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h i g h l i g h t s

• We described three and four wave instabilities due to resonant interactions.
• Algorithm for simulation of weakly nonlinear surface waves is presented.
• Numerical scheme conserves Hamiltonian of the system.
• We discussed and simulated instability of standing and propagating waves.
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a b s t r a c t

We performed full-scale numerical simulation of instability of weakly nonlinear waves on the surface
of deep fluid. We show that the instability development leads to chaotization and formation of wave
turbulence.

Instability of both propagating and standing waves was studied. We separately studied pure capillary
wave, that was unstable due to three-wave interactions and pure gravity waves, that were unstable due
to four-wave interactions. The theoretical description of instabilities in all cases is included in the article.
The numerical algorithm used in these and many other previous simulations performed by the authors is
described in detail.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Stationary propagating waves on the surface of deep, heavy
ideal fluid have been known since the middle of the nineteenth
century. Stokes (see, for instance [1]) in 1847 found the solution
of the Euler equation in the form of trigonometric series. For the
shape of surface η(x, t), he obtained:

η(x, t) = a

cos(kx − ωt)+

1
2
µ cos{2(kx − ωt)}

+
3
8
µ2 cos{3(kx − ωt)} + · · ·


. (1)
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Here we introduced steepness µ and frequency ω

µ = ka, ω =

gk


1 +

1
2
µ2

+
1
8
µ4

+ · · ·


. (2)

Stokes found two algorithms for the calculation of all terms
in series (1) and (2) (see Sretenskii [2]). Convergence of these
series was proven by Nekrasov [3,4] in 1921. Another proof was
found by Levi-Civita [5]. Recently shapes of different Stokes waves
were obtained numerically with high precision [6,7], their analytic
structure was revealed [7] and explained [8].

It has been known since 1965 [9] that stationary waves on
the surface of deep water are unstable. The theory of instability
[10–13] was developed for waves of small amplitude within the
limit µ → 0. A history of this question is described in the ar-
ticle [14]. Recent advances can be found in [15]. In the present
paper, we study the instability of stationary waves numerically
through the direct solution of the Euler equationwhich describes a
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potential flow of ideal fluid with free surface. This approach has
two important advantages. Firstly, through numerical simulation
we can study waves with finite amplitudes. While this paper fo-
cuses only on cases of small amplitude, such an advantage will be
crucial for other applications, e.g. wave breaking simulation. Sec-
ondly, the use of numerical simulation allows us to study not only
linear, but also nonlinear stages of instability development. Even in
integrable systems like theNLSE, analytical study of themonochro-
matic wave is a very nonlinear problem and can be solved only
by methods of algebraic geometry [16]. In more realistic models,
development of a nonlinear theory of modulational instability for
waves is a hopeless problem. In the long run, we have to expect
that instability will lead to the formation of a stochastic wave field
described by a kinetic equation for squared wave amplitudes and
formation of Kolmogorov–Zakharov (KZ) spectra, governed by the
energy flux in high wave numbers [17].

The article is organized as follows. Sections 2 and 3 are devoted
to analytical theory of stability of weakly nonlinear stationary
waves. To develop this theory, we use Hamiltonian formalism as
this approach is the most compact and suitable. We start with
presenting the Euler equation of ideal fluid with free surface in
the Hamiltonian form. Surface tension is also included in the
Hamiltonian. In the presence of surface tension, the dispersion
relation is:

ωk =


gk + σk3,

where σ—the surface tension coefficient (here and further we
consider fluid of unit density).

Wave vectors of small-amplitude stationary waves are solu-
tions of the equation

ωk = ck. (3)

This equation has two solutions (we omit trivial solution k = 0):

k1,2 =
c2 ±


c4 − 4gσ
2σ

, (4)

if c > c0, where c0 = (4gσ)1/4. For water, c0 ≃ 23 cm/s. In a
generic case c ∼ c0 stationary waves comprise a complicated four-
parameter family. However, in the limiting case c ≫ c0 one can
split it into two periodic families of ‘‘pure gravitational’’ and ‘‘pure
capillary’’ waves.

The Stokes wave is ‘‘pure gravitational’’. Now, with k1 = g/c2
capillary effects can be neglected. In the ‘‘pure capillary’’ case k2 =

c2/σ , effects of gravity can be ignored. All stationary waves on
the surface of deep fluid are unstable. However, the instabilities
of short capillary waves and long gravity waves are significantly
different and described by different ‘‘efficient Hamiltonians’’. The
case of ‘‘pure capillary’’ waves is the simplest. The instability can
be studied if Hamiltonian contains only quadratic and cubic terms.
This is the subject of Section 2. A situation is more complicated
for gravitational waves. In this case, fourth order terms must be
included in the Hamiltonian. Then, one has to exclude the cubic
terms through a proper conformal transformation. As a result, we
get so-called ‘‘Zakharov equation’’ [13]. In the framework of this
equation, the problem of the Stokes wave stability can be solved
exactly. This is the subject of Section 3.

In Section 4, we give a detailed description of the numerical
codewhichweused for the solution of theHamiltonian Euler equa-
tion. This codewas used inmany papers butwas never described in
detail [18–25].We should stress that in our numerical experiments
we worked with the Euler equation written in ‘‘natural variables’’.
These equations are not as good for the direct analytical study as
they are good for the implementation of numerical method. The
structure of nonlinear parts of the Hamiltonian in ‘‘natural vari-
ables’’ is relatively simple, and numerical implementation through
standard Fast Fourier Transform (FFT) is quite feasible.
In Section 5 we present our results on the modeling of capillary
wave instability. We show that an initial stage of instability is
described pretty well by the linear analytical theory. Further
development of instability leads to the appearance of ‘‘secondary
instabilities’’ and a tendency toward the formation of a chaotic
wave field, which should be described by statistical methods.

In Section 6, we study the instability of the Stokes wave. We
show that this instability is mostly ‘‘modulational’’. In other words,
the wave remains quasi-monochromatic for a long time after the
development of the instability.

Finally, in Section 7we present first results on the development
of the standingwave instability.We show that this instability leads
to fast isotropization of thewave field. Thismechanism can be used
in experiments for generation of an isotropic wave field.

