must evolve to a
collapse, which can be considered as the fall of a particle in an
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unbounded potential. The radiation of small-amplitude waves
promotes collapse in this case.

1. Introduction

The main goal of this review is to demonstrate, based on the
Hamiltonian approach, the difference between two main
nonlinear wave phenomena: solitons, or solitary waves, and
wave collapse—the process in which a wave field becomes
singular in a finite time. The singularity type depends on the
physical model. For example, the breaking of acoustic waves
is accompanied by the formation of sharp gradients (the
gradient catastrophe) or, in mathematical parlance, a fold
[1, 2]. In light self-focusing, which is just another example of
wave collapse, the light intensity becomes anomalously high
as the focus is approached. For water waves, singularities in
surface elevation have the form of wedges. In this case, the
second derivative of surface elevation becomes infinite.
Collapses play a significant role in various branches of
physics, not only in nonlinear optics and fluid dynamics but
also in plasma physics, physics of the atmosphere and ocean,
and solid state physics. For many physical systems, collapse,
as a process of singularity formation in finite time, is one of
the most effective mechanisms of wave energy conversion to
heat. For example, the collapse of plasma waves determines
the efficiency of various collective methods of plasma heating
in problems of controlled thermonuclear fusion. In nonlinear
optics, this process is stopped because of multi-photon
absorption for moderate intensities and as a result of atom
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ionization for large amplitudes. Collapse in nonlinear optics
can therefore be utilized to explore the interaction between
light and matter over a wide range of intensities, including the
processes of ionization by strong electromagnetic fields and
the formation of beams of relativistic particles. One more
possibility in optical systems — exploiting collapses to create
ultrashort pulses—has long been discussed, but still awaits
its experimental implementation.

In speaking about solitons, we suppose, first, that their
lifetime, set by dissipation, is sufficiently large, and hence
their dynamics, for example, as they interact with each other,
can be treated as Hamiltonian; this is assumed virtually
everywhere in the review. Second, the existence of solitons
implies their stability. We consider two approaches to the
analysis of soliton stability: by exploring stability at the
infinitesimal level, i.e., based on linearized equations and the
subsequent analysis of linear spectral problems, and by
invoking the Lyapunov method, which is the most versatile
method that allows assessing the stability under not only
sufficiently small but also finite perturbations. According to
the Lyapunov theorem, a soliton is stable if it realizes a
minimum (or maximum) of the Hamiltonian.

The problem of soliton stability in its most complete form
was discussed for the first time by us together with Rubenchik
in review [3] published already more than twenty-five years
ago. The research on soliton stability has seen dramatic
changes since that time, especially in what concerns the use
of integral majorizing inequalities that follow from the
Sobolev embedding theorems. Earlier reviews did not touch
at sufficient length on the role of unstable solitons in the
process of singularity formation— the wave collapse. We
demonstrate in what follows that the wave collapse unfolds
in systems with unbounded Hamiltonians and can be
interpreted as a particle fall in an unbounded potential. In
that case, the soliton represents a saddle point that the system
crosses when passing to the wave collapse mode.

This review mainly deals with two models: the nonlinear
Schréodinger (NLS) equation and the three-wave system.
These models have numerous applications in optics, plasma
physics, fluid dynamics, etc. (see, e.g., review [4]). The NLS
equation belongs to the class of universal models, it can be
shown to describe the propagation of wave packets in a
weakly nonlinear medium when the interaction with low-
frequency (LF) acoustic waves is not essential. For example, it
is well known [5, 6] that the propagation of optical solitons in
optical fibers can be described by a one-dimensional NLS
equation to a good accuracy. A two-dimensional NLS
equation describes stationary light self-focusing in media
with the Kerr nonlinearity. The universality of the NLS
equation is manifested, in particular, in the universality of
the methods used to explore the stability of solitons (see, e.g.,
review [3]).

The three-wave system describes solitons in media with
quadratic nonlinearity, referred to as y(?-media in optics.
This system is written for the amplitudes of three wave
packets coupled via the quadratic nonlinearity. In a particu-
lar case, this system describes the interaction between the first
and second harmonics. If the difference between the group
velocities of three packets is sufficiently large, this system
reduces to the Blombergen equations [7], which can be
integrated with the help of the inverse scattering method [8].
For close group velocities, as is commonly the case in
nonlinear optics, both the dispersion and diffraction terms
have to be taken into account [9-11]. The model then

represents a vector system of the NLS type, but with a
quadratic nonlinearity.

Solitons in both systems exist as a result of balance
between nonlinear interaction and dispersion. The soliton
solutions for these two systems correspond to stationary
points of their Hamiltonians for other integrals of motion,
such as the momentum, the particle number, or the Manley—
Rowe integrals, kept fixed. In other words, solitons are
associated with conditional extrema. This is a very essential
point. Had it not been the case, for example, had the solitons
been associated only with a stationary point of the Hamilto-
nian, such a stationary point would be unstable for systems
with Hamiltonians unbounded from below (i.e., in the
absence of a vacuum). The last statement is in essence the
main part of the Derrick arguments [12]. Luckily, solitons
viewed as stationary points of Hamiltonians correspond to
conditional extrema, which allows exploring their stability by
resorting to the Lyapunov theorem. In this case, for proving
the soliton stability, it suffices to show that the Hamiltonian is
bounded (other motion integrals being fixed). Obviously, a
soliton realizing a minimum (or maximum) of a given
Hamiltonian is Lyapunov stable. Such an approach was first
applied to Korteweg—de Vries (KdV) solitons by Benjamin
(1972) [13], and later, to three-dimensional ion-acoustic
solitons in strongly magnetized plasma by us [14]. It is now
one of the most powerful methods of exploring soliton
stability.

We note that it is often easier to prove the Lyapunov
stability than to solve the linear stability problem. In the latter
case, the completeness of all eigenfunctions of the linearized
problem must be proved, which is an extremely difficult task.
In this review, we pay special attention to embedding
theorems and show how they lead to integral estimates, and
then use them to prove the boundedness of Hamiltonians.

When a Hamiltonian is bounded and a soliton realizes its
extremum, we can speak about the energy principle. A soliton
realizing a minimum shows up as an attractor. In particular,
under a collision of two such solitons, the formation of a
single, more powerful soliton with lower energy is favorable
from the standpoint of energy. However, in this coalescence,
not only energy but also other motion integrals, for example,
the number of particles, must also be preserved. This is
possible only in very special cases, for example, for integrable
models. Nonintegrable systems are characterized by inelastic
scattering and the formation of a soliton with a larger
amplitude as a result. This process is accompanied by the
radiation of waves in the nonsoliton sector, which evolve into
linear waves far from the scattering region owing to
dispersion. Here, radiation plays the role of friction, leading
to the formation of a more powerful soliton. Large-amplitude
solitons survive in such systems in the presence of multiple
scattering, being in equilibrium with radiation (the linear
waves). Solitons in this case behave like a peculiar kind of
drop, called statistical attractors by Yan’kov [15, 16], for
which radiation plays the role of vapor.

If a Hamiltonian is unbounded, its unboundedness
indicates that solitons must correspond to saddle points of
the Hamiltonian and be unstable entities. The system
behavior cannot be stationary in this case. Two variants are
possible: either the system tends to completely spread out
because of dispersion, in which case nonlinear interaction
becomes insignificant and waves become linear at large times,
or the system collapses, and a field singularity forms as a
result. The latter process can be viewed as an analog of the fall
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of a particle on a center in an unbounded potential. Based on
the fact that the Hamiltonian is unbounded, we can ascertain
the role of radiation in the process of collapse. As was first
shown by Zakharov (1972) using the collapse of Langmuir
waves as an example [17], the radiation promotes collapse.
This turns out to be a general property, inherent in many
collapsing wave systems.

However, a conclusion regarding the finiteness of the
collapse time cannot be drawn from this reasoning. Only
rigorous theorems, like the Vlasov—Petrishchev—Talanov
theorem [18], allow formulating a sufficient criterion for the
collapse as a process through which a singularity developsin a
finite time.

The method based on the Lyapunov theorem is difficult to
apply when exploring the stability of local stationary points.
In this case, a linear stability analysis seems to be most
efficient. In this review, following the work by Vakhitov and
Kolokolov [19], we derive the stability criterion for NLS
solitons. The main point of this derivation relies on the
oscillation theorem for the Schrédinger operator, which
establishes a one-to-one correspondence between the level
number and the number of zero crossings of the respective
wave function. Importantly, this theorem is only valid for a
scalar Schroédinger operator and cannot be used for a vector
Schrodinger operator. This indicates that the Vakhitov—
Kolokolov criteria are typically only sufficient for the soliton
instability and cannot be used as a necessary condition of
stability. As we show below, the three-wave system belongs to
just that category.

For the three-wave system, the linearized operator is the
product of two 3 x 3 matrix Schrédinger operators, for
which the oscillation theorem is inapplicable. We discuss
this situation in detail for solitons describing a coupled state
of the first and second harmonics, and show with this
example how the two approaches—the Lyapunov method
and the linear stability analysis—work. In particular, we
discuss how the stability of solitons is affected by phase
detuning.

2. Main equations

We begin with the main equations, the nonlinear Schrédinger
equation and equations for the three-wave system.

2.1 Nonlinear Schrodinger equation
In dimensionless variables, the NLS equation is written in the
canonical form

i, +3 AU+ Py =0, (1

In the context of nonlinear optics, ¥ in Eqn (1) stands for the
amplitude of the envelope of the electric field with a certain
(for example, linear) polarization, and the time ¢ is a
coordinate in the direction of the wave packet propagation.
The second term in Eqn (1) describes both diffraction and
positive dispersion of group velocity, which is realized in
optics in the anomalous dispersion range. In the case of
normal dispersion, the operator A is replaced by the
hyperbolic operator A; — 2. The nonlinear term |y in
Eqn (1) corresponds to the Kerr contribution to the refractive
index.

We note that the NLS equation, which models a broad
range of nonlinear wave phenomena, plays a central role in

the theory of wave collapse. This has become especially clear
after the prediction of light self-focusing [20] and the
development of the related theory [21-25] (also see [26]). The
applications of this model of wave collapse are not exhausted
by light self-focusing: the NLS equation finds diverse
applications in many other branches of physics (see, e.g.,
reviews [4, 27-29] and the references therein). Commonly, the
NLS equation and its modifications result from a reduction of
the equations of motion of a nonlinear medium to equations
for the envelope of a quasimonochromatic wave, which
involves averaging the original equations over fast oscilla-
tions in time and space. Accordingly, the NLS equation is
very frequently regarded as an equation for envelopes. We
mention monograph [30], which is dedicated exclusively to the
NLS equation; it touches on its numerous mathematical
aspects, in addition to physical issues.

