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a b s t r a c t

We report numerical detection of a new type of localized structures in the frame of Majda–McLaughlin–
Tabak (MMT ) model adjusted for description of essentially nonlinear gravity waves on the surface of
ideal deep water. These structures – quasibreathers or oscillating quasisolitons – can be treated as
groups of freak waves closely resembling experimentally observed ‘‘Three Sisters’’ wave packets on the
ocean surface. The MMT model has quasisolitonic solutions. Unlike NLSE solitons, MMT quasisolitons
are permanently backward radiating energy, but nevertheless do exist during thousands of carrier wave
periods. Quasisolitons of small amplitude are regular and stable, but large-amplitude ones demonstrate
oscillations of amplitude and spectral shape. This effect can be explained by periodic formation of
weak collapses, carrying out negligibly small amount of energy. We call oscillating quasisolitons
‘‘quasibreathers’’.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Development of analytic theory of freak (or rogue) waves is one
of the most interesting problems of hydrodynamics. In spite of re-
cent progress in this area [1] many important questions are not
answered yet. Apparently, freak waves are the structures well lo-
calized in space; see Fig. 1. But behavior of freak waves in time in
co-moving coordinate frames is not still explored. From the exper-
imental viewpoint this is a hard question. It cannot be answered by
a resting observer, for whom the freak wave is just a single event
localized in time; see Fig. 2. On the other hand, satellites move too
fast to record the full ‘‘live story’’ of a freak wave.

The standard model for description of freak waves in deep wa-
ter is the nonlinear Schrödinger equation (NLSE). This equation has
a plethora of exact solutions which often are associated with the
freak waves on deep water. Some of these solutions are presented
in [2]; more recent developments can be found in [3–6]. These so-
lutions, however, presume the existence of backgroundmonochro-
matic wave (condensate) and are connected to the subject of our
paper only indirectly. For this reason, we do not pursue a purpose
to present here the detailed description of all solitonic solutions on
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the condensate background, as well as completed and controver-
sial history of their discovery. In this article we study the solitons
on almost zero background.

However, we should mention the remarkable NLSE solution
found by Peregrine [7]. This solution in the co-moving coordinate
frame is an instanton, describing the single event — appearance
and disappearance of the freak waves group. Today we can speak
about two alternative versions of the freak wave theory. The
‘‘instantonic’’ version assumes that the freakwave is a single event,
localized in time. The ‘‘solitonic’’ version proposes that the freak
wave are described by persistent solitons, probably oscillating in
time. So far experimental data are too scarce to make a conclusion
in favor of one of these theories.

One should remember that NLSE is derived in the assumption
that the wave train size, containing the freak waves, is much larger
than characteristic wave length. Most of collected experimental
data, however, show that in the real ocean this condition is not
satisfied (see Figs. 1 and 2) and that the NLSE is hardly applicable.

A level of nonlinearity of quasi-monochromatic wave group
is measured by the characteristic steepness µ ≃ ka (k is the
wavenumber and a is the amplitude). Our numerical experi-
ments [8] show that NLSE is applicable if µ / 0.07. According
to our calculations, NLSE is not applicable if µ ≃ 0.1. Recent nu-
merical experiments [9] show that this limit might be extended to
µ ≃ 0.15. However, for freak waves in the real sea µ ≃ 0.3 ÷ 0.5
(see Appendix B). TheNLSE is absolutely not applicable for descrip-
tion of that steep freak waves.

http://dx.doi.org/10.1016/j.physd.2013.01.003
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Fig. 1. Giant wave detected during a global census using three weeks of raw ERS-
2 SAR imagette data, carried out by the German Aerospace Centre (DLR). This SAR
data set was inverted to individual wave heights and investigated for individual
wave height and steepness. The wave shown here has a height of 29.8 m.
Source: Adopted from: http://spaceinimages.esa.int/Images/2004/06/Giant_wave_
detected_in_ERS-2_imagette_data, also published in [13].

Fig. 2. Freak wave event detected from the Draupner oil platform on Jan.1, 1995.
Source: Adopted from http://www.ifremer.fr/web-com/stw2004/rw/fullpapers/
walk_on_haver.pdf, also published in [14].

It is also known from observations [1] that a typical configura-
tion of a freakwave group consists of three sequentwaves – ‘‘Three
Sisters’’. This group is too short to be described by NLSE.

