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NONEQUILIBRIUM KINETICS OF THE ELECTRON�PHONONSUBSYSTEM OF A CRYSTAL IN A STRONG ELECTRIC FIELDAS A BASE OF THE ELECTROPLASTIC EFFECTV. I. Karas a;b*, A. M. Vlasenko a, V. I. Sokolenko a, V. E. Zakharov 
;daNational S
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s and Te
hnology�,National A
ademy of S
ien
es of Ukraine61108, Kharkov, UkrainebKarazin Kharkov National University61022, Kharkov, Ukraine
Lebedev Physi
al Institute, Russian A
ademy of S
ien
es119991, Mos
ow, RussiadLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiaRe
eived De
ember 25, 2014We present the results of a kineti
 analysis of nonequilibrium dynami
s of the ele
tron�phonon system of a
rystal in a strong ele
tri
 �eld based on the proposed method of numeri
ally solving a set of Boltzmann equa-tions for ele
tron and phonon distribution fun
tions without expanding the ele
tron distribution fun
tion in aseries in the phonon energy. It is shown that the ele
tri
 �eld a
tion ex
ites the ele
tron subsystem, whi
hby transferring energy to the phonon subsystem 
reates a large amount of short-wave phonons that e�e
tivelyin�uen
e the latti
e defe
ts (point, lines, boundaries of di�erent phases), whi
h results in a redistribution of andde
rease in the latti
e defe
t density, in damage healing, in a de
rease in the lo
al peak stress, and a de
reasein the degradation level of the 
onstru
tion material properties.DOI: 10.7868/S004445101509014X1. INTRODUCTIONIn the 1960s, the phenomenon of an abrupt de
reasein the plasti
 deformation resistan
e of metals in the
ase of ex
itation of their 
ondu
tivity ele
tron subsys-tem by irradiation or 
ondu
tion of the ele
tron 
urrentof a high density j = 108�109 A/m2 was dis
overed.This phenomenon has been 
alled the ele
troplasti
 ef-fe
t (EPE) [1℄. This e�e
t is already being applied inindustry in the pro
esses of drawing and rolling metal-li
 produ
ts.Sin
e then, Soviet and Ameri
an s
ientists have 
ar-ried out a series of experiments on metal deformationunder the e�e
t on ele
tri
 
urrent and also under ir-radiation of samples by a

elerated ele
trons. In thatexperiments, manifestation of the EPE under di�erent
onditions was studied and also the dependen
e of the*E-mail: karas�kipt.kharkov.ua

phenomenon intensity was as
ertained on parameterssu
h as:� kind of the sample being deformed,� temperature,� 
urrent density amplitude,� 
urrent pulse frequen
y,� 
urrent pulse duration,� 
urrent dire
tion,� dopant 
on
entration in the sample,� orientation of 
rystal samples being deformed,� deformation rate.Constru
ting an ab initio theory of the EPE is 
om-pli
ated be
ause explaning the results of experimentson 
rystal deformation under the in�uen
e of ele
tri

urrent requires taking di�erent me
hanisms of the 
ur-rent in�uen
e on the deformation pro
esses into a
-
ount. These me
hanisms in
lude:� thermi
 in�uen
e of the 
urrent, resulting in ther-mal expansion of the sample and also in softening,� skin e�e
t,573
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h e�e
t, i. e., the in�uen
e of the pressure ofthe magneti
 �eld 
reated by the 
urrent inside thesample,� ele
tron�dislo
ation intera
tion that appears inthe momentum and energy transfer to dislo
ations fromboth the ele
trons and 
olle
tive ex
itations su
h asplasmons,� phonon me
hanism: the ele
trons that gain en-ergy from the ele
tri
 �eld 
reate phonons that ex
itedislo
ation vibrations, whi
h 
an result in the dislo
a-tion depinning from stoppers.We enumerate some experimental regularities of theEPE.In its purest state, the EPE 
an be observed inmono
rystals of Zn, Cd, Sn, and Pb. If pulsed ele
-tri
 
urrent with the density j = 102�103 A/mm2 ispassed through a sample of these materials, or if thesamples are irradiated by a