Nonlinear Schrodinger equation (1) is often called the
Gross—Pitaevskii equation [31, 32], which very accurately
describes long-wave oscillations of the condensate of a
weakly nonideal Bose gas with a negative scattering length.
Presently, Eqn (1) is the main model used in the research on
nonlinear dynamics of Bose condensates (see, e.g., Refs [33—
38]). In that case, Eqn (1) is the Schrodinger equation and  is
the wave function. Accordingly, Eqn (1) describes the motion
of a quantum mechanical particle in the self-consistent
attracting potential U = —|y|*. Just the attraction is the
cause of the singularity occurrence. From the quantum
mechanical standpoint, collapse in the NLS framework can
be interpreted as the fall of a particle on the center (the point
of collapse) [39].

Collapse in NLS equation (1) is, however, possible, not
for all space dimensions D but only for D > 2. In the one-
dimensional (1D) case, as shown by Zakharov and Shabat
[40] in 1971, Eqgn (1) is exactly integrable with the help of
the inverse scattering method. This result has demonstrated
that solitons, being stationary localized objects, play an
essential role in the dynamics of nonlinear waves described
by the NLS equation. The solitons of the one-dimensional
case turned out to be given by structurally stable forma-
tions, i.e., those stable with respect to not only small but
also finite perturbations, like those a soliton encounters
when scattering on other solitons. Just this very attractive
property of solitons underlies the applications of optical
solitons in optical fibers [5]. This idea is now realized in
practice (see, e.g., Ref. [41]). But solitons play a different
role in higher dimensions.

2.2 Hamiltonian structure
It is well known (see, e.g., Ref. [11]) that NLS equation (1) is a
Hamiltonian equation and can be written in the form

. dH
ll//Z = W (2)
with the Hamiltonian
1 1
n=s([wrar-wra)=3a-m. o

In addition to H, this equation has two more simple integrals
of motion: the number of particles

N [P ar @)
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(which coincides, up to a constant factor, with the energy of
the wave packet) and the momentum

vy
= Jow - vrvpar. 5

The conservation of N follows from the gauge symmetry
W — Yexp (i), and the conservation of P is conditionally
related to the symmetry under translations. These two
symmetries ensure the Galilean invariance of Eqn (1). In
particular, a simple solution of Eqn (1),

27t

Y5 = Yo(r) exp 5 (6)

with ¥,(r) — 0 as r — oo, corresponds to a soliton at rest. A
solution for a moving soliton follows by applying a Galilean
transformation to Eqn (6).

It can also be easily established that soliton solution (6)
represents a stationary point of the Hamiltonian H for a fixed
particle number (cf. Ref. [3]):

S(H+7N) =0, (7)
where /> is the Lagrange multiplier. Solving variational

problem (7) is equivalent to finding a solution of the
stationary NLS equation

—22 A+ AY + [Py =0.
This implies the dependence of N on 4 for soliton solution (6),

S R [VE TR (8)

where f satisfies the equation
1 .
~f+5 M+ TS =0.

Dependence (8) proves to be crucial for the criterion of soliton
linear stability, the subject of Section 3.

2.3 Three-wave system and its reductions
We next consider the three-waves system, which can be
written in the form (see, e.g., Refs [10, 11])

.0

i % — o, iV, + = 601%25% = Wy, )
§ 2 oy 4 iV 3 0 = Vs, (10)
i%f w33 +i(vsV)y; + = waﬁGQ/;'//z Vs, (11)

where the amplitudes of three wave packets ,(x,1)
(I=1,2,3) are slowly varying functions of x (k;L; > 1,
where k; is the carrier wave vector of the /th packet and L, is
its characteristic length), v; = Ow(k;)/0k; are the group
velocities of packets,

a)“ﬁ _ azw,(k/)
! Ok, Okyp

is the dispersion tensor, and V is the three-wave matrix
element, which can be considered real valued without the

loss of generality. It is assumed that the carrier frequencies

w; = wy(k;) are close to the resonance
w1 (ki) = wa (k) + w3(ks) (12)

ki =k, + k3. (13)

Like the NLS equation, system of equations (9)—(11) is
Hamiltonian:

% ;f (14)
where
H=H,+H,,
;
Hy = ;(lehmzdr - isz,*(v;V)tﬁ,dr
%Jv vy ol vw,m) (15)
=[5 4 00 (16)

Here, Hj corresponds to linear waves: the first term in the
right-hand side of Eqn (15) makes a dominant contribution to
the energy, the second term corresponds to the motion of
packets with the group velocity, and the third term is
responsible for dispersive broadening of packets. It is
noteworthy that the dispersive term is small in the parameter
Ak;/k; compared to the second term. The third term in Hy
should therefore be retained only when the differences
between the group velocities are small. For instance, such a
situation can be realized in optics.

If the carrier w; and k; exactly satisfy resonance conditions
(12), then the terms ~ w; can be eliminated by the transforma-
tion ¥, — W, exp (—iwyt).

We note that three-wave system (9)—-(11) allows a
physically important reduction that corresponds to the
interaction between the first (};) and second (i,) harmo-
nics. In this case, the Hamiltonian becomes

2
=3 (Joot ax =i [ ow i
+ %Jaalp;w;c/faﬂlp, dr> + VJ(%*(//E +c.c.)dr,

and the respective equations of motion are written as

%

1
I— -y, +inV)y, T3 waﬁazﬁ'ﬁ] =2V, (17)

0
F V2 oy iV O = 0 (1)

where w; ~ 2w;. If the resonance is exact, the terms
proportional to w; can be eliminated by the transformations
W — Y exp (—iwgt), Y, — Y,exp (—i2wyf). In the one-
dimensional case, the three-wave system (9)—(11) allows
simplifications. By introducing new variables

(19)

v, = zp,(x —ot, t)exp (ik)x), K| =Ky +K3,
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it is possible to eliminate the first derivatives if the velocity v
and wave numbers x; are chosen as

vidy — vady — v3ds

1
d—dy—d; Y

dy =
/'

K= di(v—y), (20)

(We note that the equations turn out to be Galilei invariant
for d = dr + ds.) As a result, system (9)—(11) in the one-
dimensional case takes the form (the tilde over ; is omitted
below and the matrix element of the three-wave coupling V' is
setto —1)

LR r— @y

'702 — Qs + = ! cu2 e = —Y1Ys3 (22)

61/;3 Q33+ 1 w; 3w = Y, (23)
where

Q= w;+ kv + wl/;clz . (24)

Here, as previously, it is assumed that the new frequencies are
close to the resonance,

Q= Q)+ Q5,

or, in other words, the frequency detuning is small.
At the next step, 2, and Q3 can be eliminated with the help
of transformations

l//l(x7 t) - lﬁl(X, t) eXp [_1(92 + Q3)t] ’
Yo (x, 1) = Wha(x, 1) exp (—i€a1)
l//3(x7 t) - %(X, t) eXp (7iQ3t) .

As a result, Eqns (21)7(23) become

1%_lel +5 wllljlxx: _l//2lp3a

.0
%4_— l//Zvoc =

o .
873+§ Wi = s,

(25)

_lpllp; ’ (26)

(27)
where Q = Q| — Q, — Qs is the frequency detuning character-
izing how far the carrier frequencies are from the resonance
Eqn (12).

System of equations (25)-(27) preserves its canonical
structure with the Hamiltonian

[ 1
H:JQ|¢]‘2dX+ E Jiw;/
!

- wawzm +ee)dx

Wl dx

(28)

In addition to H, these equations (as well as the nontrans-
formed equations) have two additional integrals of motion,
the so-called Manley—Rowe integrals

Ni= [P+ WPy ax, Vo= [+ ) dv. (29)

The invariants N; and N, arise as a result of the averaging
procedure that removes all nonresonant terms except the one
pertaining to the three-wave coupling.

The one-dimensional system (17), (18) describing the
interaction of the first and second harmonics is transformed
similarly to Eqn (19):

.oy .

a—1+§ Wi = =209, (30)
. 0 1

alp; Ql/’Z +5 602 2xx T 7lp123 (31)

where the frequencies Q; are defined by Eqns (24) with x;
given by (20). Only one Manley—Rowe integral for system
(30), (31) exists:

= [P+ 210 ax (32)

Similar transformations for the three-wave system in
Eqns (21)—(23) [as well as for the coupling of the first and
second harmonics (17), (18)] can be carried out in the case of
many dimensions. For this, it is necessary to make the change

O/ W ey — w,’ ézﬁzp, inall 1ntegrals of motion and to replace d;
with the matrix inverse to o, /‘, with the velocities v,
considered vector quantities. It is pertinent to note that for
the three-wave system, the difference between one-dimen-
sional and multi-dimensional cases for D <3 is not so
essential, in contrast, for example, to the case of the NLS
equation. This can be seen most vividly when exploring the
stability of solitons—the coupled states of three-wave
packets.

To conclude this section, we note one more important
reduction of system (9)—(11), which corresponds to stationary
waves when the time derivative in these equations is absent. In
this case, the system of equations, which is also Hamiltonian,
describes spatial solitons — the distributions localized in one
direction or in a plane (see, e.g., Refs [42-44] for more details).

3. Lyapunov stability for scalar models

3.1 Stability of NLS solitons
We begin by exploring the stability of solitons of the one-
dimensional NLS equation,

o _ 1

xx |l//|2'107 (33)

where the Hamiltonian H is defined in (3) with the integration
performed only with respect to the coordinate x. As
mentioned in Section 2, from the quantum mechanical
standpoint, Eqn (33) describes the motion of a particle in the
self-consistent attracting potential U = —|z//|2. But in the one-
dimensional case, nonlinear attraction cannot overcome
dispersion (~ ¥, ), the cause of smearing. The exact balance
of these two opposing effects leads to the existence of a
soliton—a stationary solution of Eqn (33) of the form

W(x, 1) = Yo(x) exp (iA%1/2), where

Wo(x) = Asech (Ax) (34)
satisfies the stationary NLS equation

=220 4 Youx + 2oy = 0. (35)
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The simplest solution (34) describes a soliton at rest. Moving
solitons are obtained from it by performing Galilean
transformations.

It can be easily verified that solution (34) corresponds to a
stationary point of the Hamiltonian for a fixed number of
particles N = [ \1//|2 dx, because stationary NLS equation (35)
directly follows from the variational problem

5(H+m> =0. (36)

2

It is also easy to find that the number of particles increases
linearly with A, Ny =24, in these solutions. Here and
henceforth, the index s indicates that a functional (in this
case, V) is computed at the soliton solution.

According to the Lyapunov theorem, to prove the
stability of soliton (34), it suffices to show that the soliton
realizes a minimum of the Hamiltonian. (The unbounded-
ness of H from above is obvious: for a fixed N, which is
essentially the normalization of the wave function, the
Hamiltonian can become arbitrarily large because of the
kinetic energy /; in the class of strongly varying functions
)

We begin with simple, essentially, dimensional, estimates
that indicate that H is bounded from below. Let 4 be a
characteristic amplitude of the soliton and / be its character-
istic size. Then the particle number is approximately given by
N =~ A%l hence, A> ~ NI~'. For integrals I, and >, we have
the estimates

2 2

II%Asz—g, I2zA4lzNT,

which give the Hamiltonian
1/N N?
Hx-|5——].
2 (12 / >

The last expression immediately implies that H, as a function
of the soliton size /, is positive for small / (it grows as /=) and
is negative and tends to zero from below for large /. It is
obviously bounded from below. Its minimum is achieved for a
soliton with the size /s ~ 2/N.

