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Abstract

The hypothesis on complete integrability of equations describing the potential
motion of incompressible ideal fluid with free surface in 2-D space in presence and
absence of gravity was formulated by Dyachenko and Zakharov in 1994 [1]. Later
on the same authors found that these equations have indefinite number of additional
motion constants [2] that was an argument in support of the integrability hypothesis.
In this article we formulate another argument in favor of this conjecture. It is known
[3] that the free-surface equations have an exotic solution that keeps the surface flat
but describes the compression of the whole mass of fluid. In this article we show
that the free-surface hydrodynamic is integrable if the motion can be treated as a
finite amplitude perturbation of the compressed fluid solution. Integrability makes
possible to construct an indefinite number of exact solutions of the Euler equations
with free surface.

1 Basic equations

We study the potential flow of two-dimensional ideal incompressible fluid. The fluid occu-
pies a half-infinite domain

−∞ < y < η(x, t), −∞ < x <∞.

The flow is potential, so that v = ∇Φ, Φ|y=η(x,t) = ψ(x, t). Boundary conditions on the
surface are standard. It is known that the shape of surface η(x, t) and the potential on the
surface ψ(x, t) form a pair of canonically conjugated variables obeying the Hamiltonian
equations:

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −

δH

δη
.

Here H is Hamiltonian function, the total energy of the fluid [4].
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These equations minimize the action

S =
∫

Ldt, L =
∫

∞

−∞

ψηtdx−H.

Starting from this point let us forget for a while about hydrodynamics, and consider more
general case. Namely, let’s think of H as some arbitrary functional of ψ and η.

Let z(w, t) be the conformal mapping of the domain, bounded by the curve η(x, t) to
the lower half-plane of w

w = u+ iv, −∞ < u <∞, −∞ < v < 0

Hamiltonian function H can be considered as a functional, depending only on ψ and y.
Hence, one can put δH

δx
= 0.

The condition δS = 0 leads to the following “implicit” equations of motion

ytxu − xtyu =
δH

δψ

ψtxu − xtψu − Ĥ(yuψt − ytψu) = −
δH

δy

Thereafter we use the Hilbert transformation:

Ĥf =
1

π

∫

f(s)

s− w
ds

Later on we denote:
z = x+ iy

Φ = Ψ+ iĤΨ

These complex-valued functions are analytic in the lower half-plane v ≤ 0.
Equations for ”implicit” equations of motion can be rewritten as follows [5]:

ztz̄u − z̄tzu = −Φu + Φ̄u

Ψtzu −Ψuzt +
1

2

Φ̄2
u

z̄u
= 0

2 Self-similar solutions

Equations
ztz̄u − z̄tzu = −Φu + Φ̄u

Ψtzu −Ψuzt +
1

2

Φ̄2
u

z̄u
= 0
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admit the following substitution [6]:

z = tαz0(u)

Φ = t2α−1Φ0(u)

Then, the self-similar solutions are

η = tαF (
x

tα
), t→ t− t0

In the presence of gravity only one solution is possible, α = 2:

η = g(t0 − t)2F (
x

g(t0 − t)2
)

This is formation of wedge with α = 1200. If g = 0, all α are possible:

α(z0z̄0u) = Φ̄0u − Φ0u

(2α− 1)Ψ0z0u − αΨ0uz +
1

2

Φ̄2
u

z̄u

Ψ0 =
1

2
(Φ0 + Φ̄0) = ReΦ0

If α = −3, there is a parabolic Dirichlet jet. If α = −1, there is a compressed fluid.

