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FIVE-WAVE CLASSICAL SCATTERING MATRIX AND INTEGRABLE

EQUATIONS

V. E. Zakharov,∗ A. V. Odesskii,† M. Cisternino,‡ and M. Onorato‡§

We study the five-wave classical scattering matrix for nonlinear and dispersive Hamiltonian equations with

a nonlinearity of the type u∂u/∂x. Our aim is to find the most general nontrivial form of the dispersion

relation ω(k) for which the five-wave interaction scattering matrix is identically zero on the resonance

manifold. As could be expected, the matrix in one dimension is zero for the Korteweg–de Vries equation,

the Benjamin–Ono equation, and the intermediate long-wave equation. In two dimensions, we find a new

equation that satisfies our requirement.

Keywords: integrability, intermediate long-wave equation, Korteweg–de Vries equation, Benjamin–Ono
equation, scattering matrix

Significant progress has been achieved in the field of nonlinear science during the last 40 years. The
development of new mathematical tools led to singling out a class of integrable nonlinear partial differential
equations. These nonlinear integrable equations play an important role in studying physical systems. By
applying asymptotic procedures that use small parameters characterizing the physical regime of interest,
we can reduce a very large class of nonlinear evolution equations to integrable equations (see [1]). Different
approaches were developed for establishing the properties of these equations [2]. In this context, the present
paper is based on the Zakharov–Schulman theorem (see [3]–[5]), which is related to the Poincaré analysis of
the integrability of dynamical systems. The theorem is based on perturbation theory and on the introduction
of the so-called classical scattering matrix, which relates two asymptotic states (t → ±∞) for a classical
Hamiltonian system. Loosely speaking, the theorem states that the existence of one additional integral of
motion implies that the scattering matrix vanishes for each resonance process; the theorem also implies
the existence of an infinite set of invariants. This, of course, is not sufficient for integrability (for which
the completeness of the set of invariants must be proved). One of the consequences of the theorem is that
the scattering matrix is not identically zero for nonintegrable systems. This result was recently used, for
example, to prove the nonintegrability of the compact one-dimensional Zakharov equation [6].

Here, we discuss the integrability of some hydrodynamic wave equations. In particular, it is well
known that the Korteweg–de Vries (KdV), the Benjamin–Ono (BO), and the intermediate long-wave (ILW)
equations are examples of integrable systems with the same nonlinear operator and different linear dispersive
terms. Using the Zakharov–Schulman theorem, we can investigate whether there are other integrable
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Hamiltonian wave equations characterized by the same nonlinear operator. A similar question was studied
in [7], [8].

We consider the general wave equation

∂u

∂t
+ u

∂u

∂x
+ ωku = 0, (1)

where u is a real function of x and ωk is a convolution operator responsible for the wave dispersion. We
assume that ωk is an odd function of k, i.e., ω(k) = −ω(−k), and hence ω(0) = 0. Equation (1) can be
written in Fourier space as

i
∂u1

∂t
= ω1u1 + k0

∫ ∞

−∞
u2u3δ1−2−3 dk23, (2)

where ui = u(ki), dk23 = dk2 dk3, δ1−2−3 = δ(k1 − k2 − k3). We now introduce the normal variable a(k)
related to u(k) as

uk =
√

k(akθk + a∗
−kθ−k),

where θk = θ(k) is the Heaviside step function. In terms of the new variable, the equation has the
Hamiltonian form

H = H0 + Hint =
∫ ∞

0

ω1|a1|2 dk1 +
∫ ∞

0

V1,2,3(a1a
∗
2a

∗
3 + a∗

1a2a3)δ1−2−3 dk123, (3)

where V1,2,3 =
√

k1k2k3θ1θ2θ3.
The evolution equation is written as

i
∂ak

∂t
=

δH

δa∗
k

. (4)

For any Hamiltonian system of type (4), we can replace Hamiltonian (3) with the auxiliary Hamiltonian
Hε = H0 + Hinte

−ε|t|, where ε > 0, and take the limit as t → ±∞ in (4). For any initial condition
a(k, t)|t=0, the asymptotic fields a(k, t)|t→±∞ are given by cε(k)±e−iω(k)t. These asymptotic limits are not
independent and are related by cε(k)+ = Sε[cε(k)−], where Sε is a nonlinear operator given by a series that
converges for sufficiently large ε. The classical scattering matrix is defined (see [3] for the details) by taking
the limit as ε → 0. Hence,

S = lim
ε→0

Ŝε, c±ε (k) → c±(k). (5)

After the limit is taken, the series may diverge and become a formal series with c+(k) and c−(k) related as

c+(k1) = Sc−(k1) = c−(k1) +
∞∑

n=3

∑
s1,...,sn

∫ ∞

0

S1,2,...,n ×

× δ(s1k1 + s2k2 + · · · + snkn)c−s2
1 · · · c−sn

n dk2...n. (6)

Here, si can assume the value +1 or −1, and c±s is equal to c± for s = 1 and (c±)∗ for s = −1. The
classical scattering matrix becomes

S1,2,...,n = iT1,2,...,nδ(s1ω1 + s2ω2 + · · · + snωn), (7)

where T1,2,...,n is the scattering amplitude defined on the surface

s1ω1 + s2ω2 + · · · + snωn = 0,

s1k1 + s2k2 + · · · + snkn = 0.
(8)
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Depending on the si, the above conditions split into a set of relations that determines a resonance manifold.

