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h i g h l i g h t s

• We present an efficient procedure for constructing bounded, non-periodic solutions of the KdV equation.
• The present work is a key ingredient for the study of integrable turbulence and the statistical description of a solitonic gas.
• The analytical procedure is reinforced by numerical simulation that presents some of these potentials.
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a b s t r a c t

We construct a broad class of bounded potentials of the one-dimensional Schrödinger operator that
have the same spectral structure as periodic finite-gap potentials, but that are neither periodic nor
quasi-periodic. Such potentials, which we call primitive, are non-uniquely parametrized by a pair of
positive Hölder continuous functions defined on the allowed bands. Primitive potentials are constructed
as solutions of a system of singular integral equations, which can be efficiently solved numerically.
Simulations show that these potentials can have a disordered structure. Primitive potentials generate
a broad class of bounded non-vanishing solutions of the KdV hierarchy, and we interpret them as an
example of integrable turbulence in the framework of the KdV equation.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

It has been known since 1967 [1] that the analytic theory of the
Korteweg–de Vries (KdV) equation

ut − 6uux + uxxx = 0 (1.1)

where u = u(x, t), can be substantially advanced by presenting
this equation as a compatibility condition for a pair of linear
equations imposed on an auxiliary complex function ψ(x, t). One
of them is the Schrödinger equation on the real axis

− ψxx + u(x)ψ = Eψ, −∞ < x < ∞, (1.2)

and time evolution is given by:

ψt + ψxxx + 6uψx + 3uxψ = 0. (1.3)
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The existence of this Lax representation [2] makes it possible to
solve the initial value problem for KdV (1.1) by the Inverse Scat-
tering Transform (IST), in the case when the potential u(x, t) is a
rapidly decaying function at |x| → ∞:

∞

−∞

|u(x)|(1 + |x|)dx < ∞. (1.4)

In this case, the Schrödinger operator (1.2) has a continuous spec-
trum on the positive semiaxis E > 0 and possibly a finite number
of negative discrete energy levels.

The second important step in the development of the theory
of the KdV equation was done in the early seventies [3–5], when
it was established that this equation has an infinite number
of families of exact solutions, called finite-gap solutions. The
spectrum of the Schrödinger equation with an N-gap potential
consists of N + 1 allowed bands separated by N forbidden bands.
These finite-gap solutions are explicitly expressed in terms of
θ-functions of hyperelliptic algebraic curves. All these solutions are
quasi-periodic, and a certain subset of them are periodic. Periodic
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finite-gap solutions form a dense subset of all periodic potentials,
which enables us to solve the initial value problem in this case.

In spite of all these brilliant achievements, the theory of the
KdV equation is not yet developed to a level which would satisfy
a pragmatic physicist, who may ask the following question: What
happens if the initial data in the KdV equation is neither decaying
at infinity nor periodic? Suppose that the initial data is a bounded
function

u(x) = u(x, 0), |u(x)| < c.

Can we extend the IST to this case, which has great practical im-
portance? Moreover, what happens if u(x) is a random statistically
uniform field? In this case the KdV equation describes what we call
integrable turbulence [6]. Canwe say anything about the correlation
functions and spectra of this turbulence?

These questions are hard to answer and refer to another
fundamental mathematical question. What is the spectrum of
operator (1.2) if the potential is a bounded function? By definition,
a value of E belongs to the spectrum of u(x) if there exists one or
two independent bounded wave functions ψ(x, E):

|ψ(x, E)| < 1, −∞ < x < ∞.

The spectrum is a subset of the axis −∞ < E < ∞, and can
have a quite complicated structure. We know that the spectrum
is Lebesgue measurable, but its measure could be zero, finite or
infinite. When the measure is zero, the set could be countable or
uncountable. The question formulated above is very difficult.

In this paper we formulate the reverse question. Suppose we
know the spectrum.What we can say about the potential u(x)?We
assert that this question is much easier. First of all, we note that
evolving the potential along the KdV equation, or along any equa-
tion of the KdV hierarchy, does not change the spectrum set. Hence
we have to speak about description of classes of potentials having
a given spectral set. This ambitious program must start from the
simplest nontrivial case,when the spectrumof the Schrödinger op-
erator with a non-decaying potential consists of thewhole positive
semiaxis E > 0 and one allowed band in the negative semiaxis:

−k22 < E < −k21, k2 > k1 > 0.

