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We present the results of a kinetic analysis of nonequilibrium dynamics of the electron—phonon system of a
crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equa-
tions for electron and phonon distribution functions without expanding the electron distribution function in a
series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which
by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively
influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and
decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease
in the degradation level of the construction material properties.
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1. INTRODUCTION

In the 1960s, the phenomenon of an abrupt decrease
in the plastic deformation resistance of metals in the
case of excitation of their conductivity electron subsys-
tem by irradiation or conduction of the electron current
of a high density j = 10%-10° A/m? was discovered.
This phenomenon has been called the electroplastic ef-
fect (EPE) [1]. This effect is already being applied in
industry in the processes of drawing and rolling metal-
lic products.

Since then, Soviet and American scientists have car-
ried out a series of experiments on metal deformation
under the effect on electric current and also under ir-
radiation of samples by accelerated electrons. In that
experiments, manifestation of the EPE under different
conditions was studied and also the dependence of the
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phenomenon intensity was ascertained on parameters
such as:

— kind of the sample being deformed,

— temperature,

— current density amplitude,

— current pulse frequency,

— current pulse duration,

— current direction,

— dopant concentration in the sample,

— orientation of crystal samples being deformed,

— deformation rate.

Constructing an ab initio theory of the EPE is com-
plicated because explaning the results of experiments
on crystal deformation under the influence of electric
current requires taking different mechanisms of the cur-
rent influence on the deformation processes into ac-
count. These mechanisms include:

— thermic influence of the current, resulting in ther-
mal expansion of the sample and also in softening,

— skin effect,
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— pinch effect, i.e., the influence of the pressure of
the magnetic field created by the current inside the
sample,

— electron—dislocation interaction that appears in
the momentum and energy transfer to dislocations from
both the electrons and collective excitations such as
plasmons,

— phonon mechanism: the electrons that gain en-
ergy from the electric field create phonons that excite
dislocation vibrations, which can result in the disloca-
tion depinning from stoppers.

We enumerate some experimental regularities of the
EPE.

In its purest state, the EPE can be observed in
monocrystals of Zn, Cd, Sn, and Pb. If pulsed elec-
tric current with the density j = 102-10° A/mm? is
passed through a sample of these materials, or if the
samples are irradiated by accelerated electrons (with
the energy less than the atomic knock-out threshold
from the lattice node) in the slip direction, then soft-
ening of the samples is revealed, manifesting itself in
spasmodic drops of deforming stress [1].

For monocrystals, a strongly expressed dependence
of the effect magnitude on the orientation of the sam-
ples being deformed is observed. At the crystal ori-
entations such that the basal slip is complicated, the
magnitude of the deforming stress drop if small and the
stress from which plastic deformation begins is large.
The maximum stress drop magnitude can be obtained
for medium crystal orientations that are characterized
by an easy basal slip. In this case, the stress of the
drop start has its minimum [1].

The EPE magnitude dependence on the current
density has a threshold character, i.e., it becomes ap-
parent at a particular value of the pulsed current den-
sity. This value depends on the sort of crystals being
deformed and also on the temperature and on the de-
formation rate. For zinc at T = 77 K, it is equal to
400-500 A /mm? [1].

The temperature dependence is almost absent in
a wide range of temperatures. For zinc, this range
is 77-300 K. For titan, the threshold current den-
sity magnitude from which the effect begins with
cooling from 300 to 78 K increases by hundreds of
A/cm? [1]. The EPE is sensitive to external factors.
The effect intensity is influenced by surface-active me-
dia. For example, the specific crystallographic shift of
amalgamated zinc monocrystals at the temperature of
300 K and under the influence of current pulses with
j = 600-1000 A/mm?, the pulse repetition frequency
0.1-0.5 Hz, and the pulse duration t, = 10™* s increases
by 50-60 % [1].
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The dopant presence also affects the spasmodic
metal deformation. As a result of doping, the drop
magnitude can increase by dozens of percents (up to
100 %). Within the scope of a relatively small substi-
tutional impurity, the magnitude of the effect increases
linearly with the concentration, as has been shown in
the experiments with zinc doped by cadmium from
1073 to 107! at. % (other impurities content did not ex-
ceed 2:1072 at. %). The brittle strength of zinc crystals
increases by 50-70 % depending on the dopant concen-
tration. This fact can be connected with the general
increase in the critical shearing stress in doped crystals
[1]. The increase in the current pulse repetition fre-
quency decreases the deforming stress threshold value
but also decreases the stress drop magnitude. The pulse
duration increase at constant amplitude increases the
depth of stress drops. This phenomenon was registered
both in stress relaxation tests and in creep tests [1].