elerated ele
trons (withthe energy less than the atomi
 kno
k-out thresholdfrom the latti
e node) in the slip dire
tion, then soft-ening of the samples is revealed, manifesting itself inspasmodi
 drops of deforming stress [1℄.For mono
rystals, a strongly expressed dependen
eof the e�e
t magnitude on the orientation of the sam-ples being deformed is observed. At the 
rystal ori-entations su
h that the basal slip is 
ompli
ated, themagnitude of the deforming stress drop if small and thestress from whi
h plasti
 deformation begins is large.The maximum stress drop magnitude 
an be obtainedfor medium 
rystal orientations that are 
hara
terizedby an easy basal slip. In this 
ase, the stress of thedrop start has its minimum [1℄.The EPE magnitude dependen
e on the 
urrentdensity has a threshold 
hara
ter, i. e., it be
omes ap-parent at a parti
ular value of the pulsed 
urrent den-sity. This value depends on the sort of 
rystals beingdeformed and also on the temperature and on the de-formation rate. For zin
 at T = 77 K, it is equal to400�500 A/mm2 [1℄.The temperature dependen
e is almost absent ina wide range of temperatures. For zin
, this rangeis 77�300 K. For titan, the threshold 
urrent den-sity magnitude from whi
h the e�e
t begins with
ooling from 300 to 78 K in
reases by hundreds ofA/
m2 [1℄. The EPE is sensitive to external fa
tors.The e�e
t intensity is in�uen
ed by surfa
e-a
tive me-dia. For example, the spe
i�
 
rystallographi
 shift ofamalgamated zin
 mono
rystals at the temperature of300 K and under the in�uen
e of 
urrent pulses withj = 600�1000 A/mm2, the pulse repetition frequen
y0.1�0.5 Hz, and the pulse duration tp = 10�4 s in
reasesby 50�60% [1℄.

The dopant presen
e also a�e
ts the spasmodi
metal deformation. As a result of doping, the dropmagnitude 
an in
rease by dozens of per
ents (up to100%). Within the s
ope of a relatively small substi-tutional impurity, the magnitude of the e�e
t in
reaseslinearly with the 
on
entration, as has been shown inthe experiments with zin
 doped by 
admium from10�3 to 10�1 at.% (other impurities 
ontent did not ex-
eed 2�10�3 at.%). The brittle strength of zin
 
rystalsin
reases by 50�70% depending on the dopant 
on
en-tration. This fa
t 
an be 
onne
ted with the generalin
rease in the 
riti
al shearing stress in doped 
rystals[1℄. The in
rease in the 
urrent pulse repetition fre-quen
y de
reases the deforming stress threshold valuebut also de
reases the stress drop magnitude. The pulseduration in
rease at 
onstant amplitude in
reases thedepth of stress drops. This phenomenon was registeredboth in stress relaxation tests and in 
reep tests [1℄.The main EPE regularities, revealed at mono
rys-tal deformation, 
an be observed in a weaker form alsoin experiments with poly
rystal materials. However,the EPE magnitude de
reases with stru
ture re�ne-ment and even disappears in the nano
rystal state [2℄.Hen
e, the EPE is a stru
ture-sensitive phenomenon.Similar phenomena are observed under irradiation ofthe material by pulse pa
kets of a

elerated ele
trons.Plasti
izing a
tion enhan
es with the in
rease in theele
tron energy to the atomi
 kno
kout threshold. Un-der a further energy in
rease, the intensity of the ef-fe
t de
reases at the expense of radiation strengthen-ing. The 
ombination of 
urrent a
tion and irradiationresults in the intensi�
ation of the metal strength losse�e
t [1℄.The me
hanisms 
onne
ted with the a
tion of ele
-tron wind on dislo
ations, pin
h e�e
t, and thermalin�uen
e of the 
urrent on deformation pro
esses arereviewed in detail in [1℄. It is shown that they are notsu�
ient for a quantitative explanation of the EPE.In this paper, the phonon me
hanism of the in�uen
eon dislo
ation is 
onsidered (see [3; 4℄). Some prelim-inary results of su
h studies were reported at the In-ternational Conferen
e MSS-14 �Mode Conversion, Co-herent Stru
tures, and Turbulen
e� (November 24�27,2014, Mos
ow) and were also published in the 
onfer-en
e pro
eedings [5; 6℄.The purpose of this paper is to show that the ex-perimentally observed regularities of the ele
troplasti
e�e
t 
an be explained quantitatively if we take into a
-
ount the in�uen
e of nonequilibrium phonons ex
itedby ele
trons that gain energy from the ele
tri
 �eld onthe dislo
ations.574
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s of the ele
tron�phonon subsystem : : :2. THE INFLUENCE OF PHONONS ONDISLOCATIONSPlasti
 deformation of 
rystals under the a
tion ofexternal loads is in most 
ases a