3 Self-similar compressed fluid

Longuet-Higgins [3] found the following solution of the Euler equations [3]:

η ≡ 0

Φ(x, y, t) =
1

2

1

t− t0
(x2 − y2)

P = −
y2

(t− t0)2
P = 0, y = 0

In conformal variables we have:

z0 = tu Φ0 =
1

2
tu2

Then equations for the shape of self-similar solutions are satisfied. Let us study perturba-
tion of this solution:

z → ut+ z Φ →
1

2
u2t + Φ
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Equations for the self-similar solutions read

tzt − uzu + Φu = P−(z̄tzu − ztz̄u)

P−

{

u

2
(uzu − Φu) + t(

1

2
Φt − uzt) + Ψtzu −Ψuzt

}

= 0

Miracle number 1
These solutions are satisfied if

z = α(u) Φ = Φ0(u) = ∂−1uα(u)

Function α(u) is an arbitrary! function analytic in the lower half-plane

α(w) → 0 Imw → −∞

Let

α =
A

u+ ia
A, a− real constants, u > 0

Shape of the surface is presented in the parametric form

x = u+
Aut

u2 + a2t2
y = −

aAt2

u2 + a2t2

∂x

∂u
→ 1 at t→ ±∞

Bifurcation condition ∂z/∂u = 0 leads to the following expression:

u2 =
1

2
A t

(

1±

√

1−
8a2

A2

)

− a2t2

If a2 > 1
8
A2 the solution is one-valued. If a2 < 1

8
A2 ie, the pole is close to the real axis, we

obtain invertible:
1. Formation of bubbles (if A > 0)
2. Formation of droplets (if A < 0)
Miracle number 2
Let us look for solution of the above equations in the form:

z = α(u) +
1

t
z1(u) +

1

t2
z2(u) + · · ·

Φ = Φ0(u) +
1

t
Φ1(u) +

1

t2
Φ2(u) + · · ·

Now again z1(u) is arbitrary function analytic in the lower half-plane

Φ1(u) = u z1(u)
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u z2(u) = −P− (z̄1αu − z1 ᾱu)

The system is integrable!
There is another form of complex equations. Following Dyachenko [7], we introduce

new variables:

R =
1

z′
, V = i

∂Φ

∂z
= iRΦ′.

For the simplest case of absence of gravity the Dyachenko equations read

Rt = i(UR′ − RU ′)

Vt = i(UV ′ −RB′)

In R and V variables:
U = P̂−(RV̄ + R̄V ), B = P̂−(V V̄ )

In the presence of gravity the first equation is not changed. The second one takes the
form:

Vt = i
(

UV ′ − RP̂−(V V̄ )′ + g(R− 1)
)

4 Poles and cuts

Functions R, V, U,B are analytic on Jmw < 0. Moreover, R 6= 0, Jmw < 0. However
these functions may have singularities on upper half-plane. Function R can have zeros at
Jmw > 0.

The following facts are important:
1. Zeroes of R (denote them λn) are persistent: R(λn) = 0. They cannot appear or

disappear and move obeying the law

λ̇n = i Un, Un = U |w=λn

2. Cuts are persistent if they are of root square type. If in the initial moment of time

R = 1 +
γ

w − a
, Jm(a− γ) > 0

the pole is non-persistent and turns to the cut immediately.
Let w = wn be a branch point. In the neighborhood of these branch points

R = R1(w − wn)
1/2 R|w=wn

= 0

Moreover
ẇn = iVn un = U |w=wn
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5 Approximation for narrow cuts

Suppose that cuts for R and V are far from the real axis, namely their width (b − a) is
much less then the distance to the real axis (b− a) ≪ a [2]. Then one can approximate

U = P̂−(V̄ R + V R̄) as U ≃ VcR + V Rc − Vc

Here Vc is the value of V̄ at the some point on the narrow cut of R, and Rc is the value of
R̄ on the narrow cut of V . The last term appears due to asymptotic of R at infinity.

There is a ground for this approximation. Both R̄ and V̄ have singularities in the lower
half-plane, at the complex conjugate points with respect to R and V .

If we consider narrow cut (at the same place for R and V ), that means we assume
V ≃ Vc and R ≃ Rc being time dependent only. This assumption allows us to get the
approximate expression for B also:

B = P̂−(V̄ V ) ≃ VcV.