The main EPE regularities, revealed at monocrys-
tal deformation, can be observed in a weaker form also
in experiments with polycrystal materials. However,
the EPE magnitude decreases with structure refine-
ment and even disappears in the nanocrystal state [2].
Hence, the EPE is a structure-sensitive phenomenon.
Similar phenomena are observed under irradiation of
the material by pulse packets of accelerated electrons.
Plasticizing action enhances with the increase in the
electron energy to the atomic knockout threshold. Un-
der a further energy increase, the intensity of the ef-
fect decreases at the expense of radiation strengthen-
ing. The combination of current action and irradiation
results in the intensification of the metal strength loss
effect [1].

The mechanisms connected with the action of elec-
tron wind on dislocations, pinch effect, and thermal
influence of the current on deformation processes are
reviewed in detail in [1]. It is shown that they are not
sufficient for a quantitative explanation of the EPE.
In this paper, the phonon mechanism of the influence
on dislocation is considered (see [3,4]). Some prelim-
inary results of such studies were reported at the In-
ternational Conference MSS-14 “Mode Conversion, Co-
herent Structures, and Turbulence” (November 24-27,
2014, Moscow) and were also published in the confer-
ence proceedings [5, 6].

The purpose of this paper is to show that the ex-
perimentally observed regularities of the electroplastic
effect can be explained quantitatively if we take into ac-
count the influence of nonequilibrium phonons excited
by electrons that gain energy from the electric field on
the dislocations.
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2. THE INFLUENCE OF PHONONS ON
DISLOCATIONS

Plastic deformation of crystals under the action of
external loads is in most cases accomplished by disloca-
tion glide. The main equation describing the kinetics of
the plastic deformation process is the Orovan modified
equation (see, e.g., [7])

Eq = blpdl/d(a*), ot =0 — o0y, (1)

where é4 is the strain rate, b is Burgers vector, [ is
the mean distance between stoppers, pg is the mobile
dislocations density, v4(c*) is the frequency of the stop-
pers overcome by dislocations, o* is the effective shear
stress, and o; is the internal shearing stress in the glide
plane. For thermodynamic equilibrium, the expression
vq(o*,T) has the form

(2)

va(o*,T) —Z/dexp< HW)),

kT
where kg is the Boltzmann constant and 7" is the tem-
perature. The explicit form of the H(o*) function de-
pends on the potential barrier model. To consider a
more general case where the electron and phonon sub-
systems are not in equilibrium in general, we use the
Landau-Hoffman model [8]. The potential pit has a
parabolic form,

Ul(z) :{ gx ’

The displacement of the dislocation segment of
length L under the stress ¢ is described in the approxi-
mation of elastic string vibrations (the Granato-Liicke
model [8,9]):

2 2

M‘;?+ ‘?t‘ C%—ba+f() (4)
Here, u(y, t) is the displacement of the dislocation line
at a point y in the direction x, M = pb*/2 is the effec-
tive mass of the length unit, p is the material density,
B is the coefficient of the dynamic friction force per
unit length, C' = Gb?/2 is the linear tension of the
string, G is the shear modulus, and f(¢) is the force of
the random pushes exerted by the crystal on the unit
dislocation length. The boundary conditions are

|JU| < Z¢r, 2
cr

|z| > = =t G

u'(0,t) = ku(0,t), —u'(L,t) = ku(L,t),
S (5)
k — E-

The equation is linear, and therefore its solution can
be written as a sum

U(y, t) = ust(y) + U/osc(ya t),

where ug (y) is the static deflection caused by the ex-
ternal stress o, and w,sc(y, t) stands for the oscillations
under the action of a random force:

by(L y) N bLo

ust(y) = SR
N
Uopse y, Z (Sln qny) + ? COS(Qny)) (6)
2
ctg(gny) = q’;q —.