omplished by dislo
a-tion glide. The main equation des
ribing the kineti
s ofthe plasti
 deformation pro
ess is the Orovan modi�edequation (see, e. g., [7℄)_"d = bl�d�d(��); �� = � � �i; (1)where _"d is the strain rate, b is Burgers ve
tor, l isthe mean distan
e between stoppers, �d is the mobiledislo
ations density, �d(��) is the frequen
y of the stop-pers over
ome by dislo
ations, �� is the e�e
tive shearstress, and �i is the internal shearing stress in the glideplane. For thermodynami
 equilibrium, the expression�d(��; T ) has the form�d(��; T ) = �0d exp��H(��)kBT � ; (2)where kB is the Boltzmann 
onstant and T is the tem-perature. The expli
it form of the H(��) fun
tion de-pends on the potential barrier model. To 
onsider amore general 
ase where the ele
tron and phonon sub-systems are not in equilibrium in general, we use theLandau�Ho�man model [8℄. The potential pit has aparaboli
 form,U(x) = ( �x2; jxj � x
r;0; jxj > x
r; �x2
r = U0: (3)The displa
ement of the dislo
ation segment oflength L under the stress � is des
ribed in the approxi-mation of elasti
 string vibrations (the Granato�Lü
kemodel [8; 9℄):M�2u�t2 +B�u�t � C �2u�y2 = b� + f(t): (4)Here, u(y; t) is the displa
ement of the dislo
ation lineat a point y in the dire
tion x, M = �b2=2 is the e�e
-tive mass of the length unit, � is the material density,B is the 
oe�
ient of the dynami
 fri
tion for
e perunit length, C = Gb2=2 is the linear tension of thestring, G is the shear modulus, and f(t) is the for
e ofthe random pushes exerted by the 
rystal on the unitdislo
ation length. The boundary 
onditions areu0(0; t) = ku(0; t); �u0(L; t) = ku(L; t);k = 2�C : (5)The equation is linear, and therefore its solution 
anbe written as a sumu(y; t) = ust(y) + uos
(y; t);

where ust(y) is the stati
 de�e
tion 
aused by the ex-ternal stress �, and uos
(y; t) stands for the os
illationsunder the a
tion of a random for
e:ust(y) = by(L� y)2C + bL�2Ck ;uos
(y; t) = NXn=1Qn(t)�sin(qny) + qnk 
os(qny)� ;
tg(qny) = q2n � k22qnk : (6)The quantity Qn(t) satis�es the equationM �Qn(t) +B _Qn(t) +M!2nQn(t) = fn(t);!2n = q2n CM : (7)We 
onsider a ��xing point� at y = 0. Let the seg-ment lengths on both sides of it be equal to L. Thenthe total de�e
tion at the ��xing point� is~u(0; t) = 2ust(y)+2uos
(y; t) = ~ust(y)+ ~uos
(y; t): (8)The 
ase of a random for
e was 
onsidered in [10℄. Wenow provide some of the 
al
ulations for the referen
epurpose. If a random event su
h that Æ~u(0; t) � Æ~u
ro

urs at some instant, then the 
ondition of over
om-ing the obsta
le in the dire
tion on the loading a
tionis satis�ed. Let fn(t) be a stationary Gauss pro
ess.Be
ause Eq. (7) is linear, Qn(t) and a

ordingly ~u(0; t)is also a stationary Gauss pro
ess, for whi
h the meannumber of the instan
es of ex
eeding a parti
ular valueÆ~u
r per unit time is� = 12�s�	00(0)	(0) exp�� Æ~u2
r2	(0)� ; (9)	(�) = 2 ~nXn=1 q2nk2Qn(t)Qn(t+ �) � 2 ~nXn=1 q2nk2 (�); (10)Æ~u
r = x
r � bL�Ck = x
r �1� ��
r� ;�
r � Ckx
rbL ; (11)where 	(�) is the 
orrelation fun
tion of the randompro
ess Æ~u(0; t) expressed by means of the 
orrelationfun
tion  (�) of the random pro
ess Qn(t); 	00(0) isthe se
ond derivative with respe
t to � at � = 0. Forthe Fourier 
omponents (Qn)! of Qn(t), we 
an write (�) = 1Z�1 (Qn)2!e�i!�d!; (12)575
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h harmoni
 