2. Theory of decay instability

In this section, we develop the simplest version of the theory
of stationary wave instability. This simple theory is applicable
if triple-wave nonlinear processes governed by the resonant
conditions

ωk = ωk1 + ωk2 , (5)
k = k1 + k2

are permitted. Let us briefly describe how the theory of surface
waves can be embedded into the general Hamiltonian theory of
nonlinear waves, before we use conditions (5).

Suppose that ideal incompressible fluid fills the space −∞ <
z < η(r, t), here r = (x, y)—two dimensional vector. A flow is
potential v = ∇Φ , hence hydrodynamical potentialΦ satisfies the
Laplace equation

∇
2Φ = 0. (6)

Let us defineψ = Φ|z=η and impose a natural boundary condi-
tionΦz → 0 at z → −∞. It is known [10] that η(r, t) and ψ(r, t)
are canonically conjugated variables satisfying evolutionary equa-
tions

∂η

∂t
=
δH
δψ
,

∂ψ

∂t
= −

δH
δη
. (7)

Here H = T + U—total energy of the fluid, consisting of kinetic
energy

T =
1
2


d2r

 η

−∞

(∇Φ)2dz, (8)

and potential energy

U =
g
2


η2d2r + σ


(

1 + (∇η)2 − 1)d2r. (9)

TheHamiltonianH in terms ofη andψ is given by the infinite series

H = H0 + H1 + H2 + · · · . (10)

Here

H0 =
1
2

 
ψ k̂ψ + gη2 + σ(∇η)2


d2r, (11)

here k̂ψ =


−∇2ψ,

H1 =
1
2


η{|∇ψ |

2
− (k̂ψ)2}d2r, (12)

H2 =
1
2


η(k̂ψ)[k̂(ηk̂ψ)+ η∇2ψ]d2r +

1
2
σ


(∇η2)2d2r. (13)

Thereafter, we will neglect the last term in (13).
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One can perform the symmetric Fourier transform

ψk =
1
2π


ψ(r)e−ıkrd2r, ηk =

1
2π


η(r)e−ıkrd2r. (14)

This is the canonical transformation. Eqs. (7) now take the form

∂η

∂t
=

δH
δψ∗

,
∂ψ

∂t
= −

δH
δη∗

. (15)

Now

H0 =
1
2


(|k| |ψk|

2
+ σ |k|2|ηk|2 + g|ηk|2)dk,

H1 = −
1
4π


Lk1k2ψk1ψk2ηk3δ(k1 + k2 + k3)dk1dk2dk3,

H2 =
1

16π2


Mk1k2k3k4ψk1ψk2ηk3ηk4

× δ(k1 + k2 + k3 + k4)dk1dk2dk3dk4.

(16)

Here

Lk1k2 = (k1k2)+ |k1| |k2|,

Mk1k2k3k4 = |k1| |k2|


1
2
(|k1 + k3| + |k1 + k4|

+ |k3 + k2| + |k2 + k4|)− |k1| − |k2|


.

(17)

Eqs. (7) written for the Hamiltonian (12)–(13) read

η̇ = k̂ψ − (∇(η∇ψ))− k̂[ηk̂ψ] + k̂(ηk̂[ηk̂ψ])

+
1
2
∇

2
[η2k̂ψ] +

1
2
k̂[η2∇2ψ],

ψ̇ = σ∇
2η − gη −

1
2


(∇ψ)2 − (k̂ψ)2


− [k̂ψ]k̂[ηk̂ψ] − [ηk̂ψ]∇

2ψ.

(18)

These equationswere considered for the first time in [26]. Eqs. (18)
are basic in our numerical simulations. To develop an analytical
theory of stationary wave instability, we use Eq. (15). It is
interesting to note that even for capillary waves in some cases, it is
worthwhile to keep cubic terms in (18) as it is shown inAppendix C.

Let us introduce the complex normal variables

ak =


ωk

2k
ηk + ı


k

2ωk
ψk. (19)

As far as η−k = η∗

k, ψ−k = ψ∗

k (because these are Fourier
transforms of real functions), we have

ηk =


2k
ωk
(ak + a∗

−k), ψk = −ı


2ωk

k
(ak − a∗

−k). (20)

In terms of ak, Eqs. (15) turn into one equation

∂ak
∂t

= −ı
δH
δa∗

k
. (21)

Now

H0 =


ωk|ak|2d2k. (22)

Then

H1 = H(0,3)1 + H(1,2)1 . (23)
Here

H(0,3)1 =
1
6


V (0,3)kk1k2(akak1ak2 + a∗

ka
∗

k1a
∗

k2)

× δ(k + k1 + k2)dkdk1dk2 (24)

H(1,2)1 =
1
2


V (1,2)kk1k2(a

∗

kak1ak2 + aka∗

k1a
∗

k2)

× δ(k − k1 − k2)dkdk1dk2. (25)

In a similar way

H2 = H(0,4)2 + H(1,3)2 + H(2,2)2 . (26)

Only the last term in H2 is important for us

H(2,2)2 =
1
4


V (2,2)kk1k2k3akak1a

∗

k2a
∗

k3

× δ(k + k1 − k2 − k3)dkdk1dk2dk3. (27)

Explicit expressions for V (0,3)kk1k2 , V
(1,2)
kk1k2 , and V (2,2)kk1k2k3 are presented

in Appendix B.
Now everything depends on the shape of function ω(k). If

resonant conditions (5) have real solutions, one can neglectH2 and
even H(0,3)3 . Now Eqs. (21) takes a simple form

ȧk + ıωkak = −
ı
2


{V (1,2)kk1k2ak1ak2δ(k − k1 − k2)

+ 2V (1,2)k1kk2ak1a
∗

k2δ(k − k1 + k2)}dk1dk2. (28)

Thereafter, we assume

V (1,2)0,k,−k = 0. (29)

For surface waves, this condition is satisfied.
Eq. (28) has a solutionwhich can be treated as a stationarywave

ak =

∞
n=1


ane−ınΩtδ(k − nk0)+ bneınΩtδ(k + nk0)


. (30)

We put a1 = ε. Here k0—an arbitrary wave vector. Coefficients an
are presented by power series

an = εn(a(0)n + εa(1)n + · · · ),

while coefficients bn look as follows:

bn = εn+2(b(0)n + εb(1)n + · · · ).