Given that the one-gap potential is periodic, it is determined up to
translation by the formula

u(x) = u0(x) = 2℘(x + iω′
− x0)+ e3. (1.5)

Here ℘(x) is the elliptic Weierstrass function with periods 2ω and
2iω′. We have

e1 − e3 = k22, e2 − e3 = k21, e1 + e2 + e3 = 0 (1.6)

where e1 > e2 > e3.
The spectrum is doubly degenerate and reflectionless, and

within the allowed bands a quantum particle moves freely in both
directions. We construct potentials that have the same spectrum
and that are reflectionless in the infinite band, but that are not
periodic. A general one-gap reflectionless potential is determined
by two positive Hölder continuous functions R1(κ) and R2(κ),
defined inside the allowed gap. For an even potential u(−x) =

u(x), we have R1 = R2.
To construct these potentials, we consider the closure of the

set of reflectionless Bargmann potentials, also known as N-soliton
potentials, as N → ∞. This problem was posed and formally
solved in the works of Marchenko and his students [7–9], but the
obtained results are not effective. In this paper we consider a new
technique for constructing the closure of the Bargmann potentials,
based on ‘‘transplanting poles’’. We show that this technique is
quite effective. In particular, we construct the periodic potential
(1.5) as a limit of N-soliton solutions.

2. Bargmann potentials via the dressing method

Bargmann potentials were first constructed in 1948 in [10] as
a class of potentials of the one-dimensional Schrödinger operator
(1.2) having N bound states with negative energy and zero
reflection coefficient for all positive energies. From the point of
view of the KdV equation, Bargmann potentials correspond to
N-soliton solutions at fixed moments of time, and hence can be
explicitly constructed using the inverse spectral transform for the
operator (1.2). In this section, we give an alternate construction
of the Bargmann potentials using the so-called dressing method,
following Zakharov andManakov [11]. Comparedwith the IST, this
method gives us additional flexibility that will later prove crucial
when we generalize to the Riemann–Hilbert problem.

We consider a ∂-problem on the complex k-plane of the
following kind:

∂χ

∂k
= ie2ikxT (k)χ(−k, x). (2.1)

Here T (k) is a compactly supported distribution called the dressing
function of the ∂-problem. A solution of (2.1) is defined up to
multiplication by a function of x, hence if a solution exists we can
normalize it by the condition χ → 1 as |k| → ∞. Such a solution
satisfies the integral equation

χ(k, x) = 1 +
i
π


e−2iqxT (−q)χ(q, x)

k + q
dqdq, (2.2)

where we normalize the integral in the following way:

1
k

= lim
ε→0

k
|k|2 + ε2

,
∂

∂k


1
k


= πδ(k). (2.3)

Here δ(k) is the two-dimensional δ-function.
We assume also that

T̄ (k̄, k) = T (k, k̄).

Note, that the dressing function is not analytic.
We now show that a solution of the ∂-problem (2.1) gives rise

to a solution of the Schrödinger equation (1.2). Suppose that the
dressing function has property that the integral equation (2.2) has
a unique solution for x inside a certain interval x2 < x < x1. Then

χ(k, x) = 1 +
iχ0(x)

k
+ O(k−2), u(x) = 2

d
dx
χ0(x). (2.4)

Denote

ξ(k, x) = χxx − 2ikχx − u(x) χ. (2.5)

It is straightforward to check that ξ also satisfies the ∂-problem
(2.1), and the choice of u(x) guarantees that ξ → 0 as |k| → ∞.
By the uniqueness assumption, it follows that ξ is identically equal
to zero, hence the function χ(k, x) is a solution of the differential
equation

χxx − 2ikχx − u(x)χ = 0, (2.6)

and the function ψ(x, k) = χ(x, k)e−ikx is a solution of the
Schrödinger equation (1.2) with E = k2, which completes the
proof.

We obtain the class of reflectionless Bargmann potentials by
considering a ∂-problem whose solution χ is a rational function
of k with simple poles along the imaginary axis.
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Let κ1, . . . , κN and c1, . . . , cn be a collection of nonzero real
numbers satisfying the following properties:

1. |κm| < |κn| for allm < n,
2. cn/κn > 0 for all n.

Consider the dressing function

T (k) = π

N
n=1

cnδ(k − iκn). (2.7)

Then the ∂-problem (2.1) has a unique solution χ satisfying the
normalization condition χ → 1 as |k| → ∞. This solution is a
rational function of k having simple poles at the points k = iκn for
n = 1, . . . ,N , and has the following form:

χ(k, x) = 1 + i
N

n=1

χn(x)
k − iκn

, (2.8)

where the χn(x) are real-valued functions. The corresponding
potential

u(x) = 2
d
dx

N
n=1

χn(x)

is a reflectionless Bargmann potential having the finite discrete
spectrum −κ2

1 , . . . ,−κ
2
N , and ψn(x) = χn(x)eκnx are the corre-

sponding eigenfunctions.
Given a reflectionless Bargmann potential u(x) with a finite

negative discrete spectrum −κ2
1 , . . . ,−κ

2
N , the direct spectral

transform proceeds by constructing a solution ψ(k, x) of the
Schrödinger equation (1.2) that is analytic in the k-upper half-
plane. In the k-lower half-plane, the function ψ(k, x), and hence
the function χ(k, x) = ψ(k, x)eikx, then has poles on the negative
imaginary axis at the points −i|κ1|, . . . ,−i|κN | corresponding
to the discrete spectrum. To construct u(x) using the dressing
method, we can place the poles of χ on both the positive and
negative imaginary axes, so long as the poles have distinct absolute
values, and everyN-soliton Bargmannpotential can be constructed
in 2N different ways by arbitrarily choosing the signs of the κn.