What are the alternatives to the NLSE model? The most consis-
tent approach is the use of the exact Euler equations for description
of the potential flow of the ideal fluid with free surface. Some ad-
vances in this direction are already achieved [8,10,11]. However,
the study of more simple and less accurate models could also be
very useful. In this article we present our result on the numerical
solution of well-knownMMT [12] equation with the special choice
of parameter α = 1/2, β = 3, λ = +1, making this model well
adjusted for description of surface gravity waves.

Our results mostly support the ‘‘solitonic’’ theory of freak
waves.We startedwith initial data, corresponding toNLSE solitons,
and discovered the formation of persistent quasisolitons existing
for more than two thousands of wave periods. These quasisolitons
slowly radiate energy in the backward direction. As was shown re-
cently [15] in the ‘‘model case’’ (α = 1/2, β = 0, λ = 1), this effect
plays the key role in formation of thewave turbulent spectrum, but
in our case its influence is negligibly small.

However, we discovered a completely new effect. While qua-
sisolitons of small steepness (µ / 0.1) behave similar to NLSE
solitons on zero background, the quasisolitons of higher steepness
demonstrate almost periodic oscillations of amplitude and spec-
tral shape, periodically forming power-like tails in spectra. This
effect can be explained by modulational instability inside the qua-
sisoliton. Development of this instability leads to the formation of
‘‘weak’’ one-dimensional collapses, which deform the spectrum,
but absorb negligibly small amount of energy. Thereafter we call
oscillating quasisolitons ‘‘quasibreathers’’.

2. Basic model

TheMajda–McLaughlin–Tabak (MMT ) equation (see [12,16,17])

i
∂ψ

∂t
=

 ∂∂x
α ψ + λ

 ∂∂x
β/4


 ∂∂x

β/4 ψ

2  ∂∂x

β/4 ψ
 , (1)

λ = ±1, −∞ < x < ∞, 0 < t < ∞

whereψ(x, t) is the complex function and the fractional derivative
is defined by ∂∂x

α ψ =


|k|αψkeikxdk (2)

has been attracting lately fare attention of nonlinear wave scien-
tists. The reason is that the MMT equation incorporates several
already known important cases and also can be used as a ‘‘test-
bed’’ for the verification of the concepts likeweak-turbulentwaves
spectra, localized structures and their co-existence [16,17]. For
α = 0 and β = 0, 2 Eq. (1) is completely integrable. If α = 2 and
β = 0, it is the classicalNLSE for focusing (λ = −1) and defocusing
(λ = +1) cases:

i
∂ψ

∂t
= −

∂2ψ

∂x2
+ λ|ψ |

2ψ. (3)

If α = 2 and β = 2, transformation φ = |
∂
∂x |

1
2ψ turns Eq. (1) into

the derivative NLSE [18]:

i
∂φ

∂t
= −

∂2φ

∂x2
+ λ

∂

∂x
|φ|

2φ.

Through Fourier transform

ψk =
1
2π


ψ(x)e−ikxdx.

Eq. (1) can be rewritten in the form

i
∂ψk

∂t
= |k|αψk +


Tkk1k2k3ψ

⋆
k1ψk2ψk3δk+k1+k2+k3dk1dk2dk3 (4)

where

Tkk1k2k3 = λ|k|β/4|k1|β/4|k2|β/4|k3|β/4. (5)
Suppose that in Eq. (4) Tkk1k2k3 is a generic function satisfying the
symmetry conditions
Tkk1,k2k3 = Tk1k,k2k3 = Tkk1,k3k2 = Tk2k3,kk1 . (6)
For matrix coefficient (5) conditions (6) are satisfied and Eq. (1) is
a Hamiltonian system

i
∂ψk

∂t
=

δH
δψ∗

k
,

H =


|k|α|ψk|

2dk

+
1
2


Tkk1k2k3ψ

⋆
kψk1ψk2ψk3δk+k1−k2−k3dkdk1dk2dk3.
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Fig. 3. Example of the situation when defocusing quasisolitons are possible. The
dispersion relation is ω = |k|α for α < 1, Ω is negative and V is positive. The
straight line always crosses the dispersion relation ω = ω(k), and therefore, the
denominatorΩ−kV +ω(k) in Eq. (9) has zero. Quasisoliton takes place only in the
defocusing case λ = +1.