The quantity @,,(t) satisfies the equation

MQn(t) + BQn(t) + Mw%@n(t) = fal(t),
2 _ 2 C (7)
Wy = nﬁ

We consider a “fixing point” at y = 0. Let the seg-
ment lengths on both sides of it be equal to L. Then
the total deflection at the “fixing point” is

@(0,t) = 2ust(y) + 2uosc (Y, ) = st (y) +Tosc(y, t). (8)

The case of a random force was considered in [10]. We
now provide some of the calculations for the reference
purpose. If a random event such that da(0,t) > 0.,
occurs at some instant, then the condition of overcom-
ing the obstacle in the direction on the loading action
is satisfied. Let f,(t) be a stationary Gauss process.
Because Eq. (7) is linear, @, (¢) and accordingly @(0, t)
is also a stationary Gauss process, for which the mean
number of the instances of exceeding a particular value
Oller per unit time is

(U - {_ Oy, } )

271' ‘I’(O) 2‘1’(0)
g2 n_ooo
U(r)=2)" 22 Qn(O)Qn(t +7) =2 > w2 ¥(), (10)
n=1 n=1
5acr Ter bOL]: = Zer <1 d ) )
Ocr (11)
_ Ckxer
Ocr = oL’

where U(7) is the correlation function of the random
process 0t(0,t) expressed by means of the correlation
function (1) of the random process Q,(t); ¥"(0) is
the second derivative with respect to 7 at 7 = 0. For
the Fourier components (@, ). of @, (t), we can write

Y(1) = /(Qn)ie_i‘”dw, (12)
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2
w

where (@)
(Qn)w(Qn)w = (Qn)ié(w + WI)~

Each harmonic can be formally considered an indepen-
dent vibrator with the friction y and frequency w,,,

is defined by the relation

(13)

mQ +xQ + mw?Q = F, (14)

where m is the proportionality coefficient between the
generalized momentum and the velocity @, y is the
friction coefficient, and F' is the random force [11]. We
have

_ L _ pLén _ . L&
m = e - e F= n-_ o
2 2 2
—1- 24+
&n kL * k2

For the Fourier component, we hence obtain the for-

mula )
(Fu)

m2 (w% _ w2)2 + X2w2 .

2

w =

(@n)

The random force spectral density can be found from
the expression [§]
).

Hence, to estimate the force exerted by phonons on
dislocations, we must first find the phonon distribution
function N(w).

(16)

1
~+N

. (1)

(. = o (

3. KINETIC EQUATIONS

In some works on the electron—phonon subsystem
dynamics in metal films, an assumption about the
Fermi form of the isotropic part of the electron distri-
bution function with time-dependent temperature was
used [12]. Here, we do not make that assumption, and
therefore the distribution functions can be not ther-
modynamically equilibrium in general. In that case,
the behavior of electrons and phonons is described by
means of distribution functions.

To describe the electron—phonon system nonequilib-
rium dynamics, it is necessary to solve a set of kinetic
Boltzmann equations for the electron and phonon dis-
tribution functions. For the electron distribution func-
tion, the Boltzmann equation has the form

of ~of of dp _

ot VVar taop ar ~ Lee Tlept L (18)
dp _
E = eE(r,t), (19)
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where v is the velocity, p is the momentum, ¢ is time,
r is the radius vector, E is the electric field strength,
and e is the electron charge. Here and hereafter, we
assume that the magnetic field is absent. We assume
that the electric field and the electron and phonon dis-
tribution functions are spatially uniform and that the
electron distribution function isotropization occurs as
a result of electron—defect collisions. In this case, we
can neglect the umklapp processes.