It is possible to relax the condition that cn and κn have the same
sign for each n, but the corresponding potentials u(x) will then be
singular functions of x.

Given the dressing function (2.7), the identity (2.1) implies that
a solution χ has simple poles at the points k = iκn and no other
singularities. The condition χ → 1 as |k| → ∞ then implies that
χ has the form (2.7). Substituting this into the integral equation
(2.2), we obtain a system of linear equations on the residues χn(x):

χn(x) = e−2κnxcnχ(−iκn, x). (2.9)

Writing this system out explicitly, and replacing χn(x) =

ψn(x)eκnx, we obtain the following system:

ψn(x)+ cn
N

m=1

e−(κn+κm)x

κn + κm
ψm(x) = cne−κnx. (2.10)

The matrix of this system

Anm = δnm +
cne−(κn+κm)x

κn + κm

is the sumof an identitymatrix and a Cauchy-likematrix, therefore
its determinant is the sum of the principal minors of the Cauchy-
like-matrix. This sum is indexed by subsets I = {i1, . . . , in} of the
index set {1, . . . ,N} and can be explicitly evaluated as follows:

A = det Anm =


I⊂{1,...,N}

 
{i,j}⊂I,i<j

(κi − κj)
2

(κi + κj)2


i∈I

ci
2κi

e−2κix


.

By assumption, the quantities ci/κi and (κi − κj)
2 are all positive,

therefore each summand and hence all of A is positive, so the
system (2.10) has a unique solution. By our previous statement, χ
satisfies Eq. (2.9), and the corresponding potential u(x) is

u(x) = 2
dχ0

dx
= 2

d
dx

N
n=1

χn(x). (2.11)

We evaluate u(x) by Cramer’s rule to obtain

u(x) = 2
d
dx

N
n=1

χn(x) = 2
d
dx

N
n=1

ψn(x)eκnx

= 2
d
dx


−

1
A

d
dx

A


= −2
d2

dx2
ln A. (2.12)

When all the κn are positive, this is the familiar formula for the
N-soliton reflectionless potentials (see for example [5], formula
(1.5)).

To finish the proof, we consider what happens to formula (2.12)
when we change the signs of one of the κn. A direct calculation
shows that

A =
cn
2κn

e−2κnxA,
whereA is the determinant of the matrix Anm corresponding to the
data (κi,ci), where

κi =


κi, i ≠ n,

−κn, i = n, ci =



κi − κn

κi + κn

2

ci, i ≠ n,

−4κ2
n/cn, i = n.

By formula (2.11), the data (κi, ci) and (κi,ci) determine the same
potential u(x). Hence, starting with an arbitrary (κi, ci), we can
make all κi positive and make the corresponding changes to the ci
while preserving u(x), so in fact all of the potentials that we obtain
in this way are reflectionless Bargmann potentials.

Finally, considering the leading term in Eq. (2.6) near the poles,
we see thatψn are eigenfunctions of the Schrödinger operatorwith
potential u(x) corresponding to the eigenvalues −κ2

n .

3. The symmetric Riemann–Hilbert problem

In this section, we consider a Riemann–Hilbert problem that is
a continuous analogue of the finite ∂-problem that generates the
Bargmann potentials.

Let 0 < k1 < k2 be real numbers, and let R1 and R2 be two non-
negative continuous functions on the interval [k1, k2], satisfying
the Hölder condition. Consider the dressing function

T (k) = π

 k2

k1
R1(p)δ(k − ip)dp

−π

 k2

k1
R2(p)δ(k + ip)dp. (3.1)

Then the corresponding ∂-problem (2.1) has a unique solution χ
satisfying the normalization condition χ → 1 as |k| → ∞. This
function is analytic on the k-plane away from two cuts [ik1, ik2]
and [−ik2,−ik1] on the imaginary axis. Denote by χ+ and χ− the
right and left boundary values of χ along the cuts:

χ+(x, ip) = lim
ε→0

χ(x, ip + ε),

χ−(x, ip) = lim
ε→0

χ(x, ip − ε),
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where k1 < |p| < k2. It is easy to verify that the function χ(x, ip)
satisfies the following contour problem on the cuts:

χ+(ip)− χ−(ip)
iπ

= R1(p)e−2px χ+(−ip)+ χ−(−ip)

, (3.2)

χ+(−ip)− χ−(−ip)
iπ

= −R2(p)e2px

χ+(ip)+ χ−(ip)


. (3.3)

Here the dependence of χ(x, ip) on the x variable is dropped to
improve readability.