Obviously, the Hamiltonian H is a constant of motion. Other mo-
tion constants are wave action

N =


|ψk|

2 dk

and wave momentum

P =
i
2

 
ψ
∂ψ⋆

∂x
−
∂ψ

∂x
ψ⋆


dx.

Anothermodel of type (4), describing surfacewaves on deepwater,
is so-called ‘‘Zakharov equation’’ [19]. This equation is not heuris-
tic like MMT ; it was systematically derived from Euler equations
and therefore is supposed to bemore accurate in the corresponding
context. In this equation Tϵk,ϵk1,ϵk2,ϵk3 = ϵ3Tkk1k2k3 is cumbersome
homogeneous function of the third order.

One should note that if Eq. (1) is applied for description of grav-
ity waves, the surface shape can be reconstructed by the formula
(see Appendix A)

η(x, t) =
1

√
2


eikx|k|1/4(ψk + ψ∗

k )dk. (7)

3. Solitons and quasisolitons

Let us look for a solution of Eq. (4) in a form

ψk(t) = ei(Ω−kV )tφk (8)

where Ω and V are the constants. The function φk should satisfy
the nonlinear integral equation

φk = λ


T1234φ⋆1φ2φ3δ(k + k1 − k2 − k3)dk1dk2dk3

−Ω + kV − |k|α
. (9)

This equation has solutions ifΩ and V can be chosen such that the
denominator in Eq. (9) cannot be zero for real k. This might hap-
pen only if α > 1. Let us suppose now α < 1. One can see that
in this case the denominator in Eq. (9) always has zero, which is
clear from Fig. 3. LetΩ < 0, V > 0. Thus, any solution of type (8)
has singularity at negative k. It means that the strict soliton solu-
tion of type (8) does not exist. However, one can construct approx-
imate solutions, such that φk in (8) is slow function of time. These
approximate moving solutions, radiating energy in the backward
direction, are called quasisolitons after paper [20].

As it was recently shown in [16,17], quasisolitons play the
central role in wave turbulence in the frame ofMMT model if α =
1
2 , β = 0 and λ = +1. It was shown that in this case the backward
radiation plays the central role in dynamics of quasisolitons. But
we study only the case α =

1
2 , β = 3 and λ = +1. In this case,

which intentionally models the gravity waves on deep water, the
backward radiation is not that strong, due to essential nonlinearity
suppression in the area of small wave numbers. Nevertheless, we
definitely detect this phenomenon in our numerical experiments.

Consider the structure of the denominator in Eq. (9). One can
expect existence of the quasisoliton in the case when the straight
line ω = kV −Ω is tangential to the curve ω = kα . The conditions
of equal derivatives and existence of the common point of these
two curves at k = km are

V = αkα−1
m (10)

Ω = (α − 1)kαm. (11)

We are now returning back to non-stationary Eq. (4) and make
the change of variables k = km + κ , κ ≪ k. Dispersion relation
expansion into Taylor series

(km + κ)α = kαm + αkα−1
m κ +

1
2
α(α − 1)kα−2

m κ2

and change of variables

ψk(t) = e−i(kαm+αkα−1
m κ)tφκ(t) (12)

give

i
∂φκ

∂t
=

1
2
α(α − 1)kα−2

m κ2φκ (13)

+ kβm


φ⋆κ1φκ2φκ3δ(κ + κ1 − κ2 − κ3)dκ1dκ2dκ3 = 0. (14)

Another change of variables

φκ = ei∆tχκ , ∆ =
1
2
α(α − 1)kα−2

m q2

gives

i
∂χκ

∂t
=

1
2
α(α − 1)kα−2

m (q2 + κ2)χκ

+ ikβm


χ ⋆κ1χκ2χκ3δ(κ + κ1 − κ2 − κ3)dκ1dκ2dκ3. (15)

Applying inverse Fourier transform χ(x, t) =

χκ(t)eiκxdκ to the

last equation, we get NLSE in real space:

i
∂χ

∂t
+

1
2
α(1 − α)kα−2

m


q2χ −

∂2χ

∂x2


− kβm|χ |

2χ = 0. (16)

Eq. (16) has partial stationary solution

χ(x) =


α(α − 1)

kβ−α+2
m

q
cosh qx

(17)

which produces approximate quasisoliton solution of Eq. (1) with
λ = 1:

ψ(x, t) = χ(x − vt)ei(Ω+∆)teikm(x−vt) (18)
Ω = −(1 − α)kαm

∆ = −
1
2
α(1 − α)kα−2

m q2

V = αkα−1
m .

