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Abstract. We present results of numerical experiments ongiven by theta functionsBelokolos et al. 1994). They are
long-term evolution and collisions of breathers (which cor- actively used now for determination of freak wave statistics
respond to envelope solitons in the NLSE approximation) at(Osborne 2010. However, the NLSE has a limited area of
the surface of deep ideal fluid. The collisions happen to beapplication and can hardly be applicable to many experimen-
nonelastic. In the numerical experiment it can be observedal situations.

only after many acts of interactions. This supports the hy- Hopes that the exact Euler equation for potential flow on
pothesis of “deep water nonintegrability”. The experimentsdeep water with free surface in the presence of gravity is in-
were performed in the framework of the new and refined ver-tegrable appeared in 1994 when two of Byéchenko and
sion of the Zakharov equation free of nonessential terms inZakharoy 1994 established that the coefficient of a scat-
the quartic Hamiltonian. Simplification is possible due to ex- tering matrix connecting asymptitics at> oo states of

act cancellation of nonelastic four-wave interaction. wave field, corresponding to inelastic four-wave processes
and governed by resonant conditions

. k+ki=ko+ks Wk + Wy = Wpy + g5,
1 Introduction

where

Theory of weakly nonlinear waves on shallow water is a
nursery for several completely integrable models. Amongew; = ,/g|k]|
them are the famous KdV and KP equatioafdner et aJ.
1967, Kadomtsev and Petviashyili973 Zakharov and Sha- in 1-D geometry is identically equal to zero.
bat 1979, the Boussinesq equatiodgkharoy 1974, and However, this cancellation is just a weak necessary condi-
the Kaup systemKaup, 1979. Detailed study of these in- tion for integrability and is far from being sufficient. For inte-
tegrable systems has not only theoretical, but also practicagrrability in “strong sense” we need cancellation in all orders
importance. Recently A. Osborne showddsborne 2010 of perturbation theory (se@akharov and Schulmai991).
that representation of solutions of KP equations in the formHowever, inDyachenko et al(1995 it was shown that not
of Jacobi theta functions is a very efficient and economicalall members of a five-wave scattering matrix are zero, thus
way of analyzing experimental data for long waves in coastalwe can only hope for integrability in some “weak sense”. We
areas. will not discuss this subject having a “strong mathematical

Now the fundamental question appears — what can bdlavor” here.
done in the case of deep fluid? So far only one integrable Meanwhile, efficient methods for numerical simulations
model on deep water is known. It is the focusing nonlin- of the exact Euler equation were developed during the
ear Schrodinger equation describing weakly nonlinear quasitast decade; massive numerical experiments were also per-
monochromatic wave train@ékharoy 1968 Zakharov and formed. Again, some of them can be considered as a certain
Shabat1972. Exact solutions of this equation can also be indication of integrability.
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In the framework of NLSE approximation there is an ex- satisfy the equations
act solution — envelope soliton. Do such solutions exist in
the exact Euler equation? If the system is nonintegrable, theé¥ _ 84 an _oH
soliton exists only during a finite time; then it must lose its 3¢ 8p a Sy
energy due to radiation in a backward directidtakharov
and Kuznetsoy1999. In the nonintegrable MMT model this Here the Hamiltonian can be written as an infinite series
backward radiation is a very strong effect leading to the for-(SeeZakharoy 1968
mation of an “abnormal” weak turbulent spectruRufmpf 1 A 1 A
et al, 2009. However, in our experiments on propagation H = —/gn2+wkzﬂdx — E/{(kw)z— (1/fx)2}ndx+
of steep envelope solitons in the frame of the Euler equation,

1 A A
we did not trace the slightest backward radiatibggchenko + > /{w“ ﬁzklﬂ + Yk(mk(mky)dx + ... Q)
and Zakharoy2008. The soliton persistently existed during
thousands of their periods. In this article we consider Hamiltonians up to the fourth

In this article we present new numerical results sheddingorder. In the articlesfyachenko and Zakharp2011, 2012
some light on the integrability of the deep-water hydrody- we applied canonical transformation to the Hamiltonian vari-
namics. We study collisions of breathers (solitons) in theablesy and# to introduce the normal canonical variable
framework of a newly derived approximate equation applica-5(x, ¢). This transformation explicitly exploits the vanishing
ble for small-amplitude waves with any spectral band width. of four-wave interaction and possibility to consider surface
Actually, this is what is called the “Zakharov equation” (see waves moving in the same direction. Briefly, this transforma-
Zakharoy 1968, improved by the implementation of addi- tion consists of two steps. First, we introduce normal com-
tional canonical transformation to the Poincaré normal form.plex variables (r) as follows:

This transformation is possible only due to the still mysteri-

ous fact of four-wave interaction cancellation. Wy, N [ g .