This is a scalar, but non-local, Riemann–Hilbert problem, and it
is equivalent to a local vector Riemann–Hilbert problem. Denote
Ξ(k) = [χ(k) χ(−k)]T , and let Ξ+ and Ξ− be the right and left
values ofΞ on the cuts. Then (3.2)–(3.3) are equivalent to

Ξ+(iκ) = M(κ)Ξ−(iκ), Ξ+(−iκ) = MT (κ)Ξ−(−iκ) (3.4)

for κ ∈ [k1, k2], where the transition matrix is

M(x, κ) =
1

1 + R1R2


1 − R1R2 2iR1e−2κx

2iR2e2κx 1 − R1R2.


A function χ , analytic on the k-plane, having jumps along the

cuts [ik1, ik2] and [−ik2,−ik1], and satisfying the normalization
χ → 1 as |k| → ∞ can be written as

χ(x, k) = 1 + i
 k2

k1

f (x, p)
k − ip

dp + i
 k2

k1

g(x, p)
k + ip

dp, (3.5)

where f (x, p) and g(x, p) are real-valued functions defined for
real x and for p ∈ [k1, k2]. The corresponding potential of the
Schrödinger operator (1.2) is

u(x) = 2
d
dx

 k2

k1
[f (x, p)+ g(x, p)]dp.

Given R1 and R2, we look for a solution of the ∂-problem (2.1)
in the form (3.5), where f and g are unknown functions of x and
p ∈ [k1, k2]. The jumps of χ along the cuts are then equal to

χ+(x, ip)− χ−(x, ip) = 2π if (x, p),
χ+(x,−ip)− χ−(x,−ip) = 2π ig(x, p).

Plugging (3.5) into (2.1), we see that χ satisfies the Rie-
mann–Hilbert problem (3.2)–(3.3) if f and g satisfy the following
system of singular integral equations:

f (x, p)+ R1(p)e−2px
 k2

k1

f (x, q)
p + q

dq +

? k2

k1

g(x, q)
p − q

dq


= R1(p)e−2px (3.6)

g(x, p)+ R2(p)e2px
? k2

k1

f (x, q)
p − q

dq +

 k2

k1

g(x, q)
p + q

dq


= −R2(p)e2px. (3.7)

We note that the Riemann–Hilbert problem (3.2)–(3.3) is a
continuous generalization of Eq. (2.9). We need to show that the
system (3.6)–(3.7) has a unique solution on the entire real axis. Let
us formulate the idea of the proof. A more rigorous proof will be
published separately.

We approximate these equations by Riemann sums. Fix an
integer N , and let ∆ = (k2 − k1)/2N . We subdivide the segment
[k1, k2] into 2N equal parts and denote

λ1 = k1, µ1 = k1 +∆, λ2 = k1 + 2∆, µ2 = k1 + 3∆, . . .

Denoting

fn(x) = f (x, λn), gn(x) = g(x, µn),

αn = 1R1(λn), βn = −1R2(µn)
we approximate the Riemann–Hilbert problem (3.2)–(3.3) by
replacing the integrals containing f with their Riemann sums at
the λn and the integrals containing g with their Riemann sums at
the µn:

fn(x)+ αne−2λnx


N+1
m=1

fm(x)
λn + λm

+

N
m=1

gm(x)
λn − µm


= αne−2λnx, (3.8)

gn(x)+ βne2µnx


N+1
m=1

fm(x)
−µn + λm

+

N
m=1

gm(x)
−µn − µm


= βne2µnx. (3.9)

We see that this system is equivalent to the system (2.9) on the
eigenfunctions of a Bargmann potential having 2N + 1 solitons
corresponding to the poles (λ1, . . . , λN+1,−µ1, . . . ,−µN) and
the constants (α1, . . . , αN+1,−β1, . . . ,−βN).