The frequency of the stationary wave is presented by a series in
even powers of ε

Ω = ω(k0)+ ε2∆1 + ε4∆2 + · · · . (31)

Now, let us suppose ε → 0. From (31), we see that the first
nonlinear correction to frequency is proportional to ε2. Now we
will show that the solution (30) is unstable, and the growth rate
of instability is proportional to ε. It means that all nonlinear
corrections to an, bn, and∆n can be neglected, and one should look
for a solution in the following form:

ak = εe−ıω(k0)tδ(k − k0)+ α(t)e−ıω(κ1)tδ(k − κ1)

+β(t)e−ıω(κ2)tδ(k − κ2), (32)

where κ1+κ2 = k0. Then, we linearize Eq. (28) and find that α and
β obey the system of ordinary differential equations

α̇ = ıe−ı∆εVβ∗, V = V (1,2)k0κ1κ2 ,

β̇ = ıe−ı∆εVα∗, ∆ = ω(k0)− ω(κ1)− ω(κ2).
(33)

A general solution of Eq. (33) is

α = α0e(−ı∆/2±γ )t , β = β0e(−ı∆/2±γ )t . (34)
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Here

γ =


ε2|V |2 −

1
4
∆2, (35)

and α0, β0 are connected by relation
−

ı∆
2

± γ


β0 = ıεVα∗

0 . (36)

Instability takes place if wave vectors κ1, κ2 are posed near the
surface (or the curve)

ω(k0) = ω(κ1)+ ω(κ2),

k0 = κ1 + κ2.
(37)

The maximum of the growth rate γ = ε|V | is reached exactly
on the resonant surface, which is represented in Fig. 1. The plot
of growth rate (35) on a homogeneous grid of wave numbers for
2π × 2π periodic box is given in Fig. 2.

3. Four-waves instability

The theory developed in the previous chapter is applicable to
the study of capillary wave instability. In the case of gravity waves,
resonant conditions (37) have no real solutions. It means that cubic
terms in the Hamiltonian can be excluded by a proper canonical
transformation given by power series [27,28]

ak = b(0)k + b(1)k + b(2)k + · · ·

b(0)k = ak.
(38)

Next terms b(1)k , b(2)k are presented in Appendix B.
After canonical transformation, the Hamiltonian is reduced to

the form

H = H0 + H̃2, (39)

H̃2 =
1
4


Tkk1k2k3b

∗

kb
∗

k1bk2bk3
× δ(k + k1 − k2 − k3)dkdk1dk2dk3. (40)

The explicit and complicated expression for Tkk1k2k3 is given in
Appendix B. Tkk1k2k3 is a homogeneous function of the third order.

Now, canonical variable bk obeys the so called ‘‘Zakharov’s
equation’’ [13]

ḃk + ıωkbk = −
ı
2


Tkk1k2k3b

∗

k1bk2bk3

× δ(k + k1 − k2 − k3)dk1dk2dk3. (41)

Eq. (41) has the exact solution

bk = Aδ(k − k0)e−ıΩ0t ,

Ω0 = ω(k0)+
1
2
Tk0 |A|

2, (42)

Tk0 = Tk0k0k0k0 =
1
2π

k30.

This solution is nothing but the stationary Stokes wave. It gives the
right expression for the two first terms in series (1) and (2).

Eq. (41) has also a reach set of approximate quasi-periodic
solutions. Let κ1 and κ2 be two arbitrary wave vectors. In the limit
of small |A1|

2, |A2|
2 equation has the following solution:

bk = A1δ(k − κ1)e−ıΩ̃1t + A2δ(k − κ2)e−ıΩ̃2t + · · · (43)

Ω̃1 = ω(κ1)+
1
2
Tκ1 |A1|

2
+ Tκ1,κ2 |A2|

2,

Ω̃2 = ω(κ2)+ Tκ1,κ2 |A1|
2
+

1
2
Tκ1 |A2|

2.
(44)
Fig. 1. Resonant curve for decay of monochromatic capillary wave with k =

(68, 0).

Here Tκ1,κ2 = Tκ1κ2,κ1κ2 . Eqs. (43), (44) are valid if nonlinear terms
in (44) are much less that linear.

In the particular case κ2 = −κ1, |A2| = |A1|, the solution (43) is
just a standing wave.

Both propagating wave (42) and standing wave (43) are
unstable. To study the instability of propagating wave (42), wewill
look for a solution in the following form

bk = A0δ(k − k0)e−ıΩ0t + αδ(k − k0 − κ)e−ıΩ1t

+βδ(k − k0 + κ)e−ıΩ2t . (45)

Here

Ω1 = ω(k0 + κ)+ 2T (k0, k0 + κ)|A|
2,

Ω2 = ω(k0 − κ)+ 2T (k0, k0 − κ)|A|
2.

(46)

By plugging (43) into (41) and linearizing over α and β we set
system of ordinary differential equations, similar to (33)

α̇ =
ı
2
e−ı∆

|A0|
2Tβ∗, T = Tk0,k0,k0+κ,k0−κ ,

β̇ =
ı
2
e−ı∆

|A0|
2Tα∗,

∆ = 2ω(k0)− ω(k0 − κ)− ω(k0 + κ)

+ 2(Tk0 − Tk0,κ1 − Tk0,κ2)|A0|
2.

(47)

Solutions of Eq. (47) are given by formulae (34) where

γ =


|A|4|T |2 −

1
4
∆2. (48)

One can see that instability occurs in a vicinity of the curve∆ = 0.
For waves on a deep water, we can put k0 = i, κ = xi + yj. Then
the condition∆ = 0 is reduced to the famous Phillips curve [29]

[(1 + x)2 + y2]1/4 + [(1 − x)2 + y2]1/4 = 2. (49)

Here −5/4 ≤ x ≤ 5/4. The Phillips curve is plotted in Fig. 3. The
coupling coefficient T (k0, x), evaluated on the Phillips curve, can
be presented in the form

T (2k0, k0 + κ, k0 − κ) = k30f (x), x =
κx

k0
,

f (−x) = f (x) symmetric function. It is important to mention
that f (5/4) = 0. This fact was first discovered by Dyachenko and
Zakharov in 1994 [30]. The decrease of f (x)with growth of xmeans
that the four-wave instability is mostly modulational because the
most unstable modes are concentrated at κ → 0. In this region

γ ≃
1
2


−2T |A|2

∂2ω

∂kα∂kβ
κακβ −


∂2ω

∂kα∂kβ
κακβ

2

. (50)
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Fig. 2. Growth rate for decay instability ofmonochromatic capillarywavewith k0 = (68, 0) and average steepnessµ = 0.05 on the homogeneous grid. Left panel: isometric
projection; right panel: contour of the surface at the level 10−23; dashed line—resonance curve.
Fig. 3. Phillips curve for k0 = (30, 0).