an be formally 
onsidered an indepen-dent vibrator with the fri
tion � and frequen
y !n,m �Q+ � _Q+m!2nQ = F; (14)where m is the proportionality 
oe�
ient between thegeneralized momentum and the velo
ity _Q, � is thefri
tion 
oe�
ient, and F is the random for
e [11℄. Wehavem =ML�n2 ; � = BL�n2 ; F = fnL�n2 ;�n = 1� 2kL + q2nk2 : (15)For the Fourier 
omponent, we hen
e obtain the for-mula (Qn)2! = (F!)2m2(!2n � !2)2 + �2!2 : (16)The random for
e spe
tral density 
an be found fromthe expression [8℄(F!)2 = �� ~!�12 +N(!)� : (17)Hen
e, to estimate the for
e exerted by phonons ondislo
ations, we must �rst �nd the phonon distributionfun
tion N(!).3. KINETIC EQUATIONSIn some works on the ele
tron�phonon subsystemdynami
s in metal �lms, an assumption about theFermi form of the isotropi
 part of the ele
tron distri-bution fun
tion with time-dependent temperature wasused [12℄. Here, we do not make that assumption, andtherefore the distribution fun
tions 
an be not ther-modynami
ally equilibrium in general. In that 
ase,the behavior of ele
trons and phonons is des
ribed bymeans of distribution fun
tions.To des
ribe the ele
tron�phonon system nonequilib-rium dynami
s, it is ne
essary to solve a set of kineti
Boltzmann equations for the ele
tron and phonon dis-tribution fun
tions. For the ele
tron distribution fun
-tion, the Boltzmann equation has the form�f�t + � �f�r + �f�p dpdt = Iee + Iep + Ied; (18)dpdt = eE(r; t); (19)

where � is the velo
ity, p is the momentum, t is time,r is the radius ve
tor, E is the ele
tri
 �eld strength,and e is the ele
tron 
harge. Here and hereafter, weassume that the magneti
 �eld is absent. We assumethat the ele
tri
 �eld and the ele
tron and phonon dis-tribution fun
tions are spatially uniform and that theele
tron distribution fun
tion isotropization o

urs asa result of ele
tron�defe
t 
ollisions. In this 
ase, we
an negle
t the umklapp pro
esses.In (18), Iee is the ele
tron�ele
tron 
ollision inte-gral. In the general 
ase of quantum me
hani
s, it hasthe form [13�15℄Iee = 2(2�~)6 Z dp1dp2dp3W (p;p1jp2;p3)�� [f(p2)f(p3) (1� f(p1)) (1� f(p)) �� f(p)f(p1) (1� f(p2)) (1� f(p3))℄�� Æ("+ "1 � "2 � "3)Æ(p+ p1 � p2 � p3); (20)where f(p) are the o

upation numbers andW (p;p1jp2;p3) = (2�~)32e4 �jp1�p3j2+a21��2 (21)is the matrix element that des
ribes the s
reened
oulomb intera
tion, whereW (p;p1jp2;p3) is the tran-sition probability for ele
trons with momenta p2 andp3 to the state with momenta p and p1 as a result of
ollision. For relatively small ele
tri
 �elds, the 
on-tribution from ele
tron�ele
tron 
ollisions is mu
h lessthan the 
ontribution from the ele
tron�phonon inter-a
tion, and we therefore do not take the ele
tron�ele
t-ron 
ollisions at short time intervals into a