According to the results of the last paragraph, this system has
a unique solution for all x and gives a Bargmann potential with
2N + 1 solitons, which is bounded uniformly in N . We can solve
these equations iteratively:fn(x) = 1 +f (1)n (x)+ · · · , gn(x) = 1 +g(1)n (x)+ · · · . (3.10)

We get

f (1)n (x) =


m=1

αme−2αmx

λn + λm
+


m=1

βme2βmx

λn − µm
(3.11)

and a similar expression for g̃(1)n (x). The question is: can we turn
the sum (3.11) into an integral? Notice that x in (3.8), (3.9) is
a parameter, which we assume to be contained inside a certain
interval. The transition to an integral holds for −L < x < L, where

21Reκ2L ≪ 1, R = max(R1(p), R2(p)). (3.12)

To increase L, we need to exponentially increase N:

N ≃ eκ2L. (3.13)

Nevertheless, for N sufficiently large, it is possible to include any
point of the real axis in the interval (−L, L). Since the systems
(3.2)–(3.3) describe 2N + 1-soliton solutions, Eqs. (3.8)–(3.9) are
uniquely solvable for all x. The resulting potentials are bounded in
both directions. According to results obtained by A. Shabat [12] the
potential u(x) is strictly negative and satisfies condition

− 2k22 < u(x) < 0. (3.14)

Proceeding as before, we determine that the eigenfunctions

ϕ(x, κ) = f (x, κ)eκx, ψ(x, κ) = g(x, κ)e−κx (3.15)

are bounded and orthonormal:
∞

−∞

ϕ(x, κ)ϕ(x, κ ′)dx = R1(κ)δ(κ − κ ′), (3.16)
∞

−∞

ψ(x, κ)ϕ(x, κ ′)dx = 0, (3.17)
∞

−∞

ψ(x, κ)ψ(x, κ ′)dx = R2(κ)δ(κ − κ ′). (3.18)

The functions f (x, κ) and g(x, κ) grow exponentially as x → −∞

and x → ∞, respectively. However, the functions φ(x, k), ψ(x, k)
remain bounded on −∞ < x < ∞.

The function χ0(x) grows linearly in both directions:

χ0 = −c1x + χ0(x) as x → −∞; (3.19)
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χ0 = −c2x + χ0(x) as x → +∞, (3.20)

where |χ0(x)| < const for −∞ < x < ∞.
We note that in the κ-region, inwhich both functions R1(κ) and

R2(κ) are strictly positive, the spectrum is doubly degenerate, and
the potential is primitive. All these statements are supported by
numerical experiments.

If we assume that R1(κ) = R2(κ), then

g(x, κ) = −f (−x, κ), (3.21)

and the potential is symmetric u(−x) = u(x). We note that
for R1(κ) = R2(κ) every finite approximation only gives an
approximately symmetric potential, however, the accuracy of
symmetry grows exponentially as N → ∞.

Let us now assume that R2(κ) ≡ 0. Then Eq. (3.7) is no longer
singular and is a regular Fredholm equation of the second kind:

f (x, κ)+ R1(κ)e−2κx
 k2

k1

f (x, q)
x + q

dq = R1(κ)e−2κx. (3.22)

It follows from what we said above that

f (x, κ) → R1(κ)e−2κx, as x → +∞. (3.23)

However, studying the asymptotic behavior as x → −∞ is a
very difficult problem, because taking the naive limit x → −∞

gives a Fredholm equation of the first kind k1

k2

f (x, q)
x + q

dq = 1, (3.24)

which has no solutions. Therefore, we cannot discard the term
f (x, κ)e2κx as x → ∞, since it may not be small. Studying the
asymptotic behavior as x → −∞ is a difficult and so far unsolved
problem. An even more difficult problem is the asymptotic behav-
ior of the general Eqs. (3.6) and (3.7) as x → ±∞.

Now assume that both functions R1 = R2 are zero on the set
of N subintervals inside the interval k1 < κ < k2. In this case the
spectrum consists of N + 1 allowed bands, including the positive
semi-axis, separated by N lacunae. We hypothesize that all N-gap
potentials can be obtained in this way, and prove this for N = 1.

4. Periodic one-gap potentials

In this section, we show that periodic one-gap potentials of
the Schrödinger operator can be constructed from the symmetric
Riemann–Hilbert problem.

Let ω and ω′ be positive real numbers, and consider the elliptic
curve E = C/Λ, whereΛ is the period lattice generated by 2ω and
2iω′. Denote by℘(z) theWeierstrass elliptic function associated to
the latticeΛ (see Fig. 1). It satisfies the differential equation

[℘ ′(z)]2 = 4℘(z)3 − g2℘(z)− g3
= 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

where the zeros e1, e2, e3 are real-valued, satisfy e1 + e2 + e3 = 0,
and we assume that e3 < e2 < e1.

The function

u(x) = 2℘(x − ω − iω′)+ e3 (4.1)

is a real-valued potential of the Schrödinger operator (1.2) with
period 2ω. Our goal is to construct a solution of (1.2) that gives a
solution of the symmetric Riemann–Hilbert problem.