Instability is concentrated inside the angle where

∂2ω

∂kα∂kβ
κακβ < 0.

The plot of growth rate (48) on a homogeneous grid of wave
numbers for 2π × 2π periodic box is given in Fig. 4. The four-
wave instability of propagating Stokes waves was studied in detail
in many papers (e.g. [9–14,31]).

Let us study instability of by-harmonic wave (45). We
concentrate only on the case of standingwave κ2 = −κ1 = k0. The
standing wave is unstable due to a different mechanism. Firstly,
each propagating wave composing the standing wave endures its
own modulational instability. Then, another instability appears. In
this new type of instability, we have the simultaneous excitation
of two waves with wave numbers ±κ such that |κ| = |k0|. The
maximal growth-rate of this instability is:

γmax ≃
1
2
T̃ |A|

2.

Here

T̃ = Tk0,−k0,κ,−κ = k30f (cos θ), (51)

and θ is an angle between k0 and κ .

4. Numerical simulation scheme

The problem of numerical integration of system of Eqs. (18) is
rather complicated. One of the most important questions is what
time integration algorithm to choose. According to the property
of the equations, it would be natural to develop a numerical
integration scheme conserving the Hamiltonian. Let us follow the
article [32]. One can introduce a discrete variation of Hamiltonian
(16) in one step on time Hn

−→ Hn+1

1H = Hn+1
− Hn. (52)
The Hamiltonian is a function of canonical variables η and ψ . The
discrete variations of these functions on a time step are equal to

1η = ηn+1
− ηn, 1ψ = ψn+1

− ψn. (53)
One can expand discrete variation1H via1η and1ψ (that is done
in Appendix A)
1H = Hψ1ψ + Hη1η. (54)
It is easy to see that Hη and Hψ are discrete analogues to the
continuous variations δH

δη
and δH

δψ
.

One can demand the conservation of Hamiltonian 1H/τ = 0
during time step τ . Obviously, this equality can take place if the
following conditions are valid:
1η

τ
= Hψ ,

1ψ

τ
= −Hη.

(55)

In some sense, this is a discrete analogue of Hamiltonian Eqs. (15).
Thus, if Hamiltonian variation (52) is expanded via variations 1η
and1ψ , it is possible to get Eqs. (55).

As it was mentioned above, it is more convenient to rewrite the
equations in terms of Fourier harmonics. Using the results given
in Appendix A (A.2)–(A.7), one can obtain an implicit difference
scheme
ηn+1
k − ηnk

τ
=

1
2
|k|


ψn+1

k + ψn
k


−
1
4
F̂


∇, (ηn+1

+ ηn)∇(ψn+1
+ ψn)


−

1
4
|k|F̂


(ηn+1

+ ηn)k̂(ψn+1
+ ψn)


+

1
4
|k|F̂


ηn+1

+ ηn

k̂

ηn+1k̂ψn+1

+ ηnk̂ψn


−
1
8
|k|

2F̂

((ηn+1)2 + (ηn)2)k̂(ψn+1

+ ψn)


+
1
8
|k|F̂


((ηn+1)2 + (ηn)2)∇2(ψn+1

+ ψn)

. (56)

ψn+1
k − ψn

k

τ
= −

1
2
ω2

k

|k|


ηn+1
k + ηnk


−

1
4
F̂

∇ψn+1
2 +

∇ψn
2

+
1
4
F̂


(k̂ψn+1)2 + (k̂ψn)2


−

1
4
F̂


k̂

ψn+1

+ ψn k̂ 
ηn+1k̂ψn+1

+ ηnk̂ψn


−
1
4
F̂


(ηn+1

+ ηn)(∇2ψn+1k̂ψn+1
+ ∇

2ψnk̂ψn)

. (57)

Here, F̂ is the Fourier transform operator.
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Fig. 4. Growth rate for Phillips instability of monochromatic gravity wave with k0 = (30, 0) and average steepnessµ = 0.1 on the homogeneous grid. Left panel: isometric
projection; right panel: contour of the surface at the level 10−23; dashed line—resonance curve.
It is useful to resolve the linear part of scheme (56)–(57) with
respect to ηn+1 and ψn+1. Let us denote nonlinear terms on the
right hand sides of these equations as:

Rn+1
η = −

1
4
F̂


∇, (ηn+1

+ ηn)∇(ψn+1
+ ψn)


−

1
4
|k|F̂


(ηn+1

+ ηn)k̂(ψn+1
+ ψn)


+

1
4
|k|F̂


ηn+1

+ ηn

k̂

ηn+1k̂ψn+1

+ ηnk̂ψn


−
1
8
|k|

2F̂

((ηn+1)2 + (ηn)2)k̂(ψn+1

+ ψn)


+
1
8
|k|F̂


((ηn+1)2 + (ηn)2)∇2(ψn+1

+ ψn)

,

Rn+1
ψ = −

1
4
F̂

∇ψn+1
2 +

∇ψn
2

+
1
4
F̂


(k̂ψn+1)2 + (k̂ψn)2


−

1
4
F̂


k̂

ψn+1

+ ψn k̂ 
ηn+1k̂ψn+1

+ ηnk̂ψn


−
1
4
F̂


(ηn+1

+ ηn)(∇2ψn+1k̂ψn+1
+ ∇

2ψnk̂ψn)

.

(58)

Using these notations, discrete scheme can be written as follows

ηn+1
k = A(k, τ )ηnk + B(k, τ )ψn

k + C(k, τ )Rn+1
η

+D(k, τ )Rn+1
ψ ,

ψn+1
k = E(k, τ )ηnk + A(k, τ )ψn

k + F(k, τ )Rn+1
η

+ C(k, τ )Rn+1
ψ .

(59)

Here

A(k, τ ) =
1 −

1
4ω

2
kτ

2

1 +
1
4ω

2
kτ

2
, B(k, τ ) =

τk
1 +

1
4ω

2
kτ

2
,

C(k, τ ) =
τ

1 +
1
4ω

2
kτ

2
, D(k, τ ) =

1
2
τB(k, τ ),

E(k, τ ) = −
ω2

k

k
C(k, τ ), F(k, τ ) =

1
2
τE(k, τ ).