ount inwhat follows. As was shown in [4℄, the role of theele
tron�ele
tron 
ollision integral amounts to a redis-tribution of the energy a
quired by ele
trons from theele
tri
 �eld. The lower estimate for the 
hara
teristi
ele
tron�ele
tron relaxation time 
an be obtained fromthe heat balan
e equationE2�S �ee = �
pÆTand it turns out to be greater than the 
hara
teristi
time of the ele
tron�phonon relaxation. Here, E is theele
tri
 �eld intensity, �S is the spe
i�
 residual resis-tan
e measured in experiment (3 � 10�8 Ohm �m, whilethe spe
i�
 resistan
e 
aused by the ele
tron�phonon
ollisions is several orders less), 
p is the spe
i�
 heat
apa
ity at 
onstant pressure (in our 
ase, it is approx-imately equal to 25 J�kg�1 � K�1), � is the density ofour material, ÆT is the in
rease in temperature, whi
his 
omparable to our initial temperature, and Iep is theele
tron�phonon 
ollision integral [13�15℄:576
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s of the ele
tron�phonon subsystem : : :Iep = Z dqw(q) fÆ ("(p+ q)� "(p)� ~
(q)) �� [f(p+ q) (1� f(p)) (N(q) + 1) �� f(p) (1� f(p+ q))N(q)℄ ++ Æ ("(p� q)� "(p) + ~
(q)) �� [f(p� q) (1� f(p))N(q)� f(p) �� (1� f(p� q)) (N(q) + 1)℄g : (22)Next, Ied is the ele
tron�impurity and ele
tron�defe
t
ollision integral. It 
an be obtained by setting ~
 = 0and N = 0 in Iep:Ied = Z dp0 wed(p0 � p)Æ ("(p0)� "(p))�� ff(p0)� f(p)g : (23)The phonon distribution fun
tion also satis�es the ki-neti
 equation�N(q)�t + �q �N(q)�r = Ipe + Ipp + Ipd; (24)where Ipe is the phonon�ele
tron 
ollision integ-ral [13�15℄Ipe = Z dpw(q) fÆ ("(p+ q)� "(p)� ~
(q)) �� [f(p+ q) (1� f(p)) (N(q) + 1)℄�� f(p) (1� f(p+ q))N(q)g : (25)The phonon�phonon and phonon�defe
t 
ollisionintegrals in the � -approximation have the followingform. The phonon�phonon 
ollision integral isIpp = ��pp(q) [N(q)�NT (q)℄ ;�pp(q) = �pp0q2; �pp0 = T 3saT 4DM
 ; (26)where s is the transverse sound velo
ity,M
 is the atommass, a is the latti
e 
onstant, and TD is the Debyetemperature. The phonon�defe
t 
ollision integral isIpd = ��pd(q) hN(q)�N(q) i ; (27)where NT (q) = �exp ~
T � 1��1is the thermodynami
ally equilibrium phonon distribu-tion fun
tion (the Bose�Einstein fun
tion), andN(q) = 14� Z N(q) dOis the phonon distribution fun
tion averaged over an-gles.

Be
ause the ele
tron�impurity, ele
tron�defe
t, andele
tron�phonon 
ollisions result in the distributionfun
tion isotropization, we seek it in the form of a sumof an isotropi
 fun
tion and a small anisotropi
 addi-tion: f(p; t) = f ("(p); t) + f1 ("(p); t) pp ; (28)w(q) = w0q; w0 = "21A2(2�~)2~�s; ~
(q) = sq; (29)where "1A is the deformation potential 
onstant, whi
hin our parti
ular model 
ase is equal to 2"F=3, with "Fbeing the Fermi energy. We �nally obtainIpp = ��pd0q [N(q)�NT (q)℄ ; (30)Ied�f1(")pp� = ��edf1(")pp ; �ed = �sne2m ; (31)where m is the e�e
tive ele
tron mass and �ed == 3 � 1013 s�1 is the ele
tron�impurity 
ollision fre-quen
y, whi
h in the given 
ase (of low tempera-tures) determines the ele
tron distribution fun
tionisotropization. Also,Iep �f1(")pp� = ��(")f1(")pp ;�(") = �w0pm"3 p8m"Z0 dq q3 �N(q) + 12� : (32)For the anisotropi
 addition, we have the equation�f1�t pp � eE� �f0�" pp = ��edf1(")pp : (33)The ele
tron�phonon 
ollision frequen
y �ep = 1:18 �� 1010 s�1 is mu
h less than the ele
tron�defe
t 
olli-sion frequen
y. Collisions with defe
ts and impuritieso

ur very often, at a time s
ale that is small 
om-pared to the 
hara
teristi
 time of the intera
tion ofphonons with ele
trons, and therefore the anisotropi
addition 
an be 
onsidered stationary and spatially uni-form. For this statement to be true, the impurity 
on-
entration must be mu
h greater than the 
on
entra-tion at whi
h the ele
tron�defe
t 
ollision frequen
y isequal to the ele
tron�phonon 
ollision frequen
y. Inour 
ase, this 
on
entration has to be greater than1:77 � 1017 
m�3, that is, several orders less than forthe 
onsidered experiments. As a result, we obtain the�nal set of two equations for the isotropi
 ele
tron anda
ousti
 phonon distribution fun
tions [3; 4; 16℄, whi
hhas to be solved without expanding the ele
tron distri-bution fun
tion in a Taylor series:10 ÆÝÒÔ, âûï. 3 (9) 577