In (18), I.. is the electron—electron collision inte-
gral. In the general case of quantum mechanics, it has
the form [13-15]

2
I, = W /dpldPZdP3W(P7P1|P27P3) X

x [f(p2)f(p3) (1= f(p1)) (1= f(p)) —
— fP)f(p1) (1= f(p2)) (1 = f(p3))] x

x d(e+e1 —e2—£3)0(p+p1 — P2 —P3), (20)

where f(p) are the occupation numbers and

)
W (p,p1|p2, p3) = (27h)*2¢” (|P1—p3|2+a%) (21)

is the matrix element that describes the screened
coulomb interaction, where W (p, p1|p2, P3) is the tran-
sition probability for electrons with momenta p» and
p3 to the state with momenta p and p; as a result of
collision. For relatively small electric fields, the con-
tribution from electron—electron collisions is much less
than the contribution from the electron—phonon inter-
action, and we therefore do not take the electron—elect-
ron collisions at short time intervals into account in
what follows. As was shown in [4], the role of the
electron—electron collision integral amounts to a redis-
tribution of the energy acquired by electrons from the
electric field. The lower estimate for the characteristic
electron—electron relaxation time can be obtained from
the heat balance equation
2
E— Tee = pCp0T
Ps

and it turns out to be greater than the characteristic
time of the electron—phonon relaxation. Here, F is the
electric field intensity, pg is the specific residual resis-
tance measured in experiment (3-10~% Ohm - m, while
the specific resistance caused by the electron—phonon
collisions is several orders less), ¢, is the specific heat
capacity at constant pressure (in our case, it is approx-
imately equal to 25 J-kg=! - K™1), p is the density of
our material, 67" is the increase in temperature, which
is comparable to our initial temperature, and I, is the
electron—phonon collision integral [13-15]:
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L, = / daquw(@) {5 (=(p + q) — (p) — hAq) X

x[flp+a)(1-f(p)) (N(a)+1) -

- fp) (1 - flp+a)N(a)]+
+6(e(p—a) —e(p) + 12(a)) x
x[flp—a)(1—f(p)) N(a) — f(p) x

x (1=f(p—q)(N(a)+ D]} (22)
Next, I.q is the electron—impurity and electron—defect

collision integral. It can be obtained by setting 22 = 0
and N =0in Ip:

Lg = / dp' wea(p' — p)3 (£(p') — 2(p))
x{f(p")—f(p)}. (23)

The phonon distribution function also satisfies the ki-
netic equation

ION(q) ION (q)
ot + or

where I, is the phonon-electron collision integ-
ral [13-15]

= Ipe + Ipp + Ipg, (24)

I = / dp w(a) {6 ((p + q) — 2(p) — hAq)) x

x[f(p+a) (1= f(p)) (N(a)+1)] -
- fp)A-flp+a)N(@}. (25)

The phonon-phonon and phonon-defect collision
integrals in the 7-approximation have the following
form. The phonon—phonon collision integral is

Ipp = —vpp(q) [N(a) — Nr(q)],
T3s (26)

2
Vpp\q) = Vppod Uppo = a7
PP( ) pp ’ pp aTéMJ

where s is the transverse sound velocity, M, is the atom
mass, a is the lattice constant, and Tp is the Debye
temperature. The phonon—defect collision integral is

La = —vpala) [N(@ - N@ |, @7

where

Nr(q) = <eXp % - 1) B

is the thermodynamically equilibrium phonon distribu-
tion function (the Bose-Einstein function), and
T

N(g) = ~ / N(q)dO

is the phonon distribution function averaged over an-
gles.

10 ZK3T®, Bem. 3(9)

Because the electron—impurity, electron—defect, and
electron—phonon collisions result in the distribution
function isotropization, we seek it in the form of a sum
of an isotropic function and a small anisotropic addi-

tion:
F(D,t) = £ (=), 1) + 1 (e(p), 1) g (28)

2
St hQ(q) = sq, (29)

w(q) = woq, wo = m7

where £1 4 is the deformation potential constant, which
in our particular model case is equal to 2ep /3, with ep
being the Fermi energy. We finally obtain

Lyp = =vpaoq [N(a) = Nr(a)], (30)

2
vea = 22 (31)
m

L4 {fl(a)%} = —veafi (5)%

where m is the effective electron mass and veq =
= 310" s7! is the electron-impurity collision fre-
quency, which in the given case (of low tempera-
tures) determines the electron distribution function
isotropization. Also,

N ) (32)
Tw
ve) = 2 [ i [N+
me
0
For the anisotropic addition, we have the equation
ofi p fo P P
— = —ecBv—— = = —y4fi(e)=. 33
ot p V&Sp le(s)p (33)