This same conclusion can be drawn by considering scale
transformations that preserve the particle number:

Y(x) — a”/zv/(f) - (37)

a

As a result of transformation (37), the Hamiltonian becomes
a function of the scaling parameter a,

na-3(4-5)

The function H(a) reaches a minimum at the point a = 1,
which corresponds to a soliton (Fig. 1):

(38)

473 1 73

OH
:0:>2[13212s: 3

da

2 3
(39)

a=1

We can additionally verify that the soliton realizes a
minimum of H with respect to phase transformations

Hy=—-1Lis=——.

H - ——

Figure 1. The profile of H(a).

Wo(x) = Yo(x)exp (ix(x)), which also preserve N:

H=H +1J o 21//de
o T2 \ex) O

The two simple transformations defined by Eqns (37) and (38)
therefore give a minimum of H, which hints at the soliton
stability, but, strictly speaking, does not prove it.

We offer a rigorous proof. The main element of this proof
relies on Sobolev integral estimates, which follow from the
general Sobolev embedding theorems. The Sobolev theorem
states that the space L, can be embedded in the Sobolev space
W1 if the dimension of the space R” over which the
integration is performed satisfies the inequality

2
D<-(p+4).
p@ )

This implies that the norms

1/p
lu, = va’dﬂx} . pso0,

. 12
s = “(u2\u|2+ |Vu\2)de} Ceso,

are related by the inequality (see, e.g., Ref. [45])

lull, < Ml (40)
where M is a positive constant. Notably, for D = 1 and p = 4,
inequality (40) can be written as

Jij¢4dx<ﬂh<Ji;@2wﬁ+|¢Xadx)5 (41)

Using this, we can derive a multiplicative variant of the
Sobolev inequality, the so-called Gagliardo—Nirenberg
inequality [46] (see also Refs [29, 45, 47]). With this aim, we
perform scale transformations x — ox in inequality (41), after
which the right-hand side of (41) becomes dependent on the
parameter o,

o0 %) loo 2
[t <on (st [~ Farel [ wPax)

This inequality is valid for any positive o, including the values
for which the right-hand side of the inequality is minimum,
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which gives the Gagliardo—Nirenberg inequality

L <CNI?, (42)
where I; and I are the integrals defined by Eqn (3) for D = 1,
and C is a new constant.

Inequality (42) can be refined if the minimum value of the
constant C is known. To find it, we need to consider all
extrema of the functional

53

J{¢}=W7

(43)

which are found from the variational problem 8J = 0. It can
be readily seen that this amounts to finding solutions of
stationary NLS equation (35),

2+ 2Py =0.

The solution of the last equation is unique (up to a constant
phase factor) and represents the one-dimensional soliton of
NLS equation (34),

A
Y=

cosh Ax

We therefore conclude that the best constant Cpes equals the
value of J{y/} at soliton solution (34):

L, 2n?

N2 NS3/2 :

S Is

Cbest = (44)

Inequality (42) with C = Cpe,y immediately implies the
stability proof for the one-dimensional soliton.

The substitution of Eqn (42) with C = Cpey in Eqn (3) for
D =1 gives the desired estimate for the lower bound of the
Hamiltonian:

H> %Ul - Cbesl[11/2N3/2) = H; +%(111/2 - Ills/2)2~ (45)
Inequality (45) becomes exact at the soliton solution, which
proves that the NLS soliton is Lyapunov stable not only
against small but also against finite perturbations.

Similarly, we can prove the stability of the ‘ground-state’
soliton (a radially symmetric solution with no zeros) for a
multidimensional NLS equation with a power-like nonlinear-
ity

i, +3 A+ 2 Py =0, (46)

where g > 1.
The Hamiltonian for Eqn (46) can be written in the form

H:% J(IWIZ W) dPx=1— 1, (47)

and the ground-state soliton solution

it

l//s = eXp (T) ﬂ]/(072>g(/17') )

with the function g(&) satisfying the equation

20-2

—g+Vig+olg" g =0,

corresponds to a stationary point of H for a fixed particle
number N,

/12
5 <H L L N) 0.
2
As previously, performing the scaling transformation
yi(r) — aiD/2'//s (§> )

which preserves the total number of particles, we find that the
corresponding Hamilton function

1/ I;
H(a) = 3 (aiz = (071)/0)

is bounded from below and attains a minimum only if
g—1
D

<2.

This minimum (for ¢ = 1) corresponds to the ground-state
soliton solution, which hints at its stability. To rigorously
prove the stability, we have to resort to the related multi-
plicative inequality for I, which follows from Eqn (40),

1= [ < || Wdl’xr | |vw|2der, (48)

where « = D/2 + (1 — D/2) and § = (6 — 1)D/2. Then, as
in the case with the one-dimensional cubic NLS equation (33),
we need to find the best constant M, as a minimum of the
functional N "‘Ilﬁ /1. It is easy to verify that this minimum is
provided by the ground-state soliton solution (46).

Substituting inequality (48) with the best constant Mg in
Hamiltonian (47),

H> %(11 - MbestNmI{g) )
we find that the right-hand side of the last inequality as a
function of ; is bounded from below and reaches a minimum
at the ground-state soliton solution, which just proves the
Lyapunov stability of this solution.

Stability criterion (45) and its generalization for
(6 —1)/D < 2 can be interpreted as the energy principle. If
we ignore the integrability of the one-dimensional NLS
equation (with ¢ = 2) [40], the coalescence of two solitons
should be favorable in terms of energy. This implies that a
new soliton appearing as a result of the interaction of two
solitons must have a lower energy (the energy of the soliton
being negative!) than the energy of the interacting solitons. In
the general case, the interaction between solitons is accom-
panied by radiation of small-amplitude waves. Why does the
radiation favor the emergence of a deeper soliton?

We consider a domain G where the Hamiltonian is
negative, Hg < 0. The following obvious estimate is then
valid for the integral 7, = [, [[* dx:

[ > dx < (max |¢|2)2”‘2J WP dx.
G x G
Hence, it follows that

(max iy > e, )

Ng

We note that inequality (49) is valid for an arbitrary physical
dimension D.
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If small-amplitude waves are radiated from the domain G,
they carry away positive energy (because the nonlinearity is
not essential for them). As a result, because of the conserva-
tion of the Hamiltonian and the number of particles, |Hg|
increases, and the number of waves Ng decreases. Their ratio
therefore increases owing to the radiation, and max |zp\2
increases accordingly. This process continues until a soli-
ton—a stationary stable state realizing the minimum of Hg
for a fixed Ng —is formed in the domain G.

It is worth noting that in some, rather special cases, the
radiation can be absent. This is so if the energy and particle
number conservation laws hold:

E(N) = E(N)) + E(N2),
N:NI +N2a

where N; (N;) is the total number of particles for the first
(second) soliton. These equations cannot be satisfied for all
functions E(N). For example, if E(N) ~ N* (o > 0), then the
system of equations does not have any solutions.

In the opposite case where (6 — 1)/D > 2, the function
H(a) is unbounded from below for ¢ — 0 and, instead of a
minimum for (¢ — 1)/D < 2, a maximum is achieved, which
points to the instability of the soliton solution.

3.2 Lyapunov stability

for the anisotropic Korteweg—de Vries equation

The next example to be considered here is the anisotropic
KdV equation [14] derived by us in 1974:

0
U +— Au+ 6uu, =0,

2 (50)

where A is the three-dimensional Laplace operator. In the
one-dimensional case, Eqn (50) reduces to the classic KdV
equation.

Equation (50) describes three-dimensional ion—acoustic
solitons u = us(z — Vt,r,) propagating along the magnetic
field vector (parallel to the z axis) in a strongly magnetized
plasma, where the plasma thermal pressure n7 (with the
density n and temperature 7) is small compared to the
magnetic field pressure B?/8m, i.e., f = 8nnT/B* < 1. Soli-
ton solutions are sought by integrating the equation

fVus+Aus+3u52:O.

It can be readily seen that localized solutions (us — 0 as
r — o0) are only possible if the velocity V is positive. The
soliton solution can be written in analytic form only in the
one-dimensional case, and it is then just the classic KdV
soliton

2K

U=—— V=
cosh” ic(x — 4k 21)

In the case of many dimensions, localized solutions can be
found only numerically (see Ref. [14]).

For Eqn (50), as for the NLS equation, solitons corre-
spond to stationary points of the Hamiltonian

1 1
H:J(i(Vu)szﬁ) drzill -5

for the fixed momentum P = (1/2) [u?dr; in other words,
solitons are solutions of the variational problem
O0(H — VP) =0, with the velocity V entering as a Lagrange
multiplier.

(51)

The scaling transformations

1 r
u(r) — W u(a) y

which preserve P, lead to approximately the same dependence

1L b
=314 @R’

(52)

H(a) D <3,
as in the case of the one-dimensional NLS equation (compare
this with the dependence in Fig. 1).

Accordingly, in analogy with the NLS equation, for the
soliton solution (at the point @ = 1, where 0H/0a = 0), we
have

2 D—4

125:*1157 Hs:

D ]1SE

2D

D—-4
P
6—p T
and hence H; < 0 for D < 3.
The multiplicative variant of the Sobolev inequality in this
case becomes

L <P/l

where f = (1/2)(10 — 3D) /(4 — D). The best value C = Cpesy
is defined by the ground-state soliton (the one without zeros).
Substitution of the last inequality with the best constant in
(51) shows the boundedness of H for all space dimensions
D=1,2,3:

H> %[1 - Cbestpl/(épn)llﬂ = Hs .

These inequalities become equalities when evaluated on a
radially symmetric soliton solution without zeros, which
proves the stability of ion—acoustic solitons in a magnetized
plasma in the case of many dimensions [14]. As a particular
result, this also offers a stability proof for the classic KdV
solitons. For one-dimensional KdV solitons, this approach
was first used by Benjamin [13] in 1972. But at that time, the
integrability of the KdV equation via the inverse scattering
method had already been known owing to Gardner, Green,
Cruscal, and Miura [48]. In particular, it had already been
established in [48] that the KdV soliton is a structurally stable
object.

4. Solitons in the three-wave system

We consider soliton solutions for system (25)—(27) in the form
Wi (x, 1) = () exp [i(4 + A2)i],
l//2(x7 t) = !//2s(x) exXp (l)lt) )
Y3 (x, 1) = Yrss(x) exp (i221)

where /,(X), Yo (x), and Y;(x) are assumed to be real
valued, with no zeros (ground state) and decaying at
infinity. These functions satisfy the equations

1
(I + Q) +- o, (53)

Ll‘//IS = _l//2sl//3sv L= >
. 1
LZI//ZS = _l//lslp3s7 Ly =~/ + E wé/ai’ (54)
. 1
Lyys = Viag, Ly = —io+5 03, (55)

2
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Solutions of system (53)—(55) correspond to stationary points
of the Hamiltonian for two fixed Manley—Rowe integrals N,
and N»:

O(H + ANy +/72N,) =0. (56)
The soliton solutions exponentially decay at infinity if the
following three conditions are satisfied:

/leEdl(/11+;Lz+Q) >0, ﬂZZEdQ;Ll>07 ,u32£d3/12>0,
(57)

where d; = 1/0/.