V. I. Karas, A. M. Vlasenko, V. I. Sokolenko, V. E. Zakharov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015�f�~t � 4�~" 1~"1=2 ��~" �~"3=2 �f�~" � = 18 ��5=2 ��8><>: 1p~" "�Zp~" d~"ph~"2ph [f (~"� ~"ph)N(~"ph) ++ f(~") (f(~"� ~"ph)�N(~"ph)� 1)℄ ++ 1p~" "+Z0 d~"ph~"2ph [f (~"+ ~"ph) (N(~"ph) + 1) �� f(~") (f (~"+ ~"ph) +N(~"ph))℄9>=>; ; (34)�N(q)�~t = 12� 1Z"0 d~" [(f(~"+ ~"ph)� f(~"))N(~"ph) ++ f(~"+ ~"ph) (1� f(~"))℄ : (35)Here,� = ms22kBTe ; �~" = e2E2�ep06m�edkBTe ; ~" = "kBTe ;~"ph = "phkBTe ; ~t = t�ep0 ;�ep0 = (2�~)3~��m3s"21A = 3:446 � 10�7 s:The integration limits, whi
h are obtained in a

or-dan
e with the energy 
onservation law, are"� = min h4�p~"�� �� ; ~"phDi ;"+ = min h4�p~"�+ �� ; ~"phDi ;"0 = ~"2ph16� � ~"ph2 + �: (36)The distribution fun
tions of ele
trons f(") andphonons N(q) are dimensionless quantities that satisfythe normalization 
onditions12�2 �2m~2 �3=2 1Z0 "1=2f(") d" = n; (37)where n is the ele
tron density in the valen
e band (formetals, also the 
ondu
tivity band, be
ause it is onlypartially �lled),12�2 1~3 qDZ0 q2N(q) dq <1; (38)