(60)

Thus, we get implicit (terms Rn+1
η and Rn+1

ψ contain ηn+1
k andψn+1

k )
difference scheme. The important feature of this scheme is that
conservation of Hamiltonian (12)–(13) is embedded in it.

The implicit numerical scheme (59) can be solved by the
method of Fixed-Point Iterations [33]. Let us write this procedure
for ηn+1,s

k andψn+1,s
k , here s is an iteration number. Corresponding

to (59) one can get

η
n+1,0
k = ηnk, ψ

n+1,0
k = ψn

k ;

η
n+1,s+1
k = A(k, τ )ηnk + B(k, τ )ψn

k + C(k, τ )Rn+1,s
η

+D(k, τ )Rn+1,s
ψ ,

ψ
n+1,s+1
k = E(k, τ )ηnk + A(k, τ )ψn

k + F(k, τ )Rn+1,s
η

+ C(k, τ )Rn+1,s
ψ .

(61)
Iterations continue until the desired accuracy of Hamiltonian
conservation ϵ is achieved. Convergence is ensured by the choice
of time step τ to be small enough. The sufficient condition for the
convergence of iterations is the following:

τ 2 <
1

max[(∇ψ)2 + (k̂ψ)2]k2 − 1/4min(ω2
k)
. (62)

Taking into account that the first factor in the first term in the
denominator of (62) is of the order of maximum velocity on the
surface, this condition is similar to τ < 1x/vmax. We resolved the
linear part of the equation which is why frequency does not come
into play.

In most cases, it is enough to follow the convergence of the
relative error
k

ηn+1,s+1
k

2 −

k

ηn+1,s
k

2

k

ηn+1,s
k

2 < ϵ. (63)

When studying gravity waves, this condition is equivalent to the
calculation of potential energy with desired accuracy. For the
weakly nonlinear regime, the quadratic part of Hamiltonian is
dominant, so the physical meaning of this condition is quite clear.

The condition on time step (62) is not very practical to use. It
is much easier to control step on time, demanding convergence
of the iteration process to the desired accuracy after a number of
iterations less than some given Nmax and more than some given
Nmin.

This numerical scheme can be used for the simulation of freely
decaying waves. For the simulation of turbulence, we should
introduce pumping and damping terms in the equations. It is
possible to do that through different ways, but we have applied
the Split-Step Method, which is very popular in the numerical
simulation of pulse propagation in optic fibers. Here is a very brief
description of application of this method to our problem.

Let us introduce a linear damping with rate γk into our model

ψ̇k = R.H.S.− γkψk. (64)

It is possible to take into account this damping without significant
changes in the calculations scheme. First, one can obtain a solution
of Eqs. (18) without damping using iteration scheme described
above. Let us denote this solution by ψ̃n+1

k . Second, the solution of
the whole system of equations can be calculated by the next step

ψn+1
k = ψ̃n+1

k exp(−γkτ). (65)

It is worthwhile to say that for weak turbulence simulation the
most interesting part of the spectrum is in the ‘‘inertial interval’’
where there is no damping or pumping at all. Evenmore, the nature
of damping and pumping is not important. In this case, influence of
non-conservative terms can be described by such a rough scheme.
As a bonus, we have eliminated the restrictions on time step

max(|γk|)τ < 1, (66)
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Fig. 5. Decay of the monochromatic capillary wave. Initial conditions. Time t = 0.

Fig. 6. Part of the resonant curve for the decay of the monochromatic capillary
wave with k0 = (68, 0). The different mismatches for different grid knots are
clearly seen.

which would be unavoidable in the case of integration by standard
Runge–Kutta methods. Pumping can be considered in a similar
way.

5. Capillary waves

In this section, we briefly review our previous results published
in [18] and report new observations. The system of Eqs. (18) was
simulated in the domain Lx = Ly = 2π , with surface tension
coefficient σ = 1. The number of grid points was 512 × 512.
A monochromatic wave of amplitude |ak0 | = 2 × 10−3, which
corresponds to average steepness µ = 0.05, was taken as the
initial condition. Its wave number vector k0 = (68, 0). All other
harmonics were of amplitude |ak| ∼ 10−12 and with random
phase (Fig. 5). As was mentioned above, resonant curve almost
never passes through grid points (there are two non trivial points
k = (0; 0) and initial wave k = (k0, 0); this process has a zero
growth rate). A detailed picture of the resonant curve on the grid
in the region with the highest grid point density in the vicinity of
the curve is shown in Fig. 6. One can see that some points are closer
to the resonant curve than others.

In the beginning one can see the growth of several harmonics
as it is predicted in (34) and (35). Different stages of the decay
process are represented in Figs. 7–10 and time is given in periods
of initial wave T0. We represent the isometric projection of the
|ak|2-surface and contour of this surface at the level 10−23 (order of
magnitude higher than background noise). The full picture of the k-
plane in the final moment of simulations is represented in Fig. 11.
A closer snapshot of the most interesting region of Fig. 11 (initial
decay region) is represented in Fig. 12. One can see that, although
the amplitudes of the waves are stochastic, the spectrum is still
strongly anisotropic.

6. Gravity waves

In the case of gravity waves on the surface of deep fluid, the
dispersion is the following

ωk =

gk, (67)

here g is a gravity acceleration. Here and further, let us suppose
g = 1.

In this case, dispersion is of non-decay type conditions (37) have
no real nontrivial solutions, and the main process is four-wave
Fig. 7. Decay of the monochromatic capillary wave. Growth of the harmonics in the vicinity of the resonant curve has begun. Time t = 318T0 .
Fig. 8. Decay of the monochromatic capillary wave. Decay harmonics are well developed. Time t = 794T0 .
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Fig. 9. Decay of the monochromatic capillary wave. Secondary nonlinear processes are revealed. Time t = 1112T0 .
Fig. 10. Decay of the monochromatic capillary wave. Secondary nonlinear
processes are well developed. Time t = 1589T0 .

Fig. 11. Decay of the monochromatic capillary wave. Full k-plane. Time t =

144488T0 .

scattering. Therefore, one can make a substitution to eliminate
third order terms corresponding to the decay process. This is the
reason why we have to use Hamiltonian expansion up to fourth
order in the case of gravity waves.