This result can be obtained differently if we determine
relations between the terms in the Hamiltonian and the
Manley—Rowe integrals N; and N, in the soliton solution
(for details, see review [4]). With this aim in view, Eqn (53)
should be multiplied by y/;; and then integrated over x. As a
result, we obtain

7(21 + 2+ Q)I/Z1+D1 =—1. (58)

An analogous procedure applied to Eqns (54) and (55) gives

—Aim + Dy = —1, (59)
— Aonz + D3y = —1, (60)
where
1 Ay, |?
n :J|lp/s‘2dx7 D;= ijl/, % dX, I= lelslszl//k dx.

These integral relations have to be complemented by a
condition that follows from the variational problem by
applying to it scaling transformations that preserve N; and
Nzi

V() — a2 (—) |

a

Under such transformations, the Hamiltonian becomes a
function of the parameter a,

1
i@ = Y [(@sP + 5z o W) e
!
2
P J SN ZN/ZN R

Using the last relation together with Eqn (56), it is straightfor-
ward to obtain that

dH

da

= 07 or ijl//‘d/!sx'zdx - ‘[wlslp25[p3s dx=0.
!
(61)

a=1

Taking relations (58)—(60) into account and bearing in mind
the positivity of n; (by definition), we arrive at conditions (57).
Hence, for the existence of solitons, all operators L, must have
the same sign definiteness (positive or negative). We note that
this requirement holds for all physical dimensions D < 3.
Accordingly, all matrices w?‘ﬂ must have the same sign
definiteness, for example, be positive definite. In particular,
if one of the matrices is not sign definite, then multi-
dimensional solitons are absent. A similar situation occurs

for envelope solitons in a medium with normal dispersion
(see, e.g., Ref. [49]).

It should also be mentioned that the sign definiteness of
the matrices w‘,"ﬁ translates into a simple physical requirement
that Cherenkov resonances between the soliton and linear
waves be absent (see Refs [50, 51]).

4.1 Nonlinear stability of solitons in the three-wave system
We demonstrate how the Lyapunov stability can be inferred
for soliton solutions of the three-wave system. Because we
here have three fields (the three amplitudes y;), we need to
consider two spaces, L3 3 and Wzl, with the norms

1/3
i, = | [+l + st 2]
lullypy = {L J(w + |2f) de+sz(|¢1|2 +lsf) dPx
1 1/2
+ EZ Jaalp,*w% aﬁl//,de] ,
1

where the constants 21,2 > 0 and tensors w?‘ﬁ are supposed to
be positive definite. In this case, the Sobolev inequality
becomes

ltll 3 < MlJull - (62)

We note that the norm ||u||,, , and the interaction Hamilto-
nian are related by the simple inequality

lull, > 3 [y +ee)dlx. (63)

The multiplicative variant of the Sobolev inequality is
obtained similarly to that of the NLS equation. In particu-
lar, for D = 1, we have

J< M, (;11N1 + 12]\72)5/4[1/47
where

* 1 * 0
7= i vee) @, 1=33 [l ds

and ; and 2, are arbitrary positive parameters. Minimization
with respect to 4; and 4, gives

J < C(N N, B1V4 (64)

The next step consists in finding the best constant C as a
minimum of the functional

J

F=— .
(N1 No)Y /B4

Cbcst = n?'//l]n F[‘M )

It follows that this minimum is provided by the ground-state
soliton

Cbest = F[l//s] . (65)

Using refined inequality (64), we arrive at the required
estimate for the Hamiltonian with zero detuning, Q = 0,

H>1-2I341"* > H(Q =0),
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which proves the stability of the (ground-state) soliton
solution in the case of one dimension for zero detuning. As
previously, the last inequalities transform into equalities for
the soliton solution. Following this scheme, the soliton
stability can be proved for any physical dimension D < 3.

For a nonzero detuning, the Hamiltonian in the one-
dimensional case becomes

H=Qﬁmfw+ﬁ7

where H coincides with the Hamiltonian at Q = 0:

A= ZJ 3 0l Wl dx = [, + ec) .

We now analyze how the frequency detuning 2 influences
the stability of solitons. Obviously, the soliton existence
domain is strongly asymmetric with respect to the sign of the
detuning Q. For Q > 0, the straightforward inequality

H> H(Q=0)

holds, from which it follows that the Hamiltonian is bounded
from below by the value of Hy at the ground-state soliton
solution with zero detuning.

For Q < 0, we have

H>mm:m—m@wm@, (66)

where the integral [ [y, |2 dx is always bounded from below by
min (Ny, N,). Accordingly, the estimate for H is written as

H> HS(Q = 0) — |Q\m1n (Nl,Nz) .

We have thus proved the stability of ground-state solitons
(those without nodes) describing a coupled state of three wave
packets. Notably, in the absence of detuning, the soliton
realizes a minimum of the Hamiltonian, which is rigorously
proved with the help of majorizing Sobolev inequalities. That
the Hamiltonian of the three-wave system is bounded was
first demonstrated by Kanashev and Rubenchik (1981) [10]
for isotropic media. Later, Turitsyn (1995) [52] showed that
the Hamiltonian attains a minimum at the ground-state
soliton (without zeros) for zero detuning for the coupling
between the first and second harmonics, when the dispersion
operators are Laplacians. In 1997, Berge, Bang, Rasmussen,
and Mezentsev [53] demonstrated the boundedness of H for
nonzero detuning for the coupling between the first and
second harmonics. The general case of a bounded H for the
three-wave system is discussed in Refs [54, 55].

5. Linear stability

We next address the problem of the linear stability of solitons
considered in Sections 2—4.

5.1 Linear stability of one-dimensional solitons
of the NLS equation
We begin with the one-dimensional NLS equation, assuming
that
2%t

W(x, 1) = (Yo(x) + u+iv) exp ——,

3 Vo> u,v.

The linearized equations for a perturbation are Hamiltonian
equations

_18H 1 8H
2% 2 du’
where « and v are canonically conjugate quantities and H is
the second variation of F = H + J*N/2,

Uy Vr = (67)

H= (v|Lo|v) + (u|Lyu), (68)
with Ly = /> =92 — 2y and L; = /> — 32 — 6. The first
term in H is the mean value of L, playing the role of kinetic
energy; the second term, <u|L1 \u>, plays the role of potential
energy.

The stability or instability of a soliton is therefore
determined by the properties of the operators Ly and L;.
The first property of Ly follows directly from the stationary
NLS equation,

Loy = A2y — 02y — 2Y5 =0, (69)
which means that i is the ground state of Ly (has no zeros).
Accordingly, (v|Lo|v) = 0. The stability or instability of
solitons is therefore determined by the sign of the potential
energy.

The operator L; has an eigenfunction with zero eigenva-
lue,

Oy _
L a—o.

This is a neutrally stable mode that correspond to the shift of
the soliton and has a single node (x =0). Therefore, the
Schrédinger operator L; has the only lower eigenvalue E < 0,
which corresponds to the ground state ¢,. This apparently
suggests that (u|L;lu) <0 and, correspondingly, that an
instability develops. But this is not the case because u is
constrained by (u|y,) = [y dx = 0, which is a consequence
of the conservation of the number of particles. For this
reason, the stability or instability of a soliton is determined
from the solution of the spectral problem

Lilg) = E|d) + Clyy) (70)

(where C is a Lagrange multiplier) under the additional
constraint (u[y,) = 0.

Expanding |¢) in a series in the complete set of eigenfunc-
tions {d)n} of L, (Ll (nbn = E’1¢n)>

(,b = ch(b;w

we find

CIEO.

Inserting these expressions into the solvability condition
(¢lyo) = 0, we obtain the dispersion relation

£y =y WolPuduliho) _

E _E (71)

n

The prime at the sum indicates that the term with the energy
E; =0 is excluded (the translation mode ¢, = 0y,/0x
corresponds to the energy E).



June 2012

Solitons and collapses: two evolution scenarios of nonlinear wave systems 545

We next consider the energy range between the ground-
state energy Ey < 0 and the first positive level E,. In this
interval, f(E) increases monotonically (9f/0E > 0) from —oo
at E = Eyto +ooat E = E,. If f(E) is negative at E = 0, then
the dispersion equation does not have negative eigenvalues
and the soliton is stable. If /(0) > 0, then there exists a single
eigenvalue £ < 0 and hence the soliton is unstable.

To find £(0), note that

z’: <¢0‘¢n[>?i¢n|¢0>

n

f(0) = = (WolL; o) -

Differentiating the stationary NLS equation
22 2 2
=A% + Oy + 2P =0

with respect to A%, we then obtain

0
L (#) = _'100 )

(WolLi ) = <wo

or

al//0 > 71 aANs
022 2022
As a result, we arrive at the so-called Vakhitov—Kolokolov
criterion [19]: if

ON,

ax; >0, (72)

then the soliton is stable; for the other sign of the derivative, it is
unstable.

This criterion is valid for any d1mens10n D and the
dependence of the nonlinear term on |y/|* (i.e., if [y/|* in the
NLS equation is replaced with an arbitrary functlon f (|l//| ).

The criterion has a simple physical interpretation. The
quantity & = —),2/2 for the stationary NLS equation repre-
sents the energy of the bound state, the soliton. If, on adding a
‘single’ particle, the energy of the bound state decreases, the
situation is stable. If, on adding a ‘single’ particle, the level
— 42 shifts to the continuum spectrum, the soliton is unstable.

The dependence of Ny on A can easily be established for a
cubic NLS equation, Ny o< 4>~2, which implies the stability of
one-dimensional solitons of the cubic NLS equation and the
instability of three-dimensional ones. The case of two
dimensions is degenerate.

5.2 Stability of solitons for the coupling

of the first and second harmonics

We consider system of Eqns (30) and (31) that describes the
interaction of the first and second harmonics and show how
the procedure for deriving the Vakhitov—Kolokolov criterion
can be applied in this case. Soliton solutions for the coupling
of the first and second harmonics /, (x, 1) = (x) exp (i4*7)

and Y, (x, 1) = o (x) exp (2i2%) are found from the equa-
tions for the amplitudes Vs and i,
-2y, + 601 Wy =20, (73)
1
=200 = Q45 0 Oy = Y (74)

Here, the solutions i, and i, are assumed to be real valued
and have no nodes, i.e., correspond to the ground-state

soliton solution (the index s at ¥, and ¥, is omitted). We
consider small perturbations on the background of this
soliton solution by writing

Yi(x, 1) = (s +ur +1ivy) ex
l/’Z(X7 t) = (l//2s +uy + 1’02) exXp

p(i720),
(212%1) .