where qD = �~a (39)is the Debye phonon momentum. Condition (38) ex-presses the fa
t that the number of phonons does nothave to be 
onserved. All quantities are taken forni
kel: s = 2:96 � 105 
m/s is the transverse sound ve-lo
ity, n = 2:5 � 1022 
m�3 is the 
ondu
tivity ele
-tron 
on
entration, a = 3:5 � 10�8 
m, and ��1s == 0:333 � 106 S/
m.The thermodynami
ally equilibrium ele
tron en-ergy distribution fun
tion is the Fermi�Dira
 fun
tionf0(") = �exp "� "FkbTe + 1��1 : (40)For ni
kel, "F = 5 � 10�19 J.4. NUMERICAL SOLUTION OF THE SET OFKINETIC EQUATIONS FOR ELECTRONAND PHONON DISTRIBUTIONFUNCTIONSFor the numeri
al solution of Eqs. (34), (35), the �-nite-di�eren
e method of the �rst-order approximationover time and se
ond-order over spatial 
oordinates wasused. System (34), (35) was represented by the follow-ing set of di�eren
e equations [17℄:f�+1i � f�i~� = 6�~"f�+1i+1 � f�+1i�12~~" ++ 4~"i�~"f�+1i+1 � 2f�+1i + f�+1i�1~2~" + Ji; (41)Ji = 18p~"i�5 12 8<:Xj=0 h~"ph ~"2phj �� [f�kNj + f�i (f�k �Nj � 1)℄ ++Xj=0 h~"ph ~"2phj [f�l (Nj + 1)� f�l (f�l +Nj)℄ ++Xj=0 h~"ph ~"2phj+1 �f�k�1Nj+1+f�i (f�k�1�Nj+1�1)�++Xj=0 h~"ph ~"2phj+1 �f�l+1(Nj+1 + 1) �� f�i (f�l+1 +Nj+1)�9=; ; (42)N�+1j �N�j~� = 12� 12Xi h~" �(f�k � f�i )N�j ++ f�k (1�f�i )+(f�k+1 � f�i+1)N�j +f�k+1(1�f�i+1)� ; (43)578
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e of the ele
tron distribution fun
-tion de
imal logarithm on the dimensionless ele
tronmomentum ~p at E = 1:68 V/
m for di�erent time in-stants t = 0 (1 ), 1 (2 ), 5 (3 ), 10 (4 ), 15 (5 ), 20 (6 )
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Fig. 2. Dependen
e of the ele
tron distribution fun
-tion de
imal logarithm on the dimensionless ele
tronmomentum at E = 33:6 V/
m for di�erent timeinstants t = 0:25 (1 ), 0:5 (2 ), 0:75 (3 ), 1 (4 ),1:25 (5 )f�k = f �~"i � ~"phj� ; f�l = f �~"i + ~"phj� : (44)The summation limits are determined from (26). Gridsteps were 
hosen su
h that~"i � ~"phj = ~"k; ~"i + ~"phj = ~"l; (45)
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e of the phonon distribution fun
-tion times the dimensionless phonon momentum ~q
ubed on the dimensionless phonon momentum atE = 1:68 V/
m for di�erent time instants t = 0 (1 ),1 (2 ), 5 (3 ), 10 (4 ), 15 (5 ), 20 (6 )
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Fig. 4. Dependen
e of the phonon distributionfun
tion times the dimensionless phonon momen-tum 
ubed on the dimensionless phonon momen-tum at E = 33:6 V/
m for di�erent time instantst = 0:25 (1 ), 0:5 (2 ), 0:75 (3 ), 1 (4 ), 1:25 (5 )where k and l are natural numbers. As a result ofthe 
al
ulations, the ele
tron and phonon distributionfun
tions were found.In Fig. 1 and Fig. 2, we presented the dependen
e of579 10*
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Fig. 5. Dependen
e of the phonon distribution fun
-tion on the dimensionless phonon momentum atE = 16:8 V/
m for di�erent time instants t = 0 (1 ),0:25 (2 ), 0:5 (3 ), 0:75 (4 ), 1 (5 ), 1:25 (6 )the ele
tron distribution fun
tion de
imal logarithm onthe dimensionless ele
tron momentum for different timeinstants and two values of the ele
tri
 �eld strength:1.68 V/
m and 33.6 V/
m. In Figs. 3 and 4, we presentthe dependen
e of the phonon distribution fun
tiontimes the dimensionless phonon momentum 
ubed onthe dimensionless momentum. The 
urves illustrateuninterrupted growth of the number of high-energyele
trons and phonons with time. The 
urves for theinstant t = 0 
orrespond to equilibrium distributionfun
tions. In parti
ular, the phonon distribution fun
-tion times the dimensionless phonon momentum 
ubedfor the ele
tri
 �eld strength 33.6 V/
m at the instant(t = 1:0) of an order less than for the �eld 1.68 V/
m(t = 10) is more than 66 times greater. For the samevalues of t and of the ele
tri
 �eld strengths, the valuesof the ele
tron momentum at whi
h the ele
tron distri-bution fun
tion equals 10�30 di�er by 1.23 times. Here,10�30 is the value of the ele
tron distribution fun
tionat whi
h we terminate our grid. It does not have anyspe
i�
 meaning.For 
larity, in Fig. 5, we present a dependen
e of thephonon distribution fun
tion on the dimensionless mo-mentum at the ele
tri
 �eld strength E = 16:8 V/
mfor di�erent time instants.To estimate the in�uen
e on the plasti
 deforma-tion, we plot the dependen
e
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Fig. 6. Dependen
e of the ratio (F~q)2=(F~q0)2 on thedimensionless phonon momentum for di�erent time in-stants t = 0:25 (1 ), 0:5 (2 ), 0:75 (3 ), 1 (4 ), 1:25 (5 )at E = 16:8 V/
m(F~q)2(F~q0 )2 = 1=2 +N(~q)1=2 +N0(~q) ; (46)where N0(~q) is the Bose�Einstein fun
tion for the tem-perature 32 K, i. e., 12 K more than the initial tem-perature, and N(~q) is the phonon distribution fun
tionfound as a result of numeri
al 
al
ulations. For themost part, the heating in the experiments in [1℄ didnot ex
eed 0.5�3 K.From Fig. 6 and Fig. 7 we 
an see that the for
eexerted by phonons upon dislo
ation is greater than in
ase of simple heating and it has trend to grow withtime. 5. COMPARISON WITH THEEXPERIMENTAL RESULTSFigure 8 presents the dependen
e of the phonon dis-tribution fun
tion times the dimensionless phonon mo-mentum 
ubed on the dimensionless momentum in thedouble logarithmi
 s
ale for di�erent situations:� thermodynami
 equilibrium phonon distributionfun
tions at 20 K (
urve 1 ) and 32 K (
urve 2 ),� the nonequilibrium phonon distribution fun
tionobtained as a result of numeri
al 
al
ulations at theele
tri
 �eld strength E = 16:8 V/
m for the instantt = 2:5 (
urve 3 ).The value of the loading drop was found in the fol-lowing order. First, we substitute the obtained values580
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Fig. 7. Dependen
e of the ratio (F~q)2=(F~q0 )2 on thedimensionless phonon momentum for di�erent time in-stants t = 0:25 (1 ), 0:5 (2 ), 0:75 (3 ), 1 (4 ), 1:25 (5 )at E = 33:6 V/
m
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Fig. 8. Dependen
e of the phonon distribution fun
-tion times the dimensionless phonon momentum 
ubedon the dimensionless ele
tron momentum. Curve 1 and
urve 2 refer to the respe
tive equilibrium state at 20 Kand 32 K. Curve 3 is for the phonon distribution fun
-tion obtained as a result of numeri
al 
al
ulations forthe ele
tri
 �eld E = 16 V/
m at the instant t = 2:5