The characteristic wave-number k0 = −ckm of backward radia-
tion associated with the quasisoliton (see Fig. 3) can be found from
the equation

k0V −Ω = |k0|α (19)
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together with Eqs. (10)–(11). For α = 1/2

c = 3 −
√
8 ≃ 0.172. (20)

Therefore, due to the smallness of the ratio T (k0,k0,km,km)
T (km,km,km,km)

≃ c3 =

5 · 10−3, the backward radiation process in the framework of the
MMT model forβ = 3 is suppressedwith respect to the caseβ = 0,
for example [15].

To obtain the surface shape we replace in Eq. (7) k1/4 with k1/4m
and get

η =
q
km

1
coshq(x − vt)

cos(ωt − kmx).

Thus q is the standard steepness.

4. Self-similar collapses

Eq. (1) has self-similar solution:

ψ(x, t) = (t0 − t)5/2F


x
(t0 − t)2


. (21)

For the shape of the surface it gives

η(x, t) = (t0 − t)2F


x
(t0 − t)2


. (22)

At t → t0 time must vanish from Eq. (1), which means that
η → α+x for x > 0
η → α−x for x < 0
where α+ > 0 and α− < 0 are the constants. In other words, so-
lution Eq. (21) describes the formation of a wedge, in general (if
α+

≠ α−), tilted with respect to the vertical line. In k-space we get

ψ(k, t) = (t0 − t)9/2F

k(t0 − t)2


. (23)

According to (23) F(ξ) → ξ−9/4 at ξ → 0. Hence, asymptotically

ψ(k, t) ≃ k−9/4 (24)

|ψ(k, t)|2 ≃ k−9/2. (25)
Formation of collapses like Eqs. (21)–(22) means growth of power-
like tails in k-space. The spectrum Eqs. (24)–(25) appears only at
the moment of collapse t → 0. The singularity has the form of ap-
pearing and vanishing wedge, absorbing some amount of energy.
However, the time-averaged spectrum can have a slope different
from |ψk|

2
≃ k−9/2. If the collapse events are rare, the slope must

be higher than k−9/2.
Let us suppose that the collapse is ‘‘weak’’ and that only a

very small part of energy is dissipated in an individual event. It
means that the collapse is ‘‘almost’’ invertible process, symmetric
in time with respect to the sign change to −t . In other words, the
collapsing solution is
ψ(k, t) = |t0 − t|9/2F(k(t0 − t)2).
Now we can perform the Fourier transform in time and get

ψ(k, ω) =


∞

t0
|t0 − t|9/2F(k(t0 − t)2)e−iωtdt

= eiωt0
1

k11/4
f
 ω

k1/2


.

The spatial spectrum is given by the integral

Ik = |ψ(k)|2 ≃


|ψ(k, ω)|2dω ≃ k−5. (26)

For the surface elevations spectrum we obtain the Phillips
spectrum

|ηk|
2

≃
1
k4
.

In our numerical experiments we observed the spectra both more
steep for k → +∞ and more shallow for k → −∞ than Eq. (26).
So far, we have no proper explanation of this fact.
Fig. 4. Real and Fourier space distributions of wave field. Top graph: |ψ(x, t)|2 as a
function of x for t = 0. Bottomgraph: Fourier spectrum log10 |ψ(k, t)|2 as a function
of signed logarithm of waves number sign(k) log10 |k| for time t = 0.

5. Turbulent quasibreathers in theMMT model

Eqs. (4)–(5) have been solved numerically in periodic bound-
ary conditions real space domain [0, 2π ] for deep gravity surface
waves case α =

1
2 , β = 3 and λ = 1. Numerical integration

has been performed through iterations of the implicit second order
scheme in time and calculation of nonlinear term by fast Fourier
transform technique. This numerical scheme preserves constants
of motion of the approximated equation.

To avoid high-frequency instabilities, the low-pass filtering has
been applied on every time-step through multiplication of the
Fourier transform of the wave field by hyper-gaussian function,
leaving about 90% of Fourier modes intact, while effectively
suppressing the rest of potentially unstable high-frequencymodes.
Resultswere verified against thewavemodes number change from
8192 to 16 384 and 32 768 for the same Cauchy problem. The
calculations were continued typically up to thousands of the initial
wave periods without loss of the accuracy.