The linearization of system (30), (31) leads to the linear
(Hamiltonian) equations
1 8H 1 8H
u, —— — —_ —— —
T YT T 2%
where H, just as for the NLS equation, is the second variation
of F= H+ ’N

= (v|Lo[v) +

(75)

(u|L[u). (76)

Here, u and v are vectors with components u;, u; and vy, v;,
and N is defined in Eqn (32). The second-order differential
operators Ly and L1 are in this case 2 x 2 matrix operators

=2,

1
27— 3 5ol —

2= w{’62 2,
Lo =
=2y

Both operators, just as in the NLS case, are self-adjoint. From
the standpoint of quantum mechanics, these operators
correspond to the Schrédinger operator for a nonrelativistic
particle of spin S = 1/2 in an inhomogeneous magnetic field.
It is common knowledge that the oscillation theorem is not
applicable to such operators. The ground-state eigenfunction
does not have zeros, but the correspondence between the
number of zeros and the level number, inherent in the scalar
Schrédinger operator, is absent here. This lack of correspon-
dence, as is to become clear in what follows, does not allow
drawing the same conclusions about the soliton stability as
for the NLS equation. The Vakhitov—Kolokolov criterion for
such matrix systems can only be used as a sufficient condition
of instability; the same statement is also valid for the three-
wave system.

As regards the properties of the operators Ly and Ly, they
are similar to the properties of analogous operators for the
NLS equation. The nonnegativity of L follows from the fact
that if, instead of v; and v,, we introduce new functions y; and
1> defined by the relations

vl =Yy, vy =Y,

then (v|Lo|v) can be represented as

1
<U|L0‘U> :EJ ”'101)61 l102/2)

+ J%z%@%l - X2)2 dx.

The nonnegativity of Ly becomes obvious from this repre-
sentation, and for the eigenvector of the ground state, it
follows that

A1 =Cl, 2c1 =2,

<[5
T 2y, ]

X2 =C2,

or
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This eigenvector, as in the NLS case, explicitly enters the
expression 8N =2 [(Yu1 + 2y5ur) dx = 2(wo|u), which is
equal to zero by virtue of the conservation of N. Just as in
the NLS case, N = 0 is the solvability condition for linear
system (75).

The subsequent analysis resembles that carried out for the
NLS equation. To begin, we consider the eigenvalue problem
for the operator L,

Li|¢) = E[¢) + Clvo) , (77)
and then expand |¢) in a complete set of eigenfunctions
{l¢,)} of Li. As a result, the solution of Eqn (77) is written
in the form

|$n) (Dulv0)

¢)=C>_ T —F

n

Analogously, the solvability condition leads to the dispersion
relation

S5y = 3 el alm)

E _E (78)

n

The prime at the summation symbol indicates, as previously,
the absence of the term with E = 0, because (¥ |vg) = 0 and
L|¥,) = 0, where

<'PX‘ = (l//lx7l//2x) .

Up to this point, everything replicates the NLS case. The
difference becomes apparent in the analysis of the function
f(E). Now the oscillation theorem is not valid. Accordingly,
there could be several levels below the level £ = 0. For this
reason, the dispersion relation can have negative roots £ < 0
independent of the sign of the derivative ON;/ 0/2. As aresult,
only a sufficient instability criterion can be formulated; it has
the same form as for NLS solitons:

ON;
— <0. 79
a2? (7)
But we cannot decide on the stability in the general case. The
stability criterion

a—N; >0

0/
would hold only if, for energies less than E, = 0, the operator
L, has only one (ground-state) level, but it is not the general
case. Thus, the Vakhitov—Kolokolov stability criterion
applied to vector models ensures only a sufficient condition
for soliton instability.

Nevertheless, the combination of the Vakhitov—Koloko-
lov criterion and the Lyapunov method may grant the full
answer about stability. To conclude this section, we discuss
one example in which, based on the combined method, it is
possible to draw a more or less definitive conclusion about
the soliton stability by numerically integrating system (73),
(74). The dependences of H and N (for one-dimensional
soliton solutions) on A was numerically found in [56] for a
nonzero frequency detuning Q # 0. Numerical integration
has shown that for Q < 0, both dependences are monotonic:
N increases with A and H decreases. As a result, it was shown

that only a single branch of soliton solutions with an
unambiguous dependence H(N) exists. For Q >0, the
dependence N(/) contains two branches. The first occupies
the domain 0 < A < Amin. The function N(A) increases
monotonically as A approaches zero. At 1 = Apn, the
function N(1) attains a minimum. In agreement with
criterion (79), all this branch of soliton solutions is
unstable. For 4 > Anin, N increases monotonically, but the
linear stability criterion cannot be applied to these solu-
tions. However, the dependence H(A) allows making a
certain conclusion about stability. The function H(Z) has a
maximum at the point 4 = Anyin, and hence H as a function
of N has a cusp singularity at this point, which separates
two branches of soliton solutions. The upper branch
corresponds to larger values of H than the lower one. If
we assume that no other soliton solutions exist in this range
of N (which is by no means easy to establish numerically),
then the lower branch belongs to the stable family of soliton
solutions.

6. Wave collapses

Wave collapse is the other variant of evolution for nonlinear
wave systems, in a certain sense an alternative to the soliton
scenario. As we have seen in Sections 2-4, Lyapunov stable
solitons are encountered when, for a fixed number of
particles N or other integrals of motion, the Hamiltonian
is a functional bounded from below, its lower bound
corresponding to a Lyapunov-stable soliton. A question
naturally arises as to what happens if the Hamiltonian is not
bounded from below. How does the system behave in this
case? One possible mode of behavior is collapse, i.e.,
singularity formation in finite time. The type of the
emerging singularity depends on the concrete physical
problem. In this review, we limit ourselves mainly to the
analysis of the wave collapse described by NLS equation (1)
for D = 2.

It is well known (see, e.g., Refs [17, 29, 39]) that as the
space dimension D increases, the role of nonlinear effects also
increases; similarly to the phase transition theory, the role of
cooperative effects becomes more prominent with the increas-
ing number of neighbors, for example, in the Ising model. For
the NLS equation, this is seen, in particular, from how H
varies under scaling transformations ¥ — a~?/?y(r/a) that
preserve the number of particles,

1/ D

In one dimension (D =1), H(a) has a minimum that
corresponds to a (stable) soliton. In two dimensions,
Iis = by; therefore, H(a) =0 for the entire soliton family.
For D =3, H(a) has a maximum instead of a minimum (in
reality, a saddle point), which points to the instability of the
soliton. Additionally, H(a) turns out to be an unbounded
function as a — 0, which is one of the collapse criteria [39] (see
also Ref. [57]). In this case, the collapse can be regarded as a
nonlinear stage of soliton instability.

To illustrate the foregoing, we resort to the variational
approach. As a test function for Eqn (1), we choose i in the
form

(80)

Y(r, 1) = a’3/zzps (2) exp (izlzl + i,urz) ,
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where ¢ = a(t) and p = p(t) are unknown functions of time.
Substituting this ansatz into the action

S= %J(Wﬁ* —c.c.)drdr — JHdt

and integrating over spatial variables, we obtain a reduced
action for the two functions a = a(¢) and pt = u(z). Itis easy to
verify that the two Lagrange equations, for «a(f) and u(z),
reduce to a single second-order equation for a, which has the
form of Newton’s equation

o0H

ci— _OH
a oa’

(81)

where C = jfz\%(é)\zdé plays the role of the mass of a
particle and function (80) has the meaning of potential
energy. The behavior of a(¢) depends on the total energy

[lz
E:C7+H((J),

on the initial position of the ‘particle,” and on the dimension
D. For D = 1, the soliton realizes a minimum of the potential
energy H(a), which is the cause of its stability. For D = 3, if
the particle is initially at a maximum point, the system,
depending on its motion direction (toward the center a = 0
or away from it), either collapses () — oco) or expands
(Y — 0) because of dispersion. For the collapsing mode,
which corresponds to the fall of the particle on the center, in
the vicinity of the singularity, a(¢) obeys the power law

a(t) ~ (10— 1)*"°, (82)

where the collapse time ¢ is finite and equal to the particle fall
time in the potential H(a). As shown in Ref. [39], such an
asymptotic form of «a(7) in the vicinity of the singular point
coincides, up to a constant, with the exact collapsing
semiclassical solution, which tends to a compact distribution
ast — 1y,

W] — 24/1— &2 for 5:%@,

with 4 ~ (1o — 1)~*/%.

The consideration above already invites several conclu-
sions. First, the role of nonlinearity increases with the space
dimension. Stable solitons are encountered in systems of low
dimensions, whereas in higher dimensions, we should expect
explosive events instead of solitons, which evolve into
singularities. Second, one of the collapse criteria is the
unboundedness of the Hamiltonian at small scales, in which
case the collapse can be interpreted as a fall of a particle on the
center in a self-consistent potential which is unbounded at
small scales [39].

6.1 The role of radiation

In reality, however, the picture of singularity formation is
more complex than that sketched above. From the very
beginning, we are dealing with a spatially distributed system,
i.e., one with an infinitely many degrees of freedom. It is
therefore obvious that a reduction of the NLS equation with
the help of the variational approach to the system of ordinary
differential equations as in Eqns (81) does not account for

wave radiation. This process, as explained above, is of
principal importance for soliton interactions. As shown in
Ref. [58], it contributes crucially to the relaxation of a pulse to
a soliton in the one-dimensional NLS equation integrated by
the inverse scattering method [40]. In the last case, the
variational approach [59, 60], albeit rather popular pre-
sently, provides an incorrect answer by predicting soliton
oscillations. A rigorous analysis shows that the initial pulse
relaxes to a soliton in an oscillatory manner owing to wave
radiation. Moreover, the oscillation frequency is far from that
given by the variational approach.

In the case where H is unbounded from below, when we
anticipate collapse, the radiation of small-amplitude waves
is one of the mechanisms governing the singularity forma-
tion. To demonstrate this, we can resort to the same
arguments about the role of radiation in soliton formation
as in Section 3.

Let the Hamiltonian be negative in a certain domain G,
Hg < 0. Then the inequality [cf. Eqn (49)]

max [y|* > [Hg|

x€G Ng

holds within the domain G. We assume that outside the
domain G, the magnitude of || is small. We consider the
role of wave radiation from this domain. The radiation,
obviously, carries away positive energy because nonlinear
effects for the radiated waves are small at large distances. As a
consequence, because of radiation, Hg becomes progressively
larger in absolute value, while Ng decreases. This is the reason
why max |1//\2 increases unlimitedly, for the Hamiltonian is
unbounded from below. We can therefore state that the
radiation promotes collapse. In a nonlinear wave system, the
radiation therefore plays a role of friction [17, 27, 29].
Moreover, the radiation accelerates the compression of the
collapsing domain, which, in particular, results in compres-
sion obeying the self-similarity law

e (tg— 1), (83)

which differs from the semiclassical compression in (82). The
arguments above are, however, insufficient to draw a
conclusion about the finiteness of the collapse time. The
answer is provided by the virial theorem.

6.2 Virial theorem
The exact criterion of the singularity formation in the NLS
framework can be inferred from the virial theorem. In
classical mechanics, this theorem can easily be derived by
computing the second time derivative of the inertia moment
and then averaging the result to find the relation between the
mean values of the kinetic and potential energies of particles,
whenever the interaction between the particles obeys a power
law.