The new equation (described in detailDyachenko and "% = \/%(ak ta) Y= ! z_wk(ak —asy)-
Zakharoy 2011 2012 is very convenient for numerical sim-
ulations. It has a nice solitonic solution that so far cannot be Then one applies transformation from variabigsto by
found analytically, but can be easily obtained numerically.to exclude nonresonant cubic terms along with nonreso-
Existence of solitonic solutions and their elastic collisions nant fourth-order terms. This transformation up to accuracy
are indications of integrability. However, just indications are O (b°) has the formZakharoy 1968 Zakharov et a].1992):
not enough. In this paper we study the collision of such soli-

tons and show that this collision is nonelastic. One can howax = bk + [ T 4, by by Sk kg —k, ka0 —
ey sl cons Ve can MIEKIN 13 1, b
“refined Zakharov equatiod” + J Tk, 07, Skiy -+, Gk A2
+ [ BEZ3bE biybiySky —kp—ksOkakodks +
2 Compact equation + [ C,filkzb,flb,fzbk33k+k1+k2—k3dkldkzdk3
A one-dimensional potential flow of an ideal incompressible  + J Skkukaksbi, b, bicy Skt o+ Gk 1 k2 0lks. 2

fluid with a free surface in a gravity field fluid is described

by the following set of equations: The particular choice of coefficients in EQ) {s described

in Dyachenko and Zakharo{2011, 2012. The choice of
Oxx + ., =0 (¢p; > 0,7 > —00), FllélkZ andI' x, provides cancellation of cubic terms, while

the choice ofC,'j,flk2 and S,k Provides cancellation of
the nonresonant fourth-order term. The particular choice of
_ B,’f,§11‘3 allows selfconsistent consideration of waves moving in
’ the same direction only, making the Hamiltonian very simple
) ) at the same time. For this variabbéx, ), Hamiltonian ()
here n(x,1) is the shape of a surface,(x,z,7) is a po-  acquires the nice and elegant férm
tential function of the flow ang@ is gravitational accelera-
tion. As was shown iZakharov(1968), the variables(x, 7) M /b%kbdx +%/';}7b [% <baab _b*2£> 3 Klblz]dx. 3)

X X X

N +NxPx = P

=n

1
it 5@7+90) +en=0

z=n

andy (x,t) = ¢(x,z,1) are canonically conjugated, and
=n

2There was a misprint in the article®yachenko and Zakharov
1some of the numerical results were putDiyachenko et al. 2011, 2012: the coefficient for the quartic term in the Hamiltonian
(2012 must be% instead of;l1
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Fig. 1. Real part ofr(x) with V = 1/16 and2 = 4.01.

In K-space the Hamiltonian has the form:

H= /a)k|bk|2dk+

1 /(-
+5 / T2 b7 b}, ks iyt ko —ka—ks Gkadotlkads.  (4)

Here

~kk
Tkzklg, =
0(k)0 (k1)8 (k2)6 (k:
(R0 %n( 2003) | ey (k + k) + koka(ka + k3)) —
— (kkolk — ko|+kks|k — k3| + k1ko|k1 — ko|+

+ kikalky — k3)],

(%)

0, ifk<O;

o) = {1, if k> 0.

The Fourier transform is defined as follows:

b(x) = bre*dx,

=

whereb(x) can be analytically continued to+iy, y > O.
The motion equation fab, should be understood as follows:

b 5.8
i—=P+—H,
ot 8kj;

hereP* - projection operator to the upper half-plane.
R . 1 A
Pt =pt= 5A—if).

This operator is the consequence&dfinctions in Eq. 4).
It keeps only positivek in the system of waves. (So, we
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Fig. 2. Modulus ofb(x) with V = 1/16 and2 = 4.01.

consider self-consistent systems of waves propagating in the

same direction.)
The corresponding equation of motion is the following:

ab i 9 o 0 )
27— ob _P+ b — b/ _ v b*/_bZ o
Y Tty [ PR P
1. . 0 P
—ZPH|b-R(D'P) - —B'R(bID) |, (6)
2 0x
or in K-space

. 9by =~
l? = a)kbk + / T]:(sz3b;§lbk2bk38k+k1—k2—k3dkldkzdkS- (7)

3 Breathers and numerical simulation of its collisions
A breather is the localized solution of E) of the following
type:

b(x,1) = B(x — V1)l kox—eoh) (8)

wherekg is the wavenumber of the carrier wavg, is the
group velocity andvg is the frequency close t@y,. In the

Fourier space a breather can be written as follows:
b(r) = e @RIy,

©)

whereQ is close to%2.
For ¢y the following equation is valid:

(Q+ Vk — o)y = / T2 07 broisdiriy—kp—kadhrdiots.  (10)

One can tread; as a pure real function éf

To solve Eq. 10), one can use the Petviashvili iteration
method Petviashvilj 1976 Lakoba and Yang200?) (n is
the number of iterations):

(Q+ Vk—wp)ptt =

M" f T 237" b1 Bk k1 ko ks Oa A0k, (11)
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Fig. 3. Spectrum ob(x) with V = 1/16 and2 = 4.01. Fig. 5. Initial Fourier spectrumby | of two breathers.
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Fig. 4. Initial condition with two breathers. Fig. 6. Two breathers collide.