The electron—phonon collision frequency v., = 1.18 X
% 10'% s~ is much less than the electron—defect colli-
sion frequency. Collisions with defects and impurities
occur very often, at a time scale that is small com-
pared to the characteristic time of the interaction of
phonons with electrons, and therefore the anisotropic
addition can be considered stationary and spatially uni-
form. For this statement to be true, the impurity con-
centration must be much greater than the concentra-
tion at which the electron—defect collision frequency is
equal to the electron—phonon collision frequency. In
our case, this concentration has to be greater than
1.77 - 10'7 em™3, that is, several orders less than for
the considered experiments. As a result, we obtain the
final set of two equations for the isotropic electron and
acoustic phonon distribution functions [3, 4, 16], which
has to be solved without expanding the electron distri-
bution function in a Taylor series:
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95 _ 3/20f
ot

0¢

— a5/ x

7]

/dgphgph, [f (€ =Epn) N(pn) +

+ f(‘s) (f(5 —&pn) — N(Epn) — )] +

+ % [ Al 4 ) (V) +1)

— O E+Em) +NER)] oy (34)

ON(q) 1 7° o )
— =— [ d N
5 5 | CUFE+Epn) = FE) N(Epn) +
£0
+ f(E+Em) (1= f(2)]. (35)
Here,
ms2 . e2E27-ep0 L a= €
QkBTe 6ml/edkBTe kBTe
- Eph - t
Eph = , t= ,
ph kpTe Tepo
27h)3h,
rop = 2D g 446107
mm3se] 4

The integration limits, which are obtained in accor-
dance with the energy conservation law, are

€_ = min [4 (\/5—04) ,5php] )

€4+ = min [4 (véa + a) 75php] ) (36)
~2 -
_ Spoh _ Eph
7 16a 2 *

The distribution functions of electrons f(¢) and
phonons N (¢) are dimensionless quantities that satisfy
the normalization conditions

1 3/2 %
2—2( ) /Elﬂf(a)da:m
Yi§
0

where n is the electron density in the valence band (for
metals, also the conductivity band, because it is only
partially filled),

2m

W (37)
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where
7h

dp = s (39)

is the Debye phonon momentum. Condition (38) ex-
presses the fact that the number of phonons does not
have to be conserved. All quantities are taken for
nickel: s =2.96-10° cm/s is the transverse sound ve-
locity, n = 2.5 - 10?2 cm™3 is the conductivity elec-
tron concentration, a = 3.5 - 107% cm, and p;!
=0.333-10° S/cm.

The thermodynamically equilibrium electron en-
ergy distribution function is the Fermi-Dirac function

(40)

For nickel, er = 510717 J.

4. NUMERICAL SOLUTION OF THE SET OF
KINETIC EQUATIONS FOR ELECTRON
AND PHONON DISTRIBUTION
FUNCTIONS

For the numerical solution of Eqs. (34), (35), the fi-
nite-difference method of the first-order approximation
over time and second-order over spatial coordinates was
used. System (34), (35) was represented by the follow-
ing set of difference equations [17]:

f!/+1 _ v ~fl/+1 ft/_Jrll
L = 6AE
ohe
v+1 v+1 v+1
vl _gevtl 4 g
~A§fl+1 f;iLg fz—l +JZ’ (41)
&
1
= 57 1) B

X [fEN; +f”(f1g - N;j—=1)] +
+ Zhgphﬁphj [f(N;+1) - fl (f + Nl +
j=0

+Zh§ph512)hj+1 i Njrr+ £ (fi =Ny =1)] +
7j=0

+ Z hgphéihj+1 [f1(Njpr +1) —

7j=0
— P (fla + Njy1)] o (42)
NYtU— NY
< T m QZh FONT +
+ iy A=f)+(fir — fi+1)N],'/+fk+1(1_fi+1)] , (43)
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Fig.3. Dependence of the phonon distribution func-
tion times the dimensionless phonon momentum §
cubed on the dimensionless phonon momentum at
E = 1.68 V/cm for different time instants ¢ = 0 (1),
1(2),5(3),10(4), 15 (5), 20 (6)

Fig.1. Dependence of the electron distribution func-
tion decimal logarithm on the dimensionless electron
momentum p at £ = 1.68 V/cm for different time in-
stantst =0 (1),1(2),5(3),10(4),15(5),20(6)
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Fig.2. Dependence of the electron distribution func-

tion decimal logarithm on the dimensionless electron Fig.4.  Dependence of the phonon distribution

momentum at E = 33.6 V/cm for different time function times the dimensionless phonon momen-
instants ¢ = 0.25 (1), 0.5 (2), 0.75 (3), 1 (4). tum cubed on the dimensionless phonon momen-
1.25 (5) tum at £ = 33.6 V/cm for different time instants

t=0.25 (1), 0.5 (2), 0.75 (3), 1 (4), 1.25 (5)

fllc/:f(gi_gph]—)y f[V:f(&:i-l-{;:phj). (44)

The summation limits are determined from (26). Grid
steps were chosen such that

where k and [ are natural numbers. As a result of
the calculations, the electron and phonon distribution
functions were found.

E; — €ph; =€k,  Ei +Epn; = &, (45) In Fig. 1 and Fig. 2, we presented the dependence of

579 10%*
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Fig.5. Dependence of the phonon distribution func-

tion on the dimensionless phonon momentum at

E = 16.8 V/cm for different time instants ¢t = 0 (1),
0.25 (2), 0.5 (3), 0.75 (4), 1 (5), 1.25 (6)

the electron distribution function decimal logarithm on
the dimensionless electron momentum for different time
instants and two values of the electric field strength:
1.68 V/cm and 33.6 V/cm. In Figs. 3 and 4, we present
the dependence of the phonon distribution function
times the dimensionless phonon momentum cubed on
the dimensionless momentum. The curves illustrate
uninterrupted growth of the number of high-energy
electrons and phonons with time. The curves for the
instant ¢ = 0 correspond to equilibrium distribution
functions. In particular, the phonon distribution func-
tion times the dimensionless phonon momentum cubed
for the electric field strength 33.6 V/cm at the instant
(t = 1.0) of an order less than for the field 1.68 V/cm
(t = 10) is more than 66 times greater. For the same
values of ¢ and of the electric field strengths, the values
of the electron momentum at which the electron distri-
bution function equals 1073° differ by 1.23 times. Here,
10730 is the value of the electron distribution function
at which we terminate our grid. It does not have any
specific meaning.

For clarity, in Fig. 5, we present a dependence of the
phonon distribution function on the dimensionless mo-
mentum at the electric field strength £ = 16.8 V/cm
for different time instants.

To estimate the influence on the plastic deforma-
tion, we plot the dependence

580

Fig.6. Dependence of the ratio (F3)?/(Fs,)> on

dimensionless phonon momentum for different time in-

stants t = 0.25 (1), 0.5 (2), 0.75 (3), 1 (4), 1.25 (5)
at £ =16.8 V/cm

(F)® _ 1/2+N(@)
(Fao)® ~ 1/2+ No@)’

(46)

where No(§) is the Bose—Einstein function for the tem-
perature 32 K, i.e., 12 K more than the initial tem-
perature, and N (§) is the phonon distribution function
found as a result of numerical calculations. For the
most part, the heating in the experiments in [1] did
not exceed 0.5-3 K.

From Fig. 6 and Fig. 7 we can see that the force
exerted by phonons upon dislocation is greater than in
case of simple heating and it has trend to grow with
time.

5. COMPARISON WITH THE
EXPERIMENTAL RESULTS

Figure 8 presents the dependence of the phonon dis-
tribution function times the dimensionless phonon mo-
mentum cubed on the dimensionless momentum in the
double logarithmic scale for different situations:

e thermodynamic equilibrium phonon distribution
functions at 20 K (curve 1) and 32 K (curve 2),

e the nonequilibrium phonon distribution function
obtained as a result of numerical calculations at the
electric field strength £ = 16.8 V/cm for the instant
t = 2.5 (curve 3).