We consider the following function ϕ(x, z), where x is real and
z is defined on the curve E:

ϕ(x, z) =
σ(x − ω − iω′

+ z)σ (ω + iω′)

σ (x − ω − iω′)σ (ω + iω′ − z)
exp[−ζ (z)x]. (4.2)
Fig. 1. (Top) k-plane and (Bottom) z-plane.

Here σ and ζ are the Weierstrass elliptic functions. A direct
calculation shows that ϕ satisfies the Lamé equation

ϕ′′
− [2℘(x − ω − iω′)+ ℘(z)]ϕ = 0.

Hence we see that ϕ is a solution of the Schrödinger equation (1.2)
with potential (4.2) if the parameter z satisfies the relation

k2 = e3 − ℘(z). (4.3)

The Weierstrass function ℘ has degree two, hence for a generic
complex value of k there are two values of z on E that satisfy (4.3).
In order tomake the function (4.2) a single-valued function of k, we
need to choose a branch of z. We choose the solution z(k) of (4.3)
that satisfies

z(k) =
i
k

+ O


1
k2


as |k| → ∞. (4.4)

This branch defines a single-sheeted map from the complex k-
plane with two cuts on the imaginary axis to a period rectangle
of the lattice Λ centered at 0. The cuts on the imaginary axis are
[−ik2,−ik1] and [ik1, ik2], where

k1 =
√
e2 − e3, k2 =

√
e1 − e3.

The right and left sides of the top cut [ik1, ik2] are mapped to the
line segments joiningω toω+iω′ andω−iω′, respectively, and the
right and left sides of the bottom cut [−ik2,−ik1] are respectively
mapped to the segments joining −ω to −ω + iω′ and −ω − iω′.

The function ϕ satisfies the following properties:

ϕ(x, z + 2ω) = ϕ(x, z), ϕ(x, z + 2iω′) = ϕ(x, z),
ϕ(x, z) = ϕ(x, z) when z = z, x = x.

Also

ϕ(x, z) = ϕ(x, z)

for all z having real part ω.
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Let z(k) be the branch of the solution of (4.3) satisfying (4.4). Let
f (k) be the branch of the function

f (k) =


k + ik1
k + ik2

satisfying f (k) → 1 as |k| → ∞. On the complex k-planewith two
cuts [ik1, ik2] and [−ik2,−ik1] along the imaginary axis, define the
function

ξ(x, k) = f (k)ϕ(x, z(k))e−ikx.

Then the function ξ(x, k) satisfies the equation

ξ ′′
+ 2ikξ ′

− u(x)ξ = 0, ξ → 1 as |k| → ∞

with potential u(x) given by (4.1). On the cuts, the function ξ(x, k)
satisfies the Riemann–Hilbert problem

ξ+(iq)− ξ−(iq)
iπ

= R1(q)e2qx

ξ+(−iq)+ ξ−(−iq)


,

ξ+(−iq)− ξ−(−iq)
iπ

= −R2(q)e−2qx ξ+(iq)+ ξ−(iq)

,

where dependence of ξ on its first variable is omitted to improve
readability. Here q ∈ [k1, k2], and ξ+(x,±iq) are the right hand
values of the upper and lower cuts, and ξ−(x,±iq) are the left hand
values on the upper and lower cuts. The functions R1 and R2 are

R1(q) =
1
π
h(q), R2(q) =

1
πh(q)

,

h(q) =


(q − k1)(q + k2)
(k2 − q)(q + k1)

. (4.5)

5. Solutions of integrable systems

Suppose that thewave function andpotential of the Schrödinger
equation (1.2) depend on time t in the following way:

ψt + 48ψx + 4ψxxx + 3uxψ = 0, (5.1)
ut + 48ux − 6uux + uxxx = 0.

In other words u(x, t) is a solution of the KdV equation (see [1])
in a moving frame. The KdV equation preserves the spectrum,
and transforms any primitive potential into another. The solution
u(x, t) is obtained by modifying the dressing problem (2.1) by
replacing the exponent with 2ix + 8ik3t (see [11]). The dressing
functions are transformed as follows:

R1(κ) → R1(κ)eS(κ)t , R2(κ) → R2(κ)e−S(κ)t . (5.2)

Here S(κ) = 8(κ3
− 12κ). The time evolution (5.2) transforms

the Schrödinger operator into a unitary equivalent one with a
different potential, and the same is true for evolution under higher
KdV flows. For higher KdV flows, S(κ) must be replaced by some
odd polynomial on κ . But as far as any continuous function on
a finite interval can be approximated by odd polynomials, one
can consider that S(κ) in (5.2) is an arbitrary continuous function.
Thenwe come to an important conclusion: The unique invariant of
unitary equivalence is the product ω(κ) = R1(κ) R2(κ). It means
that:

1. All Bargmannpotentialswith the same energy levels are unitary
equivalent to each other. Moreover, if the spectrum is non-
degenerate (single), all operators with the same spectrum are
unitary equivalent to each other.