The initial condition was taken in the form of NLSE soliton

ψ(x, 0) =
q

2k9/4m

eikmx

cosh qx
(27)

for km = 50; see Fig. 4. It is known [17] that simulation results es-
sentially depend on the value of the nonlinearity parameter q/km.
For q/km . 0.1 the initial condition moves with the constant
speed V without any noticeable shape change over characteris-
tic length of at least dozens of simulation domain size 2π . For
q/km > 0.1, the initial shape Eq. (27) starts to change in time and
for q/km = 0.3 forms moving wedge-like growing structure with
narrowing width. This behavior was interpreted in [17] as possible
collapse of the initial condition over finite time, but further numer-
ical simulation was not continued because of high-wavenumbers
instability development in Fourier space, causing blow-up of the
numerical scheme. In current research utilizingmore sophisticated
numerical approach, it was possible to follow the evolution of the
same collapsing initial condition for practically unlimited time.We
observed that, in fact, this collapsing initial condition evolves into
localized non-stationary solution, periodically recurring to its ini-
tial shape. By analogy with cubical NLSE, it was interpreted as a
breather-like structure.
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Fig. 5. Dependence of the solution maximum max(|ψ(x, t))2 , taken over
integration domain [0, 2π ] (solid line, left axis) and the second moment


(k −

k0)2|ψk|
2dk (dotted line, right axis), on time t . The averagewave-number is defined

as k0 =


k|ψk |

2dk
|ψk |2dk

.

Fig. 6. Dependence of quasibreather maximum oscillation frequency on the mean
level of these oscillations ⟨|ψ(x, t)|2⟩.

The observed phenomenon is quite interesting: at q/km ∼ 0.3
the initial condition Eq. (27) evolves into localized object, but
with ‘‘inner life’’. The shape of this object and the form of its
spectra demonstrate irregular, stochastic behavior, which can be
interpreted as some ‘‘intrinsic turbulence’’. Time evolution of real
space maximum of the solution is presented in Fig. 5. One should
note that oscillations are quasi-periodic and their amplitude slowly
diminishes in time, at least partially due to the destruction of the
breather by surrounding noise — that is the reason why we called
this localized state as quasibreather. An almost identical picture of
oscillations is seen from the second curve in Fig. 5, which presents
the behavior of the second moment as a function of time. Both
curves in Fig. 5 clearly indicate the presence of nonlinear oscillating
structure in the wave system.

Fig. 6 shows the dependence of the frequency of these os-
cillations on their mean level. The frequency has a tendency to
grow with the growth of the oscillation level. This fact is in corre-
spondencewith frequency dependence on the nonlinear frequency
shift.

Fig. 7 presents real and Fourier spaces of the system at t =

38.88, corresponding to the first maximum from Fig. 5. The real
space picture of |ψ(x)|2 shows that the solutionmoved to the right
with respect to the initial condition, growing in the amplitude and
narrowing in width. Also, small portion of the initial condition has
been separated in the formof thehumpofmuch smaller amplitude.
Fourier space contains two maxima: the right major peak
approximately at km = 50, corresponding to the quasibreather,
and the left smaller peak corresponding to the solution of Eq. (20):

k0 = −(3 −
√
8) · km ≃ −8.6.

As shown in Fig. 7, the spectrum remains localized near initialwave
number k ≃ km. This fact can be explained by conservation of both
wave action and momentum. Thus, the turbulence inside the so-
lution can be interpreted as an ‘‘envelope turbulence’’. It is inter-
esting that the area of this turbulence is localized both in real and
Fourier spaces.
Fig. 7. Same as Fig. 4, but for t = 38.88, corresponding to the first maximum from
Fig. 5. The left slope of the spectrum is approximated by function ∼ k−3.3 (dotted
line); the right slope is approximated by function ∼ k−6.8 (dashed line).

Fig. 8. Same as Fig. 4, but for time t = 259.91 corresponding to the third trough
from Fig. 5.

Comparison with initial data shows that the spectrum gains
power-like tails Ik ≃ k−3.3 for negative k and Ik ≃ k−6.8 for
positive k. Recall that the simple collapse theory predicts Ik ≃ k−5.
Anyway, the appearance of power-like tails indicates violation of
smoothness of ψ(x, t).

