
Physics Letters A 380 (2016) 3881–3885
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Non-periodic one-dimensional ideal conductors and integrable 

turbulence

Dmitry V. Zakharov a, Vladimir E. Zakharov b, Sergey A. Dyachenko c,∗
a Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA
b Department of Mathematics, University of Arizona, Tucson, AZ, 85791, USA
c Department of Mathematics, University of Illinois, Urbana-Champaign, IL, 61801, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2016
Received in revised form 13 September 
2016
Accepted 22 September 2016
Available online 28 September 2016
Communicated by A.P. Fordy

Keywords:
Ideal conductors
Integrability
Solitonic gas

To relate the motion of a quantum particle to the properties of the potential is a fundamental problem 
of physics, which is far from being solved. Can a medium with a potential which is neither periodic nor 
quasi-periodic be a conductor? That question seems to have been never addressed, despite being both 
interesting and having practical importance. Here we propose a new approach to the spectral problem 
of the one-dimensional Schrödinger operator with a bounded potential. We construct a wide class of 
potentials having a spectrum consisting of the positive semiaxis and finitely many bands on the negative 
semiaxis. These potentials, which we call primitive, are reflectionless for positive energy and in general 
are neither periodic nor quasi-periodic. Moreover, they can be stochastic, and yet allow ballistic transport, 
and thus describe one-dimensional ideal conductors. Primitive potentials also generate a new class of 
solutions of the KdV hierarchy. Stochastic primitive potentials describe integrable turbulence, which is 
important for hydrodynamics and nonlinear optics. We construct the potentials by numerically solving a 
system of singular integral equations. We hypothesize that finite-gap potentials are a subclass of primitive 
potentials, and prove this in the case of one-gap potentials.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Despite much work spