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Spatial equation for water waves
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We derive compact spatial Hamiltonian equation for the gravity waves on the deep water. The equation

is dynamical one, it can describe extreme waves. Also equation for envelope of wave train is obtained.
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1. Introduction. Surface gravity waves generated

in the laboratory tank (or flume) is one of the most

studied examples of nonlinear wave evolution. Numeri-

cal simulation of such wave evolution has to be its inte-

gral part. These waves are usually described by classical

Hamiltonian system of equations for potential flows with

truncated Hamiltonian [1]:

H =
1

2

∫

gη2+ψk̂ψdx− 1

2

∫

{(k̂ψ)2− (ψx)
2}ηdx+

+
1

2

∫

{ψxxη
2k̂ψ + ψk̂[ηk̂(ηk̂ψ)]}dx (1)

with the Hamiltonian variables η(x, t) – surface profile,

and ψ(x, t) – potential at the surface. Equations of mo-

tions are the following:

∂ψ

∂t
= −δH

δη
,
∂η

∂t
=
δH

δψ
. (2)

These equations describe Cauchy problem in time, one

has to set up initial conditions η(x, 0) and ψ(x, 0) at

t = 0 at all x. However, in the flume situation is dif-

ferent. Typically, at the one end of the flume there is a

wavemaker (piston or paddle) which generates (in the

ideal case) η(0, t) and ψ(0, t). Thus, we have to solve

Cauchy problem in space. If we restrict ourselves to an

envelope of the wave train, than the equations for spa-

tial Cauchy problem were derived in [2, 3] directly from

Zakharov equation. They derived spacial analogies both

to Nonlinear Schrödinger and Dysthe equations. Their

Hamiltonian structures and new invariants were stud-

ied in [4]. However, to study waves with extreme ampli-

tudes, freak-waves, the envelope approximation is not

enough. Another words, to simulate real nonlinear waves
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we need spatial dynamical equation for water waves. Be-

low this equation is derived for the case of one horizontal

direction (narrow flume).

2. Super compact equation. Let us recall very

briefly what is Zakharov equation for water waves. It

can be derived by two steps.

1. First, instead of η and ψ, normal canonical vari-

able ak is introduced:

ηk =

√

ωk

2g
(ak + a∗

−k), ψk = −i
√

g

2ωk
(ak − a∗

−k),

ωk =
√

gk.

2. Canonical transformation from ak to bk is chosen

to cancel all non resonant terms in the Hamilto-

nian, both cubic and forth order.

As a result the Hamiltonian acquires the form:

H =

∫

ωkbkb
∗

kdk +

+
1

2

∫

T k2k3

kk1
b∗kb

∗

k1
bk2
bk3
δk+k1−k2−k3

dkdk1dk2dk3. (3)

The explicit (and cumbersome) expression for T k2k3

kk1
can

be found in [1, 5]. The motion equation is the following:

∂bk

∂t
+ i

δH

δb∗k
= 0. (4)

For 1-D waves T k2k3

kk1
has very important for further – it

is equal to zero on the four resonant manifold [6]. This

property allows to apply another canonical transforma-

tion from bk to ck, namely

bk = ck−i
∫

B̃k2k3

kk1
c∗k1
ck2
ck3
δk+k1−k2−k3

dk1dk2dk3+. . .
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with

B̃k2k3

kk1
= i

T̃ k2k3

kk1
− T k2k3

kk1

ωk + ωk1
− ωk2

− ωk3

. (5)

This transformation replaces T k2k3

kk1
by T̃ k2k3

kk1
in (3). Co-

efficient T̃ k2k3

kk1
can be any function having the same val-

ues on the four-wave resonant manifold:

k + k1 = k2 + k3,

ωk + ωk1
= ωk2

+ ωk3
. (6)

In [7, 8] choice of T̃ k2k3

kk1
has allowed to obtain the Hamil-

tonian in a compact way. However, it was shown in

[9, 10] that the best choice for T̃ k2k3

kk1
is the following:

T̃ kk1

k2k3
=

(kk1k2k3)
1/2

2π
min(k, k1, k2, k3)× θkθk1

θk2
θk3

, (7)

here θk is the step-function, θk = θ(k).

Hamiltonian can be written in x-space:

H =

∫

c∗V̂ c dx+

+
1

2

∫
[

i

4

(

c2
∂

∂x
c∗

2 − c∗
2 ∂

∂x
c2
)

− |c|2K̂(|c|2)
]

dx. (8)

Here operator V̂ in k-space is so that Vk = ωk

k . When

introducing along with this Gardner–Zakharov–Faddeev

bracket

∂+x ⇔ ikθk (9)

equation of motion becomes the following:

∂c

∂t
+ ∂+x

δH

δc∗
= 0. (10)

Introducing advection velocity

U = K̂|c|2 (11)

and taking variational derivative one can write the equa-

tion (10) in the form:

∂c

∂t
+ iω̂c− i∂+x

(

|c|2 ∂c
∂x

)

= ∂+x (Uc). (12)

3. Derive spatial equation. Equation (12) for wa-

ter waves can be written in k-space:

iċk = ωkck +

+
kθk

2π

∫

T kk1

k2k3
c∗k1
ck2
ck3
δk+k1−k2−k3

dk1dk2dk3,

T kk1

k2k3
= min(k, k1, k2, k3). (13)

Performing Fourier transformation over time and mul-

tiplying the result by ω + ωk one can easily get:

(ω2 − gk)ckω =

=
(ω + ωk)kθk

(2π)2

∫

T kk1

k2k3
c∗k1ω1

ck2ω2
ck3ω3

×

× δk+k1−k2−k3
δω+ω1−ω2−ω3

dk1dk2dk3dω1dω2dω3. (14)

For the waves with small amplitudes all harmonics ckω
are focused in the vicinity of the dispersion curve:

ω =
√

gk + ω̃nl. (15)

Here ω̃nl nonlinear frequency shift. Obviously

ω̃nl ∼ c2.

Thus, in the RHS of (14) gk can be replaced by ω2. Tak-

ing into the account of ω̃nl would give terms of higher

order in (14). Such terms must be dropped out. So:

(ω2 − gk)ckω=
2ω3

g2
1

(2π)2

∫

T
ω2ω2

1

ω2

2
ω2

3

c∗k1ω1
ck2ω2

ck3ω3
×

× δk+k1−k2−k3
δω+ω1−ω2−ω3

dk1dk2dk3dω1dω2dω3. (16)

Now we can perform backward Fourier transformation

of the Eq. (16) over space and get spatial equation for

water waves:

∂

∂x
cω − i

ω2

g
cω=

= −2ω3

g3
i

2π

∫

T
ω2ω2

1

ω2

2
ω2

3

c∗ω1
cω2

cω3
δω+ω1−ω2−ω3

dω1dω2dω3.

This equation can be written in the Hamiltonian form:

∂

∂x
cω = iω3 δH

δc∗ω

with the third order bracket

iω3 ↔ ∂3

∂t3

and the following Hamiltonian:

H =
1

g

∫

1

ω
|cω|2dω −

− 1

2π

1

g3

∫

T
ω2ω2

1

ω2

2
ω2

3

c∗ωc
∗

ω1
cω2

cω3
δω+ω1−ω2−ω3

dωdω1dω2dω3.

Explicit form of T
ω2ω2

1

ω2

2
ω2

3

in (13) is the following:

T
ω2

k
ω2

k1

ω2

k2
ω2

k3

=
1

4
(ω2

k + ω2
k1

+ ω2
k2

+ ω2
k3

−

− |ω2
k − ω2

k2
| − |ω2

k − ω2
k3
| − |ω2

k1
− ω2

k2
| − |ω2

k1
− ω2

k3
|)

and it allows compact form of the quartic part Hint of

the Hamiltonian:
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Hint =
1

2g3

∫

|c|2(c̈∗c+ c̈c∗)dt+
i

g2

∫

|c|2ω̂(ċc∗ − cċ∗)dt.

Using the relation

ω̂ = Ĥ
∂

∂t
(Ĥ is the Hilbert transformation),

fourth order part of the Hamiltonian can written as fol-

lowing:

Hint =
1

2g3

∫

|c|2(c̈∗c+ c̈c∗)dt+
i

g2

∫

|c|2Ĥ(c̈c∗ − cc̈∗)dt.

Equation of motion is:

∂

∂x
c =

∂3

∂t3
δH

δc∗
(17)

or in t-space:

∂

∂x
c+

i

g

∂2

∂t2
c =

=
1

2g3
∂3

∂t3

[

∂2

∂t2

(

|c|2c
)

+ 2|c|2c̈+ c̈∗c2
]

+

+
i

g3
∂3

∂t3

[

∂

∂t

(

cω̂|c|2
)

+ ċω̂|c|2 + cω̂ (ċc∗ − cċ∗)

]

. (18)

So Eq. (18) with the Hamiltonian

H =
1

g

∫

1

ω
|cω|2dω +

+
1

2g3

∫

|c|2(c̈∗c+ c̈c∗)dt+
i

g2

∫

|c|2ω̂(ċc∗ − cċ∗)dt(19)

solves the spatial Cauchy problem for surface gravity

wave on the deep water.

4. Back to η and ψ. According to canonical trans-

formation ηk and ψk are power series of ck up to the

third order:

ηk = η
(1)
k + η

(2)
k + η

(3)
k , ψk = ψ

(1)
k + ψ

(2)
k + ψ

(3)
k . (20)

Details of the recovering physical quantities η(x, t) and

ψ(x, t) are given in [9, 11]. Here we focus on the η only.

Obviously

η
(1)
k =

1

2ωk
[ck + c∗

−k],

or

η(1)(x, t) =
1√
2g1/4

[k̂−1/4c(x, t) + k̂−1/4c(x, t)∗].

Operators k̂α act in Fourier space as multiplication by

|k|α. Following [9, 11] let us consider transformation for

η taking into account only first and second order terms.

Then

η(2)(x, t) =
k̂

4
√
g
[k̂−1/4c(x, t)− k̂−1/4c∗(x, t)]2. (21)

Using approximate relation (15) one can get the follow-

ing compact formula to get physical observed value η:

η(x, t) =
ω̂−1/2

√
2

[c(x, t) + c∗(x, t)] −

− ∂2

∂t2
1

4g

[

ω̂−1/2[c(x, t)− c∗(x, t)]
]2

+ . . .

5. Frequency narrow band approximation.

From Eq. (18) one can easily derive equation for enve-

lope of modulated wave train. Obviously such a wave

train propagates with the group velocity and it is con-

venient to introduce reference system moving with this

velocity. So, let c(x, t) is almost monochromatic wave

with the frequency ω0:

c(x, t) = C

(

x, t− x

vg

)

ei(k0x−ω0t),

ω0 =
√

gk0, vg =
ω0

2k0
, (22)

where capital C(x, t) is a slowly varying function. Plug-

ging (22) into the motion equation (18), and keeping in

the nonlinear part of the equation term with no more

the first time derivative, one can derive the following

equation:

∂

∂x
C +

i

g

∂2

∂t2
C +

2iω5
0

g3
|C|2C =

=
4ω4

0

g3

[

4|C|2Ċ +
3

2
C2Ċ∗ + iCω̂|C|2

]

. (23)

This is Dysthe equation for spatial Cauchy problem.

Dropping the small corrections, namely the RHS, we

end up just with Nonlinear Schrödinger equation. So,

we have now both full dynamical equation (18) and en-

velope approximation (23). Hamiltonian of the NLSE is

the following:

H =
1

g

∫
[

|Ċ|2 − ω5
0

g2
|C|4

]

dt

and equation of motion is:

∂

∂x
C = i

∂H

∂C∗
.

6. Conclusion. The spatial compact equation is the

most convenient tool for comparison of the theory of

nonlinear gravity waves on deep water and their exper-

imental study in laboratory wave tanks. It can be eas-

ily solved numerically by the use of spectral code. We
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plan to present the results of our numerical simulations

shortly.
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