Let us consider the same initial conditions as in the case
of the decay of the monochromatic capillary wave (i.e. one
Fig. 12. Decay of themonochromatic capillarywave. A closer snapshot of the initial
decay region. Time t = 144488T0 .

Fig. 13. Instability of the monochromatic gravity wave. Initial condition. Time
t = 0.

monochromatic wave and random phase noise of small ampli-
tude). The main processes correspond to the cases when a large
amplitude of initial wave involved the highest possible number of
times. In this case, one wave to three and inverse processes are
much weaker than scattering of two waves with the same ampli-
tude and the same wave vector to two other waves.

Resonance conditions for such process are as follows:

ωk1 + ωk2 = 2ωk0 , k1 + k2 = 2k0. (68)

The resonant curve for this conditions is shown in Fig. 3.
The system of equations (18) was simulated in domain Lx =

Ly = 2π with gravity acceleration g = 1. Grid size was equal to
512 × 512 points. As an initial condition, monochromatic wave of
amplitude |ak0 | = 1.3 × 10−3 with wave number vector k0 =

(30, 0) was used. All other harmonics were of amplitude |ak| ∼

10−12 and with random phase (Fig. 13). In the beginning, one can
observe exponential growth of several harmonics in the vicinity
of the resonant curve (a detailed picture of resonant curve in the
surroundings of the initial wave is shown in Fig. 14). This is shown
in Fig. 15. It is clearly seen that the wave with wavevector (33, 2)
has smallest mismatch and, as a result, growth occurs. As we
already know, four-wave scattering growth-rate has the highest
values in the vicinity of k0 = (k0, 0). Due to this, the initial growth
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Fig. 14. Gravity waves. Part of the resonant curve. Different mismatch for different
grid points is clearly visible.

Fig. 15. Gravity waves. Growth of harmonics amplitude as a function of time. One
can see that harmonic k = (33, 2) is in almost exact resonance, and the others are
not.

is concentrated about the cross of the resonant manifold. Different
stages are represented in Figs. 16–21. We represent the isometric
projection of the |ak|2-surface and contour of this surface at the
level 10−23 (order of magnitude higher than background noise).
The full picture of the k-plane in the final moment of simulations
is represented in Fig. 22. A closer snapshot of the most interesting
region of Fig. 22 (initial instability region) is represented in Fig. 23.
One can observe a still weak but visible downshift of the spectrum.
7. Instability of the standing wave

Maybe the most practically important case of surface wave
instability is the case of instability of the standing wave when
we have interaction of two waves ak0 and a−k0 . In this case, the
resonant curve is a circle with the center at zero k = 0 and of
radius |k0|. It is clear that such a process is general for any isotropic
dispersion. The theory for similar (although in some remote way)
instability in plasma was developed in [34].

7.1. Standing capillary wave

Simulation results for the standing capillary (µ = 0.1) wave
are represented in Figs. 24–29. Contour plots correspond to the
level |ak|2 = 10−23, which is an order of magnitude higher than
the background noise. The full picture of the k-plane in the final
moment of simulations is represented in Fig. 30. A closer snapshot
of themost interesting region of Fig. 30 (initial instability region) is
represented in Fig. 31. We observe isotropization of the wave field,
but in order to obtain a smooth spectrum we need to wait much
longer.

7.2. Standing gravity wave

Simulation results for the standing gravity wave of steepness
µ = 0.1 are represented in Figs. 32–37. Contour plots correspond
to the level |ak|2 = 10−23, which is an order of magnitude
higher than the background noise. The full picture of the k-plane
in the final moment of simulations is represented in Fig. 38.
A closer look at the most interesting region of Fig. 38 (initial
instability region) is represented in Fig. 39. Finally, we observe
almost complete isotropization of the wave field, although we
started from just two waves. Weak angle dependence resembles
the cos(θ) of coupling coefficient (51). The observed process can
be used for the generation of an isotropic wave field through
initial generation of the standing wave, which in turn through the
discussed instability will generate an isotropic spectrum. This is
quite a nontrivial problem for direct wave generation.

In our simulation, we observed start of formation of the
weakly turbulent spectrum tail (see Fig. 40) and formation
of Kolmogorov–Zakharov weak turbulent spectrum of direct
cascade [31].
Fig. 16. Instability of the monochromatic gravity wave. Growth of the harmonics in the vicinity of the resonant curve has began. Time t = 43T0 .
Fig. 17. Instability of the monochromatic gravity wave. Growth of the harmonics in the vicinity of the resonant curve continues. Time t = 87T0 .
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Fig. 18. Instability of the monochromatic gravity wave. Harmonics on the resonant curve are well developed. Time t = 174T0 .
Fig. 19. Instability of the monochromatic gravity wave. Beginning of the secondary processes. Time t = 261T0 .
Fig. 20. Instability of the monochromatic gravity wave. Secondary processes are well developed. Time t = 348T0 .
Fig. 21. Instability of the monochromatic gravity wave. Secondary processes hide the structure of the resonances. Time t = 435T0 .
Fig. 22. Instability of the monochromatic gravity wave. Full k-plane. Time t =

1204T0 .

In conclusion, we have to note that although the wave
amplitudes should be high enough to make grid discreteness
Fig. 23. Decay of themonochromatic capillarywave. A closer snapshot of the initial
instability region. Time t = 1204T0 .

unimportant, at the same time they must be low enough to satisfy
weak nonlinearity conditions.

8. Conclusion

We gave a complete theoretical description of the three-
and four-wave instabilities due to the resonant interactions of
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Fig. 24. Instability of the standing capillary wave. Initial conditions. Time t = 0.

waves. In order to simulate wave turbulence, these mechanisms
have to work, even on homogeneous grid where the exact
resonance conditions are never fulfilled. We demonstrated the
possibility to achieve resonant interactions on homogeneous
grid in numerical simulations. Simulation results are in good
agreement with the theoretical predictions. Stochastization of
the capillary wave field was recently observed in the laboratory
experiment [35]. It is interesting to note, that formation of the
spectrum tail corresponding to the flux of energy was obtained
only over some threshold value of pumping force. This is in
good agreement with our estimations: only after waves reach
some critical amplitude, discreteness of the wavenumber grid
becomes negligible. Numerical observation and some theoretical
estimations for similar behavior of gravity waves are given in [21].