Zakharov and Schulman [3] proved an important theorem that states that if system (4) has an additional
integral of motion I (in addition to the energy, momentum, and mass) of the form

I =
∫

fk|ak|2 dk + . . . ,

where the dots imply terms of higher order in ak, and if the dispersion relation is nondegenerate, then
for each scattering process distinguished by a choice of the si in (8), the scattering amplitude vanishes,
T0,1,...,n = 0, and the system has infinitely many constants of motion in involution. The theorem does not
allow checking the integrability of an equation directly, but given a Hamiltonian system of form (4), it can
be established that a nontrivial scattering, i.e., T1,2,...,n �= 0 on some resonance manifold, is clear evidence
of nonintegrability.

In the special case, Eq. (1) describes waves propagating in one direction. Therefore, the integrals in
Hamiltonian (3) are defined for k ≥ 0 in the formulation with normal variables. We are interested in finding
the specific form of ω(k) for which the scattering amplitude vanishes on the resonance manifold. The three-
and four-wave processes have only trivial solutions. The first interesting process is the five-wave process.
In this case, the resonance manifold is given by the equations

k4 + k5 = k1 + k2 + k4,

ω(k4) + ω(k5) = ω(k1) + ω(k2) + ω(k3).
(9)

The scattering matrix is an enormous expression containing 80 terms (see [9], where a diagram technique
for constructing these terms was developed). We assume that all positive wave numbers are ordered as

k2 > k4 > k5 > k3 > k1.

Under this assumption, the five-wave amplitude scattering matrix reduces significantly and becomes

T123−4−5 = F12(F45 + G53 + G43) + F13(F45 + G25 + G24) + G51(F23 + G43 + G24) +

+ G41(F23 + G53 + G25) + F45F23 + G24G53 + G25G43, (10)

where
Fij =

ki + kj

ω(ki + kj) − ω(ki) − ω(kj)
, Gij =

ki − kj

ω(ki − kj) − ω(ki) + ω(kj)
(11)

with i �= j = 1, . . . , 5. The necessary condition for integrability is the cancellation of the five-wave amplitude
on resonance manifold (9).

In what follows, we show that the KdV, BO, and ILW equations have this property.
The KdV equation. Let ω(k) = −k3. Then

Fij =
1

3kikj
, Gij = − 1

3kikj
. (12)

A simple calculation reduces the five-wave amplitude matrix to

T123−4−5 =
1

9k1k2k3k4k5
(k4 + k5 − k1 − k2 − k3) = 0. (13)
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We note that T123−4−5 = 0 even outside the resonance manifold (only momentum conservation is needed),
i.e., the condition on the frequencies in (9) is not used.

The BO equation. The BO equation models the evolution of long one-dimensional internal gravity
waves in a stratified fluid in the limit of deep water. For such an equation, ω(k) = −|k|k, but we can set
ω(k) = −k2 for positive wave numbers. Then

Fij =
ki + kj

2kikj
, Gij = − 1

2kj
, (14)

and we can elegantly show that the five-wave scattering amplitude is given by

T123−4−5 = L12345(k2
4 + k2

5 − k2
1 − k2

2 − k2
3) + M12345(k1 + k2 + k3 − k4 − k5), (15)

where L12345 and M12345 are two positive functions of the wave numbers. Cancellation of the scattering
matrix is hence obvious from Eq. (9).

The ILW equation. The ILW equation describes long internal gravity waves in a stratified fluid of
finite depth. The dispersion relation is given by

ω(k) = ak2 coth bk − ck (16)

and reduces to the KdV equation in the limit as b → 0 with a = 1 and c = 0 and to the BO equation in
the limit as b → ∞ with a = 3/b and c = 3/b2. To verify the cancellation for such a dispersion relation, we
first note that T123−4−5 is invariant under the transformation ω(k) → ω(αk) + βk, where α �= 0 and β are
arbitrary constants. Moreover, we can introduce an extra independent variable p and set

ω(k) → ω(k, p) = k2 1 + ep

1 − ep
. (17)

The resonance surface must satisfy the equations

p4 + p5 = p1 + p2 + p3, k4 + k5 = k1 + k2 + k3,

ωk4,p4 + ωk5,p5 = ωk1,p1 + ωk2,p2 + ωk3,p3 .
(18)

The five-wave amplitude matrix now depends on 10 variables T12345 = T (k1, . . . , k5, p1, . . . , p5), and the
cancellation of this matrix on the resonance manifold was successfully verified using symbolic computation
with Maple.