of the phonon distribution fun
tion in formula (17) and�nd the random for
e spe
tral density. Then we sub-stitute this result in (16) and �nd(Qn)2! = (�=�)~!(1=2 +N(!))m2(!2n � !2)2 + �2!2 : (47)Knowing (Qn)2!, we 
al
ulate the 
orrelation fun
-tion  (0) and its se
ond derivative using formula (12): (0; N(!)) == lim�!0 1Z�1 (�=�)~!(1=2+N(!))m2(!2n�!2)2+�2!2 e�i!�d!; 00 (0; N(!)) == � lim�!0 1Z�1 (�=�)~!3(1=2+N(!))m2(!2n�!2)2+�2!2 e�i!�d!: (48)
After that, we �nd 	(�) and 	00(0) using (10):	(0; N(!)) = 2 ~nXn=1 q2nk2 (0; N(!)) ; (49)	00(0; N(!)) = 2 ~nXn=1 q2nk2 00 (0; N(!)) : (50)After substituting (9) in (1), we have the following rela-tion that allows us to �nd Æ~u2
r when all other quantitiesare known:_"d = bl�d 12�s�	00 (0; N(!))	 (0; N(!)) �� exp�� Æ~u2
r2	 (0; N(!)) � ; (51)Æ~u
r (N(!)) ==vuut2	 (0; N(!)) ln bl�d2� _"ds�	00 (0; N(!))	 (0; N(!)) !: (52)Finally, we �nd � from (11):� = �
r �1� Æ~u
r(N(!))x
r � ; (53)�� (N(!)) = �ext � � (N(!)) : (54)The 
al
ulation results and experimental data were
ompared for ni
kel at the following values of ex-perimental parameters: the applied external stress�ext = 68:885 MPa, _"d = 1:19 � 10�4 s�1, b == 3:52 � 10�8 
m, and the produ
t l�d = 435 
m�1,581
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Fig. 9. Dependen
e of the loading drop �� on the
urrent density j. Squares are the experimental dataprovided by Troitsky [1℄. Triangles 
orrespond to theexperiments of Lebedev [18℄. Crosses 
orrespond to ourresults based on the Granato�Lü
ke and Landau�Ho�-man model with the phonon distribution fun
tion at thetime instant t = 2:5�s for the ele
tri
 �eld strengths1:6, 2, 4, 8, 16 V/
m. Empty 
ir
les are the results forthe instant t = 15�s for the ele
tri
 �eld strength 1:6,2, 4 V/
mU0 = 3:34 � 10�19 J, x
r = 0:2b, L = 3:5 � 10�5 
m, andB = 2 � 10�10 N � s � 
m02.Figure 9 
learly demonstrates that our approa
hgives results that are of the same order with experi-mental data. The expe
ted loading drop in the 
ase ofheating under the 
onditions of thermodynami
 equi-librium is several orders less that the loading drop ob-served in experiments. That is why we do not evenput it on the �gure. The loading drop that was 
al
u-lated using the obtained data must be 
onsidered as alower estimate be
ause the time instants at whi
h the
al
ulation was �nished are several times less than the
urrent pulse duration in the experiments.6. CONCLUSIONSWe have performed a kineti
 analysis of nonequi-librium dynami
s of the ele
tron�phonon system of a
rystal in a strong ele
tri
 �eld. A method for nu-meri
ally solving kineti
 Boltzmann equations for theele
tron and phonon distribution fun
tion without ex-panding the ele
tron distribution fun
tion in a seriesin the phonon energy is proposed. It has been shown

that under the in�uen
e of a strong ele
tri
 �eld, theele
tron distribution fun
tion be
omes nonequilibriumin the vi
inity of the Fermi energy and the in�uen
e ofele
tron�phonon 
ollisions be
omes 
omparable to thein�uen
e of the �eld. The phonon distribution fun
-tion is �heated� while remaining nonequilibrium in theregion of long-wave phonons.Basing on the Granato�Lü
ke and Landau�Ho�manmodel and using the 
al
ulated phonon distributionfun
tion, we have shown that the for
e of the a
tionof the phonons on the dislo
ations is greater than itwould be in the 
ase of thermodynami
 equilibrium atheating by 12 K. Previous results were de�ned morepre
isely. The 
onditions of the appli
ability of theTaylor expansion of the ele
tron distribution fun
tionin the phonon energy depending on the temperaturehave been obtained.This paper is �nan
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