For the limiting case of infinitely narrow cut the approximation is exact.
Substituting U andB into Dyachenko equations we end up with the following equations:

Ṙ + iVcR
′ = iRc(V R

′ − V ′R), V̇ + iVcV
′ = iRc(V V

′)

In the moving framework χ = w − i
∫ t
0 Vc dt these equations read:

Ṙ = iRc(V R
′ − V ′R), V̇ = iRc(V V

′)

Now, the space derivative is with respect to χ. It is remarkable that we derived complex
Hopf’s equation.

If we introduce the new time τ(t), so that τ̇ (t) = Rc(t), and

χ = w − i
∫ τ

0

Vc
Rc

dτ,

then, recall that R = 1
z′
, we finally get the following set of quadratic equations:

zτ = iV z′, Vτ = iV V ′

The solution of equation that satisfies the initial conditions is:

V (χ, τ) =
λ+ iχ−

√

(λ+ iχ)2 − 4Aτ

2τ

The branch of square root is chosen to provide zero asymptotic for V at infinity. The
general solution with velocity V (χ, t) satisfying the Hopf’s equation is given by formula

6



z(χ, τ) = G(iχ−τV ) with arbitrary function G. From the initial conditions one can easily
obtain that G(ξ) = −iξ, and for z(χ, τ) and R(χ, τ) get the following expressions:

z(χ, τ) = −
i

2
{−λ + iχ+

√

(λ+ iχ)2 − 4Aτ}

R(χ, τ) =
2
√

(λ+ iχ)2 − 4Aτ

λ+ iχ +
√

(λ+ iχ)2 − 4Aτ

This solution describes the formation of the spray but it cannot describe the asymptotic
shape of the spray at τ → ∞.

6 Is free surface hydrodynamics integrable?

We see that approximation of narrow cut leads to an integrable system. Is the whole
system integrable? The Dyachenko equations can be rewritten in the differential form

∂

∂t

1

R
= i

∂

∂w

(

U

R

)

,
∂

∂t

V

R
= i

∂

∂w

(

UV

R
− B

)

+ g
(

1−
1

R

)

Let I =
∫

∞

−∞

1
R
du, J =

∫

∞

−∞

V
R
du. Then

dI

dt
= 0,

dJ

dt
= −gI,

and I = const, J = J0−gIt. These equalities are conservation laws of mass and horizontal
component of momentum. However, these relations could be generalized.

Let Γ be a closed contour and all functions be analytic in some neighborhood of this
contour,

I =
∮

Γ

1

R
dw, J =

∮

Γ

V

R
dw,

and I, J0 be motion constants. If in a vicinity of λn, R and V can be presented as follow

R = an(w − λn) + · · · V = bn + b1(w − λn) + · · ·

then

dan
dt

= 0 an = const

dbn
dt

= −gan bn = b0n − gant

In other words, an, b0n are motion constants. We conclude that each zero of R generates
two complex (four real) motion constants. All motion integrals are in involution. They
form the Abelian Lie algebra. The question about the completeness of the set of integrals
is open yet.
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All functions R, V, U,B can be analytically continued to a certain Riemann surface,
and each list of this surface generates additional motion constants. This fact leads to the
plausible conjecture that the whole set of motion constants is complete, hence the system
is completely integrable. The fact of integrability of the ”compressed fluid” supports this
conjecture.

The main question is the compactness. If the solution can be analytically continued
to a compact Riemann surface, the system is integrable. In this case the dynamics of the
fluid if completely defined by evolution of poles on this surface.

Any particular algebraic function on this surface generates a finite dimensional Hamilto-
nian system. All zeros of this function generate motion constants. According to Riemann-
Roch theorem, the number of zeros is complete and this system is completely integrable
(which is very plausible). If the Riemann surface is non-compact and consists of infinite
amount of sheets, the question of integrability remains open.
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