In 1971, Vlasov, Petrishchev, and Talanov [18] found that
the virial theorem can be applied to the two-dimensional NLS
equation. The analog of the moment of inertia for the two-
dimensional NLS equation is the mean square size of the
distribution (r?) = N~! fr2|l//|2 dr. By direct calculations, it
can be verified that

2
d—Jr2|1//\2dr =2H.

dr? (84)
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Because H is a conserved quantity, Eqn (84) can be integrated
twice,

[VZ‘W|2dr:Ht2+Clt+C2, (85)

where C| and C, are the additional integrals of motion, whose
existence is related to two Noether-type symmetries: the lens
transformation (established by Talanov [22] in 1970) and
scaling transformations [61, 62].

Now it can be easily seen that for any distribution with a
negative Hamiltonian

H<O, (86)
(r?) vanishes in a finite time independent of C; and C,, which,
because N is conserved, implies the formation of a singularity
in the field ¥ [18]. Condition (86) represents the celebrated
Vlasov—Petrishchev-Talanov criterion. This criterion, for-
mulated in 1971, is a fundamental result in the theory of
wave collapses. It was the first rigorous result for nonlinear
wave systems with dispersion, and showed that the formation
of a singularity in a finite time is possible despite the linear
wave dispersion, which hinders (for example, in linear optics)
the appearance of point singularities, foci.

We emphasize that criterion (86) is only a sufficient, but
not a necessary condition for the onset of collapse. For
example, if in a certain part of the system, well isolated from
the rest, the Hamiltonian H is negative, collapse would unfold
there independent of whether the total Hamiltonian of the full
system is positive or negative.

6.3 Strong collapse

We note that for D = 2, a soliton is associated with the
equality H = 0 with the particle number N = N;. Moreover,
for N < N, the inequality

1 N
H>z-L{1-— 0
2 1( Ns>>

holds and, as a consequence, collapse is forbidden [47]. In this
case, the amplitude of waves tends to zero as r — oo because
of dispersion or diffraction. It can therefore be argued that the
soliton for the two-dimensional NLS equation represents a
separatrix between the manifolds of collapsing and noncol-
lapsing distributions.

It follows from relation (85) that for states with H < 0, the
characteristic size a of the collapsing domain behaves as

an~(to—0",

in full agreement with self-similarity law (83).
The rigorous analysis in [63], however, shows that

a’(1)

to—t
log|log (1o — 1)| ’

while the spatial profile y asymptotically approaches the
soliton one (see also Refs [64-68]). The collapse in such
cases is accompanied by exponentially weak radiation. The
energy confined to the singularity coincides with N up to a
constant factor and is finite and equal to the energy of the
two-dimensional soliton. This is why such a collapse is called
the strong collapse [39].

We note that two-dimensional NLS equation (1) is
regarded as a critical NLS equation. For the critical NLS
equation, as we have seen, scaling transformations represent
an extra symmetry. As a consequence, in particular, the
dispersion (~ I;) and nonlinear (~ I,) terms in H behave
similarly under such transformations. For the NLS equation
with the power-law nonlinearity in (46), the critical behavior
is associated with ¢ = 1 + 2/D. For smaller ¢, the Hamilto-
nian is bounded from below for a fixed number of particles,
and the soliton solution, which corresponds to the minimum
of H, turns out to be stable.

6.4 Collapse in a boundary layer
The critical behavior does not occur solely for the NLS
equation. For example, the two-dimensional model

0 0 0H

o ku — 6uu, = Fon

(87)

Uy =

with the Hamiltonian

1 - 1
H:J(Euku—u3)drzill—lz

also belongs to the class of critical models. Here, k is the
integral operator whose Fourier transform is the modulus
k| = (k2 +k§)l/2. Equation (87) describes low-frequency
oscillations in a boundary layer for large Reynolds numbers,
Re > /. The mean profile of velocity (parallel to the x axis)
v=U(z) (0<z<o0) is assumed to be a monotonically
increasing function that tends to a constant as z — oo. The
dimensionless amplitude u is related to velocity fluctuations
along the flow as

dvy ~ —6hul'(z), (88)
where 4 = U(0)/U’(0) is the boundary layer thickness.
Equation (81), first derived by Shrira [69], is a two-
dimensional generalization of the Benjamin—-Ono equation
describing long waves in stratified fluids. In one dimension,
Eqn (87) was derived in Refs [70, 71] with account for (small)
viscosity.

Scaling transformations preserving the x-component of
the momentum P, = 1/2 [ u?dr, similarly to those in (52),

1 r
~ant\a)
where D = 1,2, lead to the following dependence of the
Hamiltonian H on the scale parameter a:

1L b
24 aP?"

u(r)

H(a)

It then follows that this model becomes critical for D = 2. For
D =1, the Hamiltonian is bounded from below, and its
minimum corresponds to the Benjamin—Ono soliton. This
solution, having the form u = us(x — V1,y), can be found
exactly:

2V

= . V>o0.
“ TSt ]

(89)

However, this soliton turns out to be unstable with respect to
two-dimensional perturbations [72, 73]. In the long-wave
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77]). (See Section 6.5 on the cause of this instability.) In two
0 . rel. units 512 0 +. rel. units 512 dimensions, this model has a solution in the form of a
512 512 cylindrically symmetric soliton without zeros. Such a solu-
tion, found numerically in Ref. [78], plays the same role as the
=0 1 =40 Townes mode for the two-dimensional NLS equation [23]: for
K 2 P, < Py, where P, . is the value of the x-component of
5 E momentum in the ground-state (without zeros) soliton
3 EBe—m—— - ﬁ solution, the Hamiltonian turns out to be positive with a
= = minimum that tends to zero as u — 0. In this case, collapse is
impossible, just as in the analogous case of the two-
dimensional NLS equation. The Hamiltonian is unbounded
for states with negative values of H. It was numerically
0 x, rel. units 5120 x, rel. units 512 confirmed in [72, 73] that the collapse in system (88) occurs

Figure 2. The evolution of u(x,y,) (isolines) for initial condition (90),
demonstrating the solution instability and cluster formation.

limit, the increment of this instability is [72]
kv
Nk
Figure 2 shows the evolution of u(x, y, ¢) illustrating this
instability. The initial condition is the perturbed periodic

wave
2ny
L)’

where u,(x) is the exact one-dimensional solution of the
Benjamin—Ono equation in the form of a periodic wave,
_k sinh (k/ V)
"~ 3 cosh (k/V) — cos (kx)

I =

Uini (X, y) = up(x) (1 +0.1cos (90)

tup(X)

—1. (91)

As k — 0, solution (91) transforms into soliton solution (89).
It can be shown that the solution in the form of a periodic
wave can be rewritten as a periodic lattice of solitons with the
period 21t /k; wave (91) accommodates one soliton per period.

For the chosen variant of initial conditions (90),
k =0.0625, V' = 0.4, and the size of the domain L, coincides
with the wave period in (90).

The instability described above is analogous to the
Kadomtsev—Petviashvili (KP) instability [74, 75] for acoustic
solitons in media with positive dispersion (see also Refs [76,

for H< 0, and the collapsing solution is cylindrically
symmetric and approaches the soliton distribution as ¢ — ¢.
The initial condition was chosen as

2/3V|

O A T s

The parameters V', and V), were varied so as to satisfy the
conditions P, > P, and H < 0. On approaching the
singularity, the peak anisotropy disappeared and the distribu-
tion became symmetric. A typical example of collapse is
shown in Fig. 3.

To conclude this section, we point to a series of interesting
experiments [79, 80], performed over several years, on the
excitation of coherent structures in a transient boundary layer
over a plate. The structures were excited with the help of a
vibrating mechanical system placed at the front edge of the
plate. According to experimental data, one-dimensional
solitons developed at the initial stage, and later, far down-
stream from the leading edge, the solitons lost stability, giving
way to so-called thorns — three-dimensional coherent struc-
tures. Further, self-focusing of these structures was observed.
At even later stages of thorn development, vortices were
formed and separated. Theoretical arguments and numerical
modeling performed in Refs [72, 73] qualitatively explain the
entire sequence of experimental observations, up to the
formation of vortices, where Eqn (87) loses applicability. It
is worth noting that a more elaborate analysis [70, 71], based
on one-dimensional model (87), i.e., performed in the frame-
work of the one-dimensional Benjamin—Ono equation,
showed a rather good agreement between the theory and
experiment.



550 V E Zakharov, E A Kuznetsov

Physics— Uspekhi 55 (6)

A question that naturally arises is why instability and self-
focusing in such prominent phenomena as one-dimensional
solitons have not been observed in other experiments. In our
opinion, the answer to this question is related to the character
of collapse in boundary layers — the collapse is strong, i.¢., its
appearance requires a finite pulse energy. If the pulse
amplitude is insufficient, the phenomenon does not occur.

6.5 Weak collapse
In three dimensions (D = 3), virial relation (84) for the NLS
equation takes the form

d2

o 92)

Jr2|1//\2dr = 2H—%12.

Accordingly, because I, is positive, equality (92) can be
replaced by the inequality

N(r?y < Ht* + Ct + C3, (93)
where Cy and C, are integration constants determined from
the initial conditions. Relation (93) provides the same
collapse criterion as for D = 2: H < 0[17].

However, the criterion H < 0 for the NLS equation in
three dimensions is rather rough. According to Refs [81, 82],
this criterion can be improved. A more precise criterion is
given by two conditions:

H<H5, I > 1. (94)
Criterion (94) indicates once again that the soliton corre-
sponds to a saddle point. When the system passes through this
saddle point, collapse becomes possible.

A more precise inequality, which follows from virial
relation (92) for D = 3, has the form

d2
—Jr2|1p\2dr <3(H-H,). (95)

de?

Integration of (95) gives

3
N(r?) < 5 (H— H)t> + Cit+ Cy,

where Hj is the value of H in the ground-state (without zeros)
soliton solution.
We next consider a self-similar substitution for Eqn (1),

1
y=——"—7(. 96
(t() - t)1/2+lo( ( ) ( )
Here, the self-similarity variable &= r(f — t)fl/2 corre-

sponds to Eqn (83) and the function y(&) is assumed to be
spherically symmetric. Inserting i into the NLS equation
results in the equation for the function y [39]

1 =0,

/1. 1 1 1
1|:<§+IOL>X+§§X§:|+§X§5+EX§+‘X (97)

where o plays the role of a spectral parameter. We are
interested only in regular solutions of Eqn (97) that decay at
infinity. Obviously, as & — oo, x satisfies the linear equation

LN 1,
<§+1a>1+551570- (98)

It defines the asymptotic form of y:

C

Xﬁm, (99)

where C is some constant, which can be taken real and,
moreover, positive without loss of generality. The require-
ment that the solution be regular eliminates the ambiguity in
the choice of « and C. In fact, we are dealing with a nonlinear
spectral problem for Eqn (97), whose numerical solution gives

%=0545, C=101. (100)

We now discuss the characteristics of the self-similar
solution. First, for any fixed point of physical space with a
coordinate r, the corresponding self-similar coordinate ¢
tends to infinity as ¢ — #y. The self-similar solution in this
case passes to its asymptotic form (99), acquiring a singularity

C

v — e (101)
in the physical variable r, which is independent of time .