2. All finite-gap potentials with the same band structure are
unitary equivalent to each other.

In particular, if we put h(κ) = 1 in (4.5) we get R1(κ) =

R2(κ) = 1/π . Again, this dressing gives a periodic potential.
6. Numerical experiments

We solve the system of integral equations associated to (2.1)
numerically for k1 = 2 and k2 = 4. Denote κ = p + 3, (−1 <
p < 1). It is convenient to replace φ(x, κ) and ψ(x, κ) with the
following functions:

P(x, p) =


1 − p2φ(x, p + 3),

Q (x, p) =


1 − p2ψ(x, p + 3).

The system of integral equations (3.6), (3.7) becomes

P(x, p)+ r1(p)e−2(3+p)x

 1

−1

P(x, q)e−qx

(6 + p + q)

1 − q2

dq

+

? 1

−1

Q (x, q)eqx

(k − q)

1 − q2

dq


= r1(p)e−2(3+p)x, (6.1)

and

Q (x, p)+ r2(p)e2(3+p)x

? 1

−1

P(x, q)eqx

(6 + p + q)

1 − q2

+

 1

−1

Q (x, q)e−qx dq

(k − q)

1 − q2


= −r2(p)e2(3+p)x. (6.2)

Here we denote

r1,2(p) =


1 − q2 R1,2(p + 3) =


1 − p2 R̃(p).

The continuous functions P(x, q) and Q (x, q) are discretized at
Chebyshev nodes qk = cos (2k−1)π

2M with k = 1, 2, . . . ,M . The
integrals are evaluated via Gauss–Chebyshev quadrature that is
exact for polynomials of degree less than 2M − 1. Note that each
equation of the system contains a Cauchy principal value integral
denoted by

>
, and that integration in the vicinity of singularity at

q = k requires a shift from the real axis.
The spatial variable x appears as a parameter in (6.1)–(6.2) and

the x-dependence of r1 and r2 becomes a major obstacle, since the
condition number of the discretized system is exponential in x and
requires usage of multiprecision arithmetics.

It is convenient to choose Chebyshev nodes to discretize the pa-
rameter x and have efficient high-order polynomial interpolation.
Lagrange interpolation is used to determine values of P(x, q) and
Q (x, q) at intermediate points in x. Having simulations performed
with arbitrary precision, we typically use interpolating polynomi-
als up to degree 200 to have an accurate approximation of the so-
lution in the range |x| < 10 without any loss of precision.

We performed numerical experiments using different choices
of the dressing functions R̃1(p), R̃2(p).

6.1. Simulation 1. Periodic potential

To obtain a periodic potential we choose dressing functions in
the following form:

R1(p) =
1
π

and r1(p) =
1
π


1 − p2e−(R+p)x

R2(p) =
1
π

and r2(p) =
1
π


1 − p2e+(R+p)x

where −1 ≤ p ≤ 1.
A simple modification of dressings above:

h(p) =


(1 − p)(p + 5)
(1 + p)(p + 7)

R1(p) =
1
π
h(p) and r1(p) =

1
π


1 − p2h(p)e−(R+p)x
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Fig. 2. Potential U(x) corresponding to the periodic case (green) and shifted
periodic (dark-orange). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

R2(p) =
1
π

1
h(p)

and r2(p) =
1
π


1 − p2

1
h(p)

e+(R+p)x

leads to a shifted periodic potential. See illustration in Fig. 2.

6.2. Simulation 2. Non-periodic potentials

In this subsection we present results of numerical simulations
with dressings that do not result in periodic potentials. We also
evolve the resulting potentials in time by evolving the dressing
functions under KdV flow.

In the case (A) we consider one-sided dressings [13]:

R1(p) =
1
π
etS0(p) and R2(p) = 0,

r1(p) =
1
π


1 − p2e−(R+p)x+tS0(p),

r2(p) = 0,

where −1 ≤ p ≤ 1, and the time evolution of the potential u(x, t)
is given by adding:

S0(p) = 8(p + 3)

(p + 3)2 − 12


(6.3)

to the exponent (see Fig. 3).
In the case (B) we investigate the dynamics of a potential with

a flat plateau for small x, found by the following dressing:

R1(p) =
10−3

π
etS0(p) and R2(p) =

10−6

π
e−tS0(p),

r1(p) =
10−3

π


1 − p2e−(R+p)x+tS0(p),

r2(p) =
10−6

π


1 − p2e+(R+p)x−tS0(p),

where −1 ≤ p ≤ 1 (see Fig. 4).
The third case (C) that we treat involves the dynamics of a

modulated periodic potential given by the following dressing:

R1(p) =
1
π
eλS(p)+tS0(p) and R2(p) =

1
π
eλS(p)−tS0(p),

r1(p) =
1
π


1 − p2e−(R+p)x+λS(p)+tS0(p),

r2(p) =
1
π


1 − p2e+(R+p)x+λS(p)−tS0(p),
Fig. 3. Potential U(x) corresponding to dressing case (A) at time t = 0, t = 0.01
and t = 0.5.