Also, we described in detail the algorithm for the simulation of
weakly nonlinear gravity–capillary surface waves. The numerical
scheme, which was used in the code, conserves Hamiltonian of the
system. Features of the algorithm are used to conveniently control
the adaptive time step. The described pseudo-spectral method
allowed us to simulate wave turbulence in numerous cases.

We discussed and simulated the instability of standing wave
for both capillary and gravity waves. Numerical simulations
show that the instability of propagating waves leads to the
formation of anisotropic, weakly-turbulent spectra while the
instability of standing waves leads to the generation of almost
isotropic spectra, demonstrating the tendency to formation of
Kolmogorov–Zakharov tails. We conclude that the numerical
simulation ofwave instability is a perfect tool for the study ofWave
Turbulence Theory. For experimental wave tanks, this instability
provides a very simple and robust approach, which allows the
production of isotropic wave fields through excitation of just one
standing wave.

Current experimental science in the field of surface waves
is on the rise. Recent advances allow to perform such state
of the art experiments, like formation of the ‘‘tractor beam’’
using the propagating surface waves [36]. For observation of
the standing wave circular instability the ability to reconstruct
wavenumbers spectrum is crucial. Currently authors interact with
one of the group of experimentalists in order to perform an
experiment. An idea is very simple: using parametric excitation
generates a standing wave in the rectangular cell and then follows
the change of the wavenumbers spectrum. What is interesting,
parametric excitation of waves is a standard technique in surface
waves laboratory experiments (e.g. see [35]), so essentially even
processing of the already existing data would be sufficient. The
preliminary results are very promising. A complete report will be
published separately.

This paper as a whole can be used as a comprehensive guide for
theoretical and computational approaches to simulation of weakly
nonlinear waves on the surface of fluids.
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Appendix A. Discrete Hamiltonian variation

Let us derive a variation of Hamiltonian (Hn+1
− Hn). The k̂

operator is self-adjoined
gk̂f d2r =


f k̂g d2r. (A.1)
Let us perform a variation in detail for the quadratic part of the
Hamiltonian (12) in the case of surface gravity waves.

H0 =
1
2


(ψ k̂ψ + gη2)d2r

1H0 = Hn+1
0 − Hn

0

=
1
2


(ψn+1k̂ψn+1

− ψnk̂ψn)d2r

+
g
2


(ηn+12

− ηn
2
)d2r

=
1
2


(ψn+1k̂ψn+1

− ψnk̂ψn+1
+ ψnk̂ψn+1

−ψnk̂ψn)d2r +
g
2


(ηn+1

− ηn)(ηn+1
+ ηn)d2r

=
1
2

 
(ψn+1

− ψn)k̂ψn+1
+ ψnk̂(ψn+1

− ψn)

d2r

+
g
2


(ηn+1

− ηn)(ηn+1
+ ηn)d2r
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Fig. 30. Instability of the standing capillary wave. Full k-plane. Time t = 2587T0.

Fig. 31. Instability of the standing capillary wave. A closer snapshot of the initial
instability region. The inner circle corresponds to instability of the standing waves
produced in the points of the maximum of the growth rate for decay of every
individual initial wave. Compare position with the most developed harmonics
inside the main circle in Fig. 27. Time t = 2587T0.

Fig. 32. Instability of the standing gravity wave. Initial conditions. Time t = 0.
=
1
2


(ψn+1

− ψn)k̂(ψn+1
+ ψn)d2r

+
g
2


(ηn+1

− ηn)(ηn+1
+ ηn)d2r

=
1
2


1ψ k̂(ψn+1

+ ψn)d2r +
g
2


1η(ηn+1

+ ηn)d2r.

Here and further1ψ = (ψn+1
− ψn) and1η = (ηn+1

− ηn).
Similar calculations give us all other variations.
For short, let us omit integral signs in varied expressions.
Quadratic terms

∆


1
2


ψ k̂ψd2r


−→

1
2
1ψ k̂


ψn+1

+ ψn
; (A.2)

∆


1
2


ω2

k

|k|
|ηk|

2 dk

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1
2
1ηk

ω2
k

|k|


ηn+1
k + ηnk


. (A.3)

Cubic terms

∆


1
2


η |∇ψ |

2 d2r


−→ −
1
4
1ψ


∇, (ηn+1

+ ηn)∇(ψn+1
+ ψn)


+

1
4
1η

∇ψn+1
2 +

∇ψn
2 ; (A.4)

∆
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
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4
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
(k̂ψn+1)2 + (k̂ψn)2


. (A.5)

Quartic terms

∆
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 
ηk̂ψ


k̂

ηk̂ψ


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
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4
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+ ηn
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
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+
1
4
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+ ηnk̂ψn
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; (A.6)

∆
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
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1
8
1ψ∇

2

((ηn+1)2 + (ηn)2)k̂(ψn+1
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+
1
8
1ψ k̂
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((ηn+1)2 + (ηn)2)∇2(ψn+1
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

+
1
4
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+ ∇

2ψnk̂ψn). (A.7)
Fig. 33. Instability of the standing gravity wave. Unstable harmonics on the resonant curves begin to grow. Time t = 116T0 .
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Fig. 34. Instability of the standing gravity wave. Unstable harmonics are well developed. Time t = 232T0 .
Fig. 35. Instability of the standing gravity wave. Formation of forced harmonics corresponding to initial circle shifter with ±k0 vectors. Time t = 348T0 .
Fig. 36. Instability of the standing gravity wave. Secondary processes reveal themselves. Time t = 463T0 .
Fig. 37. Instability of the standing gravity wave. Stochastization of the wave field begins. Time t = 580T0 .
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Fig. 38. Instability of the standing gravity wave. Full k-plane. Time t = 3068T0 .

Fig. 39. Instability of the standing gravity wave. A closer look at the initial
instability region. Time t = 3068T0 .

Appendix B. Matrix elements

We repeat formulae from [28].