We now turn our attention to the most general case and consider

T (k1, . . . , k5) = 0 (19)

as a functional equation for the unknown ω(k) with k1, . . . , k5 satisfying resonance condition (9). We recall
that if ω(k) is a solution of the functional equation, then

ω̃(k) = aω(bk) + ck (20)

is also a solution for arbitrary a, b �= 0 and c.
We formulate the following proposition.
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Proposition 1. Any solution of the functional equation that is analytic near zero and is such that

ω(0) = 0 is equal to one of the functions ω1(k) = k2, ω2(k) = k3, ω3(k) = −k2(e2k +1)/(e2k−1) = k2 coth k.

If a, b �= 0 are complex numbers, then there exists a fourth solution ω4(k) = ik2(ei2k + 1)/(ei2k − 1) =
−k2 cot k.

Proof. The idea behind the proof is to reduce functional equation (19) to an ordinary differential
equation and find solutions. We set k2 = k4 + u and k5 = k3 + v. The conservation of momentum in (9)
then leads to k1 = v − u. Considering the constraint on frequencies (conservation of energy in (9)) and
expanding in a Taylor series near u = v = 0, we now obtain

v =
ω′(k4)
ω′(k3)

u + o(u). (21)

Moreover, expanding functional equation (19) near u = v = 0 and using Eq. (21), we obtain an ordinary
differential equation that in the leading order contains a large number of terms. Without loss of generality,
assuming that ω(k) = a2k

2 + a3k
3 + . . . and expanding the ordinary differential equation near k3 = k4 = 0,

we obtain the condition a2a3 = 0, which leads to the following cases.

Case 1. Let a2 �= 0. Then a3 = 0, which implies ω(k) = k2 + a4k
4 + a5k

5 + . . . . We expand the
ordinary differential equation near k3 = 0. In the leading nontrivial order, we obtain the third-order
ordinary differential equation

− 5ω′(k4)2 + 8k4ω
′′(k4)ω′(k4) + ω′(k4)k2

4ω
′′′(k4) − 3k2

4ω
′′(k4)2 = 0, (22)

whose only solution of the form ω(k) = k2 + a4k
4 + a5k

5 + . . . is ω(k) = k2.

Case 2. Let a3 �= 0. Then a2 = 0. Without loss of generality, we assume that f(k) = k3 + a4k
4 +

a5k
5 + . . . . We again expand the ordinary differential equation near k3 = 0. In the leading nontrivial order,

we obtain the fourth-order ordinary differential equation

−4ω′(k4)2ω′′′(k4) + 12ω′(k4)2 − k4ω
′(k4)2ω′′′′(k4) − 2ω′(k4)k2

4ω
′′′(k4) +

+ 4ω′(k4)k4ω
′′(k4)ω′′′(k4) − 18k4ω

′′(k4)ω′(k4) +

+ 6ω′(k4)ω′′(k4)2 − 3ω′′(k4)3k4 + 6k2
4ω

′′(k4)2 = 0. (23)

Any solution of the form ω(k) = k3 +a4k
4 +a5k

5 + . . . is equivalent to either ω(k) = k3 or ω(k) = k2 coth k

(or ω(k) = −k2 cot k for complex constants a and b in (20)). We note that there are no nontrivial solutions
in the case where a2 = a3 = 0.

Our results indicate that the five-wave amplitude scattering matrix for Eq. (2) also vanishes for the
dispersion relation

ω(k) = ak2 cot bk − ck, (24)

where a, b, and c are constants. The resulting equation hardly has any physical sense because ω(k) = ∞ at
bk = πn. But in the limit as b → 0 with a = 3/b and c = 3/b2, the dispersion relation reduces to ω(k) = k3,
i.e., coincides with dispersion relation for the KdV model. Hence, there exists one more equation that is
possibly quite interesting. Let u = u(x, y, t) be a function of two spatial coordinates (x, y). Then ω = ω(k, p)
is given by

ω(k, p) = ak2 coth ap. (25)
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The five-wave amplitude matrix vanishes in this case. Expanding in a Taylor series for small a, we obtain
the equation

ut + uux + ∂2
x∂−1

y u = 0. (26)

The same equation can be obtained starting from ω(k, p) = ak2 cotap and expanding in a Taylor series
for small a. This equation resembles, but is not equivalent to, the Khokhlov–Zabolotskaya equation (see,
e.g., [10])

ut + uux + ∂2
y∂−1

x u = 0, (27)

which describes the propagation of a confined beam in a slightly nonlinear medium without dispersion or
absorption (see [11]).
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