The value of the loading drop was found in the fol-
lowing order. First, we substitute the obtained values
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Fig.7. Dependence of the ratio (F;)?/(Fj,)? on the

dimensionless phonon momentum for different time in-

stants £ = 0.25 (1), 0.5 (2), 0.75 (3), 1 (4), 1.25 (5)
at £ =33.6 V/cm

4
10 + 3 g

103 + y

102 |

10

Fig.8. Dependence of the phonon distribution func-
tion times the dimensionless phonon momentum cubed
on the dimensionless electron momentum. Curve 1 and
curve 2 refer to the respective equilibrium state at 20 K
and 32 K. Curve 3 is for the phonon distribution func-
tion obtained as a result of numerical calculations for
the electric field E' = 16 V/cm at the instant ¢t = 2.5

of the phonon distribution function in formula (17) and
find the random force spectral density. Then we sub-
stitute this result in (16) and find

_ (W/mhw(1/2+ N(w))
m2(w2 — w2)2 + 2w

(Qn)2

(47)

Knowing (Q,)2, we calculate the correlation func-
tion ¥ (0) and its second derivative using formula (12):

¥ (0, N W) =
i [ Q/MASO/AN@) e
50 m2 (w2 —w?)2 4y 2w? ’
P (48)
¥ (0N W) =
i [ QOB Q2N @)
N }-ﬁolo m2 (w2 —w?)2+y2w? deo.
After that, we find ¥(7) and ¥"(0) using (10):
TONW) =2 BUON@),  (49)
¥"(0,N(w)) = 22 ¢" (w)).  (50)

After substituting (9) in (1), we have the following rela-
tion that allows us to find §a2, when all other quantities
are known:

. 1 T (0, N(w))
SR\ TN w)

— |20 (0, N(w))In (Z‘Zl \IJ”((OO’]]\X(:J))))) (52)

Finally, we find o from (11):

azac,«(l—%ﬁ:((d))), (53)
Ao (N(w)) = 0ext — 0 (N(w)) . (54)

The calculation results and experimental data were
compared for nickel at the following values of ex-
perimental parameters: the applied external stress
Oext = 68.885 MPa, &4 = 1.19 - 107* s7' b =
= 3.52-107®% cm, and the product Ip; = 435 cm ™!,
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Fig.9. Dependence of the loading drop Ao on the

current density j. Squares are the experimental data
provided by Troitsky [1]. Triangles correspond to the
experiments of Lebedev [18]. Crosses correspond to our
results based on the Granato-Liicke and Landau—Hoff-
man model with the phonon distribution function at the
time instant ¢ = 2.5us for the electric field strengths
1.6, 2, 4, 8, 16 V/cm. Empty circles are the results for
the instant ¢ = 15us for the electric field strength 1.6,
2,4V/em

Up=334-101°J, 2., =0.2b, L =3.5-107° cm, and
B=2-10""N-s-cm".

Figure 9 clearly demonstrates that our approach
gives results that are of the same order with experi-
mental data. The expected loading drop in the case of
heating under the conditions of thermodynamic equi-
librium is several orders less that the loading drop ob-
served in experiments. That is why we do not even
put it on the figure. The loading drop that was calcu-
lated using the obtained data must be considered as a
lower estimate because the time instants at which the
calculation was finished are several times less than the
current pulse duration in the experiments.

6. CONCLUSIONS

We have performed a kinetic analysis of nonequi-
librium dynamics of the electron—phonon system of a
crystal in a strong electric field. A method for nu-
merically solving kinetic Boltzmann equations for the
electron and phonon distribution function without ex-
panding the electron distribution function in a series
in the phonon energy is proposed. It has been shown
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that under the influence of a strong electric field, the
electron distribution function becomes nonequilibrium
in the vicinity of the Fermi energy and the influence of
electron—phonon collisions becomes comparable to the
influence of the field. The phonon distribution func-
tion is “heated” while remaining nonequilibrium in the
region of long-wave phonons.

Basing on the Granato-Liicke and Landau-Hoffman
model and using the calculated phonon distribution
function, we have shown that the force of the action
of the phonons on the dislocations is greater than it
would be in the case of thermodynamic equilibrium at
heating by 12 K. Previous results were defined more
precisely. The conditions of the applicability of the
Taylor expansion of the electron distribution function
in the phonon energy depending on the temperature
have been obtained.
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