V (1,2)(k, k1, k2) =
1

4π
√
2


AkBk1Bk2

BkAk1Ak2

1/4

L(1)(k1, k2)

−


BkAk1Bk2

AkAk1Ak2

1/4

L(1)(−k, k1)

−


BkBk1Ak2

AkAk1Bk2

1/4

L(1)(−k, k2)


, (B.1)

V (0,3)(k, k1, k2) =
1

4π
√
2


AkBk1Bk2

BkAk1Ak2

1/4

L(1)(k1, k2)

+


BkAk1Bk2

AkBk1Ak2

1/4

L(1)(k, k1)

+


BkBk1Ak2

AkAk1Bk2

1/4

L(1)(k, k2)


. (B.2)

Ak = |k|, bk = g + σk2. (B.3)

V (2,2)k,k1,k2,k = 3. (B.4)

a(0)k = bk, (B.5)
a(1)k =


Γ (1)(k, k1, k2)bk1bk2δ(k − k1 − k2)dk1dk2

− 2

Γ (1)(k2, k, k1)b∗

k1bk2δ(k + k2 − k2)dk1dk2

+


Γ (2)(k, k1, k2)b∗

k1b
∗

k2δ(k + k1 + k2)dk1dk2, (B.6)

a(2)k =


B(k, k1, k2, k3)b∗

k1bk2bk3
× δ(k − k1 − k2 − k3)dk1dk2dk3 + · · · , (B.7)

Γ (1)(k, k1, k2) = −
1
2

V (1,2)(k,k1,k2)

ωk − ωk1 − ωk2
, (B.8)

Γ (2)(k, k1, k2) = −
1
2

V (0,3)(k,k1,k2)

ωk − ωk1 − ωk2
, (B.9)

B(k, k1, k2, k3) = Γ (1)(k1, k2, k1 − k2)Γ
(1)(k3, k, k3 − k)

+Γ (1)(k1, k3, k − k3)Γ
(1)(k2, k, k2 − k)

−Γ (1)(k, k2, k − k2)Γ
(1)(k3, k1, k3 − k1)

−Γ (1)(k1, k3, k1 − k3)Γ
(1)(k2, k1, k2 − k1)

−Γ (1)(k + k1, k, k1)Γ
(1)(k2 + k3, k, k1)

+Γ (2)(−k − k1, k, k1)Γ
(2)(−k2 − k3, k2, k3). (B.10)

T1234 =
1
2
(T̃1234 + T̃2134), (B.11)

T̃1234 = −
1

16π2

1
(k1k2k3k4)1/4

×

−12k1k2k3k4 − 2(ω1 + ω2)

2

× [ω3ω4((k1 · k2)− k1k2)

+ω1ω2((k3 · k4)− k3k4)]
1
g2

− 2(ω1 − ω3)
2

× [ω2ω4((k1 · k3)+ k1k3)

+ω1ω3((k2 · k4)+ k2k4)]
1
g2

− 2(ω1 − ω4)
2
[ω2ω3((k1 · k4)+ k1k4)

+ω1ω4((k2 · k3)+ k2k3)]
1
g2

+ [(k1 · k2)+ k1k2][(k3 · k4)+ k3k4]
+ [−(k1 · k3)+ k1k3][−(k2 · k4)+ k2k4]
+ [−(k1 · k4)+ k1k4][−(k2 · k3)+ k2k3]

+ 4(ω1 + ω2)
2 [(k1 · k2)− k1k2][−(k3 · k4)− k3k4]

ω1+2 − (ω1 + ω2)2

+ 4(ω1 − ω3)
2 [(k1 · k3)+ k1k3][(k2 · k4)+ k2k4]

ω1−3 − (ω1 − ω3)2

+ 4(ω1 − ω4)
2 [(k1 · k4)+ k1k4][(k2 · k3)+ k2k3]

ω1−4 − (ω1 − ω4)2


.

(B.12)

Appendix C. On the stability of the weakly nonlinear free
surface hydrodynamic model

In detail, this question was considered in [39], but here
we shall follow the original consideration which was done by
A.I. Dyachenko in 1995 (result was mentioned in [40]) with some
changes for 3D hydrodynamics.

Let us consider a large scale solution (η0, ψ0) of (18) with small
scale perturbations (δη, δψ)

η = η0 + δη, ψ = ψ0 + δψ. (C.1)

After the substitution of (C.1) into (18) we perform linearization
with respect to small amplitude perturbations. In order to do this,
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Fig. 40. Instability of the standing gravity wave. Beginning of the formation of
the weakly turbulent spectrum tail. Solid line: angle averaged spectrum from
simulation results; dashed line: theoretically predicted KZ-spectrum [31]; dotted
line: the best fit with power-like function. Time t = 3068T0 .

we take into account difference of scales, which results in ‘‘frozen
coefficients’’ (terms with η0 and ψ0 can be factored out from the
expressions with operator k̂ and derivatives). Also, we keep only
first nonlinear terms in (18), which originate from cubic or three-
wave terms in Hamiltonian (16). All these steps yield the following
dispersion relation for perturbations:

(ωk − v0k)2 = ω2
0k − (k̂ψ0)

2k2, (C.2)

here we introduced v0 = ∇ψ0, which is similar to the velocity
on the surface of the fluid and ω2

0k = σk3 + gk which is the
squared linear dispersion relation for gravity–capillary waves on
the surface of fluids with infinite depth. Correction v0k on the left
hand side is nothing else but Doppler frequency shift. As one can
see, for small enough scales (large enough k-s), the second term
on the right hand side of (C.2) will prevail resulting in a non-zero
imaginary part forωk. This means that we have small scale (or high
frequency) instability.

If we consider the cubic terms in (18), which originate from
quartic or four-wave terms in Hamiltonian (16), the equation for
perturbations (keeping only the first nonlinear terms) yields:

(ωk − v0k)2 = ω2
0k + (k̂ψ0)(∇

2ψ0)k. (C.3)

As one can see, the dispersion relation (C.3) has no instability, at
least in the first order of nonlinearity. It means that even in the
case of capillary waves, where three-wave interactions are the
major process, the presence of terms corresponding to four-wave
processes stabilizes the equation. If we consider the full expression
for dispersion relation resulting from (18) with cubic terms:

(ωk − v0k)2 = ω2
0k + (k̂ψ0)(∇

2ψ0)k + 2(k̂ψ0)

× (k̂[η0k̂ψ0] + η0∇
2ψ0)k2 −


(k̂[η0k̂ψ0])

2

+ 2k̂[η0k̂ψ0](η0∇
2ψ0)+ (η0∇

2ψ0)
2

k2, (C.4)

one can see, that instability reappears only with fourth-order
nonlinearity terms, which means that it can influence only
computations with relatively high steepness or with very high
values of k. This instability can be eliminated by proper canonical
change of variables, as shown in [39].
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