Fig. 4. Potential U(x) corresponding to dressing case (B) at time t = 0, t = 0.01
and t = 0.5.

where −1 ≤ p ≤ 1 and

S(p) =

Nmax
n=1

(p − rn),

where r1 = −1, rNmax = 1 and rn is a sequence of randomly
generated real numbers in the interval −1 ≤ rn ≤ 1 for n =

2 . . .Nmax − 1. In this simulation Nmax = 10 (see Fig. 5), also see
Fig. 11 for time evolution of this potential.

6.2.1. Wave functions ψ and ϕ
Thewavefunctionsψ(p, x) andϕ(p, x) for the simulation (C) are

presented in Figs. 6 and 7.

6.2.2. Integrals of motion
In addition, it is worthwhile to investigate the time dependence

of integrals of motion associatedwith KdV flow, note however that
we can only observe the potential on a subinterval in variable x,
hence the integrals will not be conserved in the presented interval.
Instead there will be fluctuations in the integrals of motion due to
flow through the boundaries on the left and on the right.

However, we note that for a statistically developed state flow
through the right boundary is in dynamic balance with the flow
through the left boundary, and hence integrals will be conserved
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Fig. 5. Potential U(x) corresponding to dressing case (C) at time t = 0, t = 0.01
and t = 0.5 with λ = 4096.

Fig. 6. Wave function ϕ in case (C) for distinct values of λ and p = 0.

Fig. 7. Wave function ψ in case (C) for distinct values of λ and p = 0.
Fig. 8. Time dependence of integral I1 , the rootmean square deviation is 3.9471113
(1.40182%).

Fig. 9. Time dependence of integral I2 , the rootmean square deviation is 94.134925
(2.17212%).

Fig. 10. Time dependence of integral I3 , the root mean square deviation is
1994.2285 (3.00909%).
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Fig. 11. Details of time evolution of potential u(x, t) for times t = 0.25 (green),
t = 0.251 (dark-orange) and t = 0.252 (blue). (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

when averaged over a long period of time. In the three figures
(Figs. 8–10) we present time dependence of:

I1 =

 10

−10
u(x) dx (6.4)

I2 =

 10

−10
u2 dx (6.5)

I3 =

 10

−10


u3

+
1
2
u2
x


dx (6.6)

corresponding to case (C).

7. Conclusions

We describe a procedure for taking the closure as N → ∞ of
the set of N-soliton solutions of the KdV equation, or, equivalently,
the closure of the set of reflectionless rapidly vanishing potentials
of the Schödinger operator. The resulting solutions are bounded,
non-periodic, and non-vanishing as x → ±∞. This procedure can
be generalized to a wide class of scalar or matrix linear operators,
such as the Dirac operator. This would allow us to construct
non-vanishing, non-periodic solutions to the various associated
nonlinear integrable systems, such as the Nonlinear Schödinger
Equation and the Kadomtsev–Petviashvili equation.

An outstanding problem in the theory of nonlinear equations
is the development of a statistical theory of integrable systems
having infinitely many degrees of freedom and infinitely many
conserved quantities. Such a theory, which we may call a theory
of integrable turbulence, is beginning to be developed, the first
steps having been suggested in [6]. Physical examples of integrable
turbulence include coastal areas of seas, and effects occurring
in optical fibers. A basic problem in such a theory is to specify
a sufficiently large space of functions undergoing evolution
(according to KdV, for example), over which we would be able to
take statistical averages. The space of rapidly vanishing potentials
of the Schödinger operator is parametrized by a function, namely
the reflection coefficient, but the conditions on this coefficient are
very restrictive. To the best of our knowledge, primitive potentials
are the first class of solutions of the KdV equation parametrized by
functions without any additional conditions.

One can treat the kinetics of integrable turbulence described in
our experiments as the kinetics of a very dense soliton gas.We plan
to perform a careful measurement of a pair of correlation functions

Rκκ ′ = ⟨uk u∗

k′⟩,

where uk is the Fourier transform, and brackets mean averaging
over time, and compare results with the theory of soliton gas
presented in papers [14,15].
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