The observed singularity is of weak-collapse type. It is con-
firmed by the fact that the amount of Hamiltonian absorbed during
11 periods of oscillations of quasibreather (see Fig. 5) is approx-
imately equal to 0.03% of its initial value. One should note that
the observed picture is universal: another snapshots of the sys-
tem, taken at the times corresponding to subsequentmaxima from
Fig. 5, reveal the pictures similar to observed in Fig. 7 (see, for ex-
ample, Fig. 9).

Fig. 8 presents real and Fourier spaces of the system at t =

259.91, corresponding to the third trough from Fig. 5. The real-
space picture of |ψ(x)|2 shows that the amplitude of quasibreather
has been diminished with respect to the state corresponding to
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Fig. 9. Same as Fig. 4, but for time t = 479.0 corresponding to sixthmaximum from
Fig. 5. The left slope of the spectrum is approximated by function ∼ k−3.3 (dotted
line); the right slope is approximated by function ∼ k−6.8 (dashed line).

Fig. 10. Comparison of two spectra log10 |ψk(t)|2 for time t = 259.91 (solid line,
corresponds to the third trough on the Fig. 5) and time t = 479.00 (dashed line,
corresponds to the six’ peak on the Fig. 5), plotted as a function of wave-number k.
This picture demonstrates that the spectral tails ‘‘breath’’ between exponential and
power-like states.

Fig. 7. Fourier space exhibits both similarities and differences be-
ing compared to the bottom of the Fig. 7: there are the same right
main peak approximately at km = 50 and the left smaller peak ap-
proximately at k0 = −8.6, but high-wavenumber tails decaymuch
faster than the power law. It means that ψ(x, t) is smooth at the
moment of minimum.

For the illustration of the quasibreather temporal behavior, we
present Fig. 10, showing two states of the system taken at the mo-
ments when quasibreather reaches its maximum and minimum
amplitude in the semi-log scale. It is quite obvious that spectral
tails decay exponentially at the moment corresponding to the am-
plitude minimum of quasibreather and decay as a power of wave
number at the moment of the quasibreather amplitude maximum.
This solution, therefore, periodically ‘‘breathes’’ between states of
singularity formation and its regularization.

Fig. 11 presents surface elevation Eq. (7) for the same time as
Fig. 4. This picture looks qualitatively similar to experimentally
observed ‘‘Three Sisters’’ killer wave on the ocean surface [1] and
the recent results on freakon simulation on the deep water sur-
face [10]. Fig. 12 shows slope, corresponding to Fig. 11. These slope
values have the meaning of the original Euler equations for deep
water surface gravity waves.

One remarkable feature of the observed quasibreather is its co-
existence with surrounding noise environment, associated with
the radiation at the secondary spectral peak at k0 = −8.6. In fact,
Fig. 11. Surface elevation η(x, t) as a function of real space coordinate x for time
t = 479.00, corresponding to Fig. 9. The presented data are dimensionless and scale
invariant due to this property of the corresponding equations. For the purposes of
comparison with the experiment, one should multiply both horizontal and vertical
axes by the same dimensional factor, corresponding to particular experimental
realization.

Fig. 12. The slope of the surface elevation ∂η(x,t)
∂x |t=479.0 as a function of real space

coordinate x, corresponding to Fig. 11.

the surrounding weakly-nonlinear noise could consists not only
of radiation at wavenumber k0 = −8.6, but also of the products
of the initial condition decay into quasibreather and other waves.
However, the wave action density in this noise is so small with
respect to energy density in quasibreather, that this noise certainly
cannot be interpreted as a kind of ‘‘condensate’’.

To analyze this situation, we performed the following experi-
ment. In the middle of the simulation the real-space, containing
quasibreather and surrounding noise, was ‘‘cleaned-up’’ through
zeroing the function ψ(x) everywhere except the carrier domain
of the quasibreather. As a result, further evolution of the system
starting from such ‘‘cleaned’’ initial conditions did not show any
qualitative difference from the previous behavior — we observed
immediate appearance of the surrounding noise at k0 = −8.6
of the same characteristic amplitude, as we have seen before the
‘‘cleaning’’ of the real space.

This observation lead us to the conjecture that quasisolitons
and quasibreathers exist only in quasi-equilibrium with weakly
nonlinear wave noise environment.