This collision seemed to be elastic. Here, in this paper, we
consider multiple collisions to check integrability numeri-
cally. For time-integration schemes, the 4-th order Runge—

The Petviashvili coefficient/” is the following:

0 <P (Q+Vk—wp)g) > ®  Kutta method was used. The scheme is very robust and al-
<q Tkklff%ifln‘f’zz‘f’/?s‘sk kg —kp—kaOk1 ko3 > lows long-term simulation. _
To study breather collisions, we performed the following
The angular brackets mean integration over numerical simulation:
Below we present a typical numerical solution of E)( o N
Calculations were made in the periodic domain @ith — As the initial condition we have used two breathers
carrier wavenumbekg ~ 64, V =1/16 andQ = 4.01. In separated in space (distance was equal.jo

Figs.1, 2, 3 one can see the real part bfx), the modulus
of b(x) and the Fourier spectrum &{x). The modulus of
b(x) coincides with the modulus & (x — V) in Eq. 8) and

— The first breather has the following parametees:—
4.01, vV, = 1/16. The carrier wave number appears to

A . . : be~ 64.

is similar to the wave envelope if we derive the nonlinear

Schrédinger equation from EB)( _ 3 — For the second breathe®, = 4.51, V, = 1/18. The
To analyze the question about the integrability of Hj, ( carrier wave number appears to-be1.

one can consider collision of breathers. It might be elastic or

nonelastic. In the paperByachenko et a]2012 Fedele and This initial condition is shown in Figd.

Dutykh, 2012 one collision of two breathers was considered. Its Fourier spectrum is shown in Fi§.
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Fig. 7. Fourier spectrunib; | at the moment of first collision. Fig. 9. Fourier spectruniby| after 100 collisions.
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Fig. 8. Modulus ofb(x) for two points in time. The solid line cor- ~ Fig. 10.Zoomed picture from Figg.
responds to the initial statememt=£ 0), the dashed line to the state

after 100 breather collisions - 88 000). . ] ] ]
So, the simulation demonstrates that after multiple colli-

sions of breathers, radiation appears. It points to nonelastic
Aftertime (V”Tz) ~ 4524, breathers collide. In Fig.one  collisions and the nonintegrability of EG)(
can see breathers at the moment of collisiog @4524).
The Fourier spectrum of two breathers rat 4524 is
shown in Fig.7.

Iisi'(:)I::gyvf Zgo(%éh\?vﬁlecﬁrheesf;Vevgabrzzghzga?;tzrt t?g{;ﬁl We see that indjvidual breathers are not differgnt qualitqtively
=~ . The initial condition and state after 100 breather Col_efrom NLSE solitons. We ha_ve stud!ed r_1umer|cally the inter-
Esioﬁs are shown in Figg. The Fourier spectrum of that is gctlon of two breathers (sqhtons) with different values of car-

. . ' I o rier wave lengths. Interaction of such breathers cannot be de-
given in I_:lg.9. One can compare it with _th_e mmal SPEC- (ribed by the NLSE even approximately.
trum in Fig. 5. Low radiation after 100 collisions is shown Interaction of such solitons happens to be nonelastic. This

in Fig. 10, which is a zoomed profile gb(x)|. During nu- . : L .
merical simulation the total energy was conserved up to theexperlmental fact requires additional study to prove noninte-
ninth digit after the decimal point. To ensure the quality of grability analytically. One can check the 6-wave interaction

; : : o coefficient on the resonant manifold. It is nonzero if the equa-
long-term calculations, we performed simulation with differ- .~ " .
. tion is nonintegrable.
ent time steps.

4 Conclusions
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This new Eq. §) can be generalized for the “almost” 2- Dyachenko, A. |., Zakharov, V. E., and Kachulin, D. I.: Collision of
D waves or “almost” 3-D fluids. When considering waves two breathers at surface of deep wakdtp://arxiv.org/abs/1201.
slightly inhomogeneous in the transverse direction, one can 4808 2012.
think in the spirit of the Kadomtsev—Petviashvili equation for Fedele, F. and Dutykh, D.: Special solutions to a compact equa-
the Korteveg—de Vries equation, namely one can treat now tion for deep-water gravity waves, J. Fluid Mech., 712, 646—660,

: . 2012.
frquencya)k -d-epe[]kcilng on botk, _andky AS W ky while Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.:
leaving CoeffICIenkazkg not depending on. » now depends Method for solving the Korteweg-de Vries equation, Phys. Rev.
on bothx andy: Lett., 19, 1095-1097,. 1967
Kadomtsev, B. B. and Petviashvili, V. I.: Acoustic turbulence, So-
- f b*én. 1 brdy+ viet Physics Doklady, 18, 115-118, 1973.
R Kaup, D. J.: A Higher-Order Water-Wave Equation and the Method

1 R . .y R 5 for Solving It, Prog. Theor. Phys., 54, 396—-408, 1975.
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