Second, the self-similar solution cannot exist simulta-
neously in the entire space: it can be realized only in some
domain with coordinates r < ry, where the size ry must be
constrained by the quantity N/(4nC?).

Singularity (101), which ‘sprouts’ in the center of this
domain as r — 0, is integrable. At a first glance, self-similar
ansatz (96) results in the nonconservation of the integral

N:der:(zo—z)”zjwdz (102)

because of the appearance of the factor (¢ — t)l/ 2. On the
other hand, the conservation of N implies that integral (102)
must be infinite. This is the case when the self-similar solution
is considered in the entire space. But in any finite domain
r < ro, the integral N remains finite. Indeed, upon substitut-
ing (96) in Eqn (102), for r < ry, we obtain

N = (1o — 1)"*4n J:* 2l de,  &=roltn -0
(103)

With the asymptotic form in (99), the integral in Eqn (103)
increases linearly as the upper limit increases as ¢ — ;. We
suppose that the size ry is sufficiently large. Then the value of
the integral N in the domain r < ro must approach its value at
the instant of collapse ¢ = #y. In other words, the relation

o] 2
J (lez—%>ézd£=0
0

must hold. It was verified numerically that relation (104)
holds with high accuracy for y(¢) and C found by integrating
Eqn (97).

The solution constructed here corresponds to a weak
collapse. In this state, speaking formally, zero energy is
trapped in the singularity at r = 0 [39]. In fact, this implies
thatif iy, is a characteristic amplitude at which the absorption
of energy occurs [Eqn (1) is then not valid], then the amount
of energy lost to dissipation in a single act is of the order of

(104)

1
AN ~Y2rd ~— |
0’0 l//()
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where rg ~ 1/i, is the characteristic scale of the dissipation
domain.

The self-similar solution related to the weak collapse
mode describes the most rapid collapse in which radiation
plays the primary role; in contrast to the semiclassical collapse
mode (82), it essentially accelerates the process of singularity
formation; as a result, only a small fraction of the energy
reaches the singularity.

We note that the weak collapse mode was first simulated
in numerical experiments in [83] and then in [84].

6.6 Black-hole regime

As we have seen in Section 6.5, the time-independent
singularity in (101) forms in the regime of weak collapse,
which corresponds to the attracting potential

C2

r2’

U=-— (105)

with a constant C? > 1. As is known from quantum
mechanics (see, e.g., Ref. [85]), a particle can fall on the
center in this case. Moreover, as the center r =0 is
approached, such a fall in quantum mechanics becomes
closer and closer to the semiclassical one.

For all waves surrounding the singularity, potential (105)
serves as an attractor, i.e., the singularity plays the role of a
funnel for these waves. Because the energy dissipating in the
singularity for weak collapse is infinitely small in physical
terms, the process of pulling particles into the singularity
from its periphery —the postcollapse—can be considered
quasistationary. The postcollapse is characterized by a finite
flux of the number of particles into the singularity. As was
first shown in Refs [86, 87] (see also Refs [88-90]), the density
|zp\2 behaves in the vicinity of the singularity in this mode as

The incessant flow into the funnel, mediated by waves
trapped in the singularity from the periphery, ensures the
existence of long-lived ‘burning’ points — locations where all
the energy supplied from outside is ‘burnt’. Such a regime is
also called the black-hole regime.

7. The role of dispersion in collapse

Dispersion affects collapse quite significantly. In stationary
self-focusing light, wave dispersion is unimportant: the
appearance of a singularity—the focus—stems from the
concurring nonlinearity from the Kerr effect and diffrac-
tion. In this case, the two-dimensional NLS equation is
applicable, with the role of time played by the coordinate z
along the beam propagation. In three dimensions, however,
everything depends on the sign of dispersion, positive or
negative; in optics, in particular, it depends on whether the
dispersion is anomalous or normal. Three-dimensional NLS
equation (1) is applicable for anomalous dispersion. In the
case of normal dispersion, the Laplace operator in Eqn (1)
must be replaced with the hyperbolic operator A, — 0% /dz2,
where A; =0, + 0,,. This is why the NLS equation of the
form
oy

P AL =Y+ WY =0

5 (106)

is often called the hyperbolic nonlinear Schrédinger equation.
The different sign of the second-order operator stems from
the sign of the frequency derivative of the group velocity,
0V /0w. The derivative 0V /0w is negative for normal
dispersion.

The hyperbolic operator in Eqn (106) essentially modifies
the character of nonlinear interaction. For the anomalous
dispersion, all ‘directions’ are equivalent, but for the normal
dispersion, we have repulsion instead of attraction in Eqn (1)
along the z direction, whereas attraction is preserved in
the lateral direction. Correspondingly, quasiparticles are
attracted to each other in the lateral direction, which leads to
beam narrowing in the plane perpendicular to the z axis. Put
differently, in NLS equation (106), the mass of particles in the
longitudinal direction is negative, and therefore the non-
linearity promotes an increase in the beam longitudinal
scale. In this respect, the main question is whether the lateral
beam compression is capable of producing a singularity in
spite of the longitudinal beam expansion.

We demonstrate that in the framework of hyperbolic
Schrodinger equation (106) in three dimensions, the collapse
of a wave packet as a whole is impossible at the stage most
favorable for collapse, when a pulse is compressed in all three
directions. The idea of the proofis to use integral estimates for
the virial equations.

Similarly to Eqn (1), Eqn (106) is Hamiltonian with

= [1vapPar— [lfar [Swlar=n -,
' ' (107)

The different signs of the first and second integrals corre-
spond to the difference in the behavior in the lateral and
longitudinal directions.

We consider the behavior of mean square sizes (z2) and
(r?), along and transverse to the z axis. Calculations similar
to those in Eqn (84) give

2

Vg =a(2[vaf e Juta), oy
2

N%<22>:8J|lﬁz|2dl'+2j|lﬁ\4dr. (109)

From Eqn (108) for (r?) and 1., just as from Eqn (109) for
(z?) and I, we can obtain the uncertainty relations

L =N, L3>~ (110)

Using relations (110) and the definition of H in (107), we can
estimate the right-hand sides of Eqns (108) and (109):

Nd—z(r2>—8H+81 > —4H+2i (111)
d[2 1 - z = <22>7
d? N
N-——(z?) = —4H + 4L + 41, > —4H+4 —. . (112)
dr (ri)

We now consider the contraction mode in all directions,
the most preferential from the standpoint of collapse, when

d d
a(ri)<0, 5(22><07

and demonstrate that the collapse, understood as the
contraction to zero of the mean square transverse and
longitudinal sizes ((r?) — 0, (z2) — 0), is impossible in this

case.
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First, we prove that the mean square longitudinal scale z°2
of the wave packet cannot vanish if d(z2)/ds < 0. From
Eqn (109), also using Eqn (110), we derive a closed-form
inequality for (z2):

d*(z?)
de?

N
>8L.>22-—. 113

225 iy
Formula (113) is a second-order differential inequality. Its
first integration, analogous to finding the energy integral in
mechanics, with d(z2)/dr < 0, gives the relation

220\ 2
£(1) = % <d<d[ >) ~2log (22) < £(0),

(114)
where £(0) is the initial value of (). As (z%) — 0, the left-
hand side of (114) tends to infinity because of the logarithmic
term, which would violate the inequality. Hence, shrinking
(z%) — 0/is impossible.

We now show that the collapse in the transverse direction
(when (r2) — 0) is also impossible. For this, we multiply
inequality (111) by d(z2)/d¢ < 0, and inequality (112) by
d(r?)/dt <0, add the results, and integrate the resulting
equation over time from zero to ¢. This yields

d(rf) d(z?)
de dt
— 2N log (z%) — 4N log (r?) < E(0),

E(t)=N — 8H(z%) +4H(r?)

(115)

where E(0) is the value of E(¢) at the initial instant. From
inequality (115), it immediately follows that collapse is
impossible at the stage of uniform contraction because the
first term in the right-hand side of (115) is positive by
definition, the terms proportional to H are finite, and the
logarithmic term becomes infinitely large as (r?) — 0. This
does not agree with the fact that the function E(¢) is bounded
from above by the initial value E(0). Hence, the collapse of a
three-dimensional wave package as a whole is impossible at
the most ‘dangerous’ stage of shrinking in all directions [91]
(see also Ref. [92]).

Does this imply that the collapse in such a system is
completely impossible? Strictly speaking, no, because, first,
the Vlasov—Petrishchev—Talanov criterion is only a sufficient
one and, second, the collapse, if it is possible, should be
sought among states that correspond to the longitudinal
dispersion of the gas of quasiparticles, which leads to an
increase in the longitudinal scale. On the other hand, long-
itudinal stretching results in a decrease in the particle line
density. For the two-dimensional Schrédinger equation, as
we have seen, collapse is prohibited for N < N,. It is worth
noting that in spite of keen interest in this problem (see, e.g.,
Refs [93-95)), it is still awaiting its full solution.

8. Collapse in Kadomtsev—Petviashvili equations

Finally, we discuss the question of collapse in Kadomtsev—
Petviashvili (KP) systems. We begin with the classic KP
equation with positive dispersion

0
= (U + U + 6urty) = 3A u,

. (116)

which describes the propagation of a beam of weakly
nonlinear acoustic waves in a medium with weak disper-

sion. The second term in the left-hand side of Eqn (116) is
responsible for dispersion effects, the third term describes
the effects of sound wave steepening, and the term in the
right-hand side describes the diffraction (A, = aﬁ +02).
Equation (116) is written in the coordinate frame moving
at the speed of sound ¢ along the x axis. All the terms
responsible for nonlinearity, dispersion, and diffraction are
small compared to the ‘fast’ propagation at the speed of
sound, and therefore the KP equation has an additional
integral, the adiabatic invariant P = (1/2) [u*dr, which
coincides with the x-projection of the momentum. It is
also important that P is the total energy up to a constant
factor.

It is pertinent to say a few words about sound waves with
positive dispersion. For example, they include fast magneto-
acoustic waves in plasmas with a small parameter f (the ratio
of the thermal plasma pressure to the magnetic field
pressure), f§ < 1, for propagation directions that are not
close to the longitudinal and lateral ones (with respect to the
magnetic field). One more example of positive dispersion is
offered, under certain conditions, by sound waves in liquid
helium [96]. Finally, we mention surface waves in shallow
water when the (positive) dispersion due to capillarity
exceeds that due to a finite depth (see, e.g., Ref. [97]).

Equation (116), which is Hamiltonian, can be written in
the form

0 0H
with the Hamiltonian
1, 3 2 3N 3D
H—Ejuxdr—&-EJ(VLw) dr—[u dr:5+7—13.

(118)

Here, w plays the role of the hydrodynamic potential, u = w,.