Another important observation, which distinguishes quasi-
breathers from oscillations of perturbed NLSE solitons, is period-
ical singularity formation at every time quasibreather reaches its
maximum. This property is illustrated by both Fig. 7 (corresponds
to the first maximum from Fig. 5) and Fig. 9 (corresponds to the
maximum number six from Fig. 5).

In a nutshell, the gravity surface waves MMT model shows pe-
riodic focusing of the initial condition Eq. (27) with weak-collapse
singularity formation exhibiting itself in power spectral tails and
weakly nonlinear radiation at secondary spectral maximum at
k0 = −8.6, which differs observed quasibreather from previously
known breather-like structures. The similarity of observed qua-
sibreather in terms of water surface elevation with experimen-
tal ‘‘Three Sisters’’ wave packet and numerically observed freakon
shows that even a simplified model of gravity surface waves as
MMT catches significant properties of the original exact equations.
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6. Conclusion

On the base of numerical experiments,we see that quasisolitons
in frame of defocusingMMT model with parameters α = 1/2, β =

3 and λ = 1 are robust long-living objects, existing for hundreds
of leading wave periods. Quasisolitons of large amplitude turn to
quasibreathers. Their amplitude and spectral shape oscillate in
time. These oscillations are accompanied by formation of weak
collapses which can be compared with ‘‘white capping’’ of real
ocean waves.

We conclude that the ‘‘solitonic’’ scenario of freak waves is
based on the equal footwith alternative ‘‘instantonic’’ scenario.We
need to performmore numerical experiments in the frame of exact
Euler equation to establish what scenario is closer to reality.

Let us mention that oscillatory effects in solitons propagating
on zero background were observed in paper [21]. However, in this
paper, the authors studied not single NLSE, but the system of cou-
pledNLSE. The dynamics of this system ismuchmore complicated.
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Appendix A

Now we address the following question — what value of λ has
to be chosen to provide the best possible modeling of real surface
gravity waves on deep water?

To answer this question, we notice that weakly nonlinear
gravity waves on the deep water surface with gravity acceleration
g = 1 are described by so-called Zakharov equation, which is
exactly Eq. (4) at α = 1/2.

The ‘‘real’’ coupling coefficient Tkk1k2k3 is a complicated
homogeneous function of the third order:

T R
ϵkϵk1ϵk2ϵk3 = ϵ3T R

kk1k2k3 . (28)

Explicit expression for ‘‘real’’ Tkk1k2k3 was found, for instance, in the
paper [22].

Functions T R
kk1k2k3

from [22] and Tkk1k2k3 , given by Eq. (5), are
essentially different. However, we can make them coincide in one
point k = k1 = k2 = k3 by the proper choice of λ.

According to [22]

T R
kk1k2k3 =

1
4π2

k3. (29)

But in the cited paper we used the ‘‘symmetric form’’ of the Fourier
transform. If we define the Fourier transform according to Eq. (2),
we must replace Eq. (29) to

T R
kkkk = k3. (30)

Hence, to reach the best approximation to reality, we have to put

Tkkkk = k3. (31)

It means that wemust choose λ = 1. Then the shape of the surface
η(x, t) defined by Eq. (7) is amodel (rather approximate, of course)
of a real water surface. From Fig. 11 one can conclude that the
steepness of our breather is fairly high and hardly can be described
by NLSE.
Appendix B

The vastmajority of surfacewaves physical characteristicsmea-
surements is coming from stationary installations like oil plat-
forms, presenting the water surface elevations as a time series.

Thewater surface elevation itself is not ameasure of the system
nonlinearity degree, since underlying equations are invariant with
respect to stretching transformations; therefore, surface waves of
height varying by the order ofmagnitude can be of the same degree
of nonlinearity.

The real physical characteristic of nonlinearity is thewave slope
µ, which needs to be recovered from the surface elevations time
series. Here we preset such simple estimate.

By definition, the slope (same as steepness) is µ = ka, where
k and a are the characteristic wave number and amplitude cor-
respondingly. The connection between wave period T and wave
number is

k =
4π2

gT 2
. (32)

For the famous ‘‘Draupner Wave’’ (also known as ‘‘New Year
Wave’’, see Fig. 2), T = 12 s, a = 13.7m and g = 9.81m/s, which
gives µ ≃ 0.38 in accordance with our experiments.
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