Solutions in the form of a multi-dimensional soliton
propagating along the x axis, u = us(x — Vt,r, ), are found
by integrating the equation

2

0
—(fVu+uxx+3u2) =3Au.

o (119)

The linear operator in Eqn (119),

0 0
52(*V+aﬁ>*3Ah

is positive definite if the soliton velocity is positive, V' > 0. As
was first noted by Petviashvili [98], this requirement is in fact
the existence condition for soliton solutions of the KP
equation. Physically, this condition implies the absence of a
Cherenkov resonance between the moving soliton and small-
amplitude waves [50, 99].

In one dimension, the solution of Eqn (119) is the KdV
soliton

22

Ug =5 -+
cosh” k(x — 4k 2¢)

and in two dimensions, it is the lump solution [100]
1+4V'22 — V/(x — V1)?
14+4V72p2 4 Vi(x — Vi)*

us =4v’
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In three dimensions, solutions of Eqn (119) can only be found
numerically.

The soliton solution of Eqn (119) corresponds to a
stationary point of Hamiltonian (118) with the momentum
fixed:

S(H+VP)=0.

Using the explicit expression for the Hamiltonian, Eqn (118),
together with integral estimates [77] (see also Refs [3, 51]), it
is possible to show that in one and two dimensions, the
Hamiltonian for the KP equation is a functional bounded
from below if the momentum P is fixed. These soliton
solutions, however, turn out to be unstable under three-
dimensional perturbations, which was discovered for the
first time for one-dimensional solitons in the long-wave
limit by Kadomtsev and Petviashvili [74]. Later, with the
help of the inverse scattering method, Zakharov found the
exact expression for the growth rate of this instability [76].
The cause of the instability is that the speed of a soliton in
physical variables decreases as its amplitude increases. As a
consequence, if such a soliton is modulated in the lateral
direction, the regions with larger amplitude take over those
with a smaller amplitude. This leads to a focusing-type
instability [75].

For D = 3, Hamiltonian (118) is unbounded from below,
which, notably, follows by applying the scaling transforma-
tions [57, 101]

g, (X T
u— o p u(a , [3> ,
which preserve P, to Hamiltonian (118),

I, 3La? L
H(%ﬁ):EJF 215,2 7(11/2[37 (120)

which, as a function of z and f8, has a fixed pointatoa = ff = 1,
corresponding to a three-dimensional soliton. It is clear that
at the fixed point, the conditions

0H 0H 0

oo Op
are satisfied; they are equivalent to the following relations
between the integrals:

I = & ) b .
2 3

Equipped with these relations, it is easy to see that this fixed
point is a saddle. This fact indicates a possible instability of
the three-dimensional soliton under small perturbations. As
regards the instability under finite perturbations, it follows
from the unboundedness of the Hamiltonian as o, § — 0.
Indeed, if we consider parabolas f o a2, the first two terms in
H behave as o2, while the cubic term is proportional to
o =>/2, This indicates that H is unbounded (from below) at
small scales owing to the nonlinear term. The unboundedness
of H, as we have seen in other examples, is a criterion for the
collapse to occur. Under scaling transformation along the
parabolas f§ &< o2, the exponents in the dispersion term (equal
to —2) and in the cubic term (—5/2) do not coincide, and
hence the possible collapse is not critical and should be weak.

20 20
t=0 t=0.1
= =
= 10 + ~ 10 |
Z 2
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—-10 0 10 —10 0 10
X X
20 30
=02 t=0.325
= S 15 |
> 10 %
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] N~ 1
—10 0 10 —-10 0 10
X X

Figure 4. The dependence of u on the axis r; = 0 for four moments of time.

ry ry
=0 t=0.1 %
|
-10 0 10 -10 0 10
X X
ry ry
t=0.2 t=0.32
-10 0 10 —10 0 10
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Figure 5. Isolines of u(x, r, ) for the same time instants as in Fig. 4.

The self-similar substitution

_ _2/3 X r|
u=r U\ —=, -+
<T1/3 T 12/3

corresponds to this collapse regime, with t = ¢y — ¢ and ¢, the
collapse time.

Numerical integration of three-dimensional KP equation
(116) for cylindrically symmetric distributions [57, 101] has
shown that a singularity forms for initial conditions with a
negative value of the Hamiltonian.

Figure 4 shows the profile of u on the axis r, = 0 at four
time instants. The spatial distribution of u(x,r,) for these
same instants is given in Fig. 5. The evolving distribution has
a horseshoe shape, which corresponds to the linear stage of
the KP instability. Numerical experiments have corroborated
that this collapse is a weak one. Zero boundary conditions
were chosen for u(x, r, ) in numerical experiments; because of
the KP equation nonlocality, they did not ensure that the
Hamiltonian is preserved, since radiation from the integra-
tion domain is possible. Figure 6 plots the Hamiltonian H, the
momentum P, computed over the integration domain, and
the maximum amplitude as functions of time. As can be seen,
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Figure 6. The dependences of the Hamiltonian A, the momentum P,, and
the maximum amplitude uy,x on time.

a decrease of P, and |H| with time is accompanied by a
simultaneous increase in max, u, which points precisely to the
weak nature of the collapse.

The question of the sufficient criterion of collapse and,
accordingly, the finiteness of the singularity formation time
for three-dimensional KP equation (116) is presently open,
although the possibility of a collapse is indicated by the fact
that the Hamiltonian H is unbounded from below, if the
momentum P = (1/2) [u?dr is fixed, and also by the above
results of numerical simulations of the collapse.

8.1 Virial inequalities

We demonstrate how the Vlasov—Petrishchev-Talanov cri-
terion can be used in studies of collapses for the generalized
three-dimensional KP equation

0
— (4 + thne + n(n — l)u”’zux) =3Au.

= (121)

The case n = 3 in Eqn (121) corresponds to the classic KP
equation (116). The KP equation with n = 4 emerges in the
description of acoustic waves in antiferromagnets for certain
propagation angles [102].

We begin from Eqn (116) assuming n = 4. We consider
the quantity

r?) = b J 2,24

ri)=np|riudr,

which, by virtue of the conservation of P = juz dr, can be
interpreted as the mean beam cross section. As was first
shown in Ref. [102], an analog of virial theorem (92) can be
formulated for (r?) as

2
Jl’iuzdr:48H—8Ju§dr, (122)

dr?

where H is a conserved quantity, the Hamiltonian, written for
n=4as

u? Viow? 4
H—J<7+3Tfu >dr.

This immediately leads to the estimate

d2

a (123)

Jriuzdr < 48H.

Hence, for H < 0, the beam collapses [102], formally shrink-
ing to (r?) = 0. It can be shown that the collapse criterion
H < 0 pertains to all integer values n > 4, but, unfortunately,
the case n = 3, which corresponds to the classic KP equation
with quadratic nonlinearity, escapes this proof.

We dwell on one more example involving the generalized
KP equation. This is the model proposed in Ref. [103] for the
description of self-focusing of ultrashort pulses, which does
not rely on averaging over the frequency of a quasimonochro-
matic wave. The pulse spectrum is assumed to be broad and to
lie in the nonresonance domain. However, the nearest
resonance (the transition frequency wg) and the plasma
resonance (at the plasma frequency w,) are incorporated in
this model. An interesting feature is that the dispersion
dependence contains intervals of both anomalous and
normal dispersion. Other limitations involve the Kerr non-
linearity and small-angle approximation, which is character-
istic of the KP equation,

@62E+4n613 0’E? 41y a4—E+w—%’E:ALE. (124)
C 0z Ot (CCU())Z 6‘52 (C(U())z 6‘54 C2

Equation (124) is written for the electric field amplitude E in
the case of a linearly polarized wave. Here, &g = ni = 1 + 4mny
is the static dielectric permittivity, ¢ is the speed of light,
T =t — znp/c is the time in the comoving frame of reference,
and 4ndy3w,? is the Kerr constant, which is assumed
positive. Compared with Eqn (5) in Ref. [103], Eqn (124)
neglects linear wave damping. Using dimensionless variables,
Eqn (124) can be rewritten in the form

o (ou . ,0u |, Ou
&(&4’3“ &fbﬁ)+au7ALu,

(125)

with positive constants @ and b. Equation (125), which is the
generalized KP equation, is Hamiltonian, like the original KP
equation (116),

ou_ oo

0z Ot du’

with the Hamiltonian

1 1
H= 5J<—bu3 +aw? + (Vyiw)? — 3 u4> drdr,

where u = wy, i.e., w plays the role of the hydrodynamic
potential. The expression for H indicates that its quadratic
part is not necessarily positive definite in the general case and
becomes so only in the low-frequency domain, where the first
term bu? can be neglected as being small compared with the
second one. It is also obvious that the quadratic form is
positive definite for » = 0. Just in these cases a sufficient
criterion for the occurrence of collapse can be proposed,
which is analogous to (123):

2

%Jriuzdtdu :4H—8Jawzdrer <4H.

Integration of the last inequality results in a sufficient
condition for the occurrence of collapse: H < 0 [103].
Numerical integration of Eqn (125) demonstrated the
tendency to beam self-focusing in the transverse direction.
A rather interesting effect— the buildup of sharp gradients
on the beam axis prior to self-focusing— was also discov-
ered in [103].
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9. Conclusions

We have presented two methods for exploring the stability of
solitons, one linked to the Vakhitov—Kolokolov criterion and
its generalizations to vector systems of the NLS type, and the
other based on the analysis of stability in the Lyapunov sense.
The combination of these two methods furnishes an effective
approach to exploring soliton stability.

Another key element of the present review is the
application of embedding theorems, which play an essential
role in proving the soliton stability. In particular, the use of
such an approach helped establish soliton stability for the
three-wave system describing the coupling of electromagnetic
waves in y2-media and for three-dimensional solitons of
magnetized ion-acoustic waves described in terms of the
anisotropic KdV equation [14].

We note that by the y2-media, we first and foremost mean
crystals without a center of symmetry; only in that case does
the three-wave matrix element differ from zero. Electromag-
netic waves propagating in such crystals have anisotropic
dispersion laws, which, notably, implies that the tensors w,g
cannot be simultaneously reduced to a diagonal form for
every wave package in general. However, the method
presented in this review requires no diagonalization of the
dispersion tensors w,g. The only essential condition is that
they have the same sign definiteness. Only in this case do
solitons exist. The sign definiteness of the dispersion tensors
allows introducing the appropriate Sobolev spaces and
obtaining necessary integral estimates for the Hamiltonians.
Itis also important that solitons realizing the minimum of the
Hamiltonian are stable with respect to not only small but also
finite perturbations. In this sense, the Lyapunov stability
criterion is equivalent to the energy principle.

When the Hamiltonian is an unbounded functional, wave
collapse leading to a singularity stands out as the most
probable scenario for nonlinear system behavior. Collapse
in this case is similar to the process of particle fall in a self-
consistent potential (see, e.g., Ref. [39]).

As the space dimension increases, the role of nonlinear
effects also increases. Stable solitons are therefore observed at
low dimensions, whereas collapses are typical for higher-
dimensional systems. In collapsing systems, solitons repre-
sent a separatrix separating collapsing and noncollapsing
distributions. Such (unstable) solitons define the threshold
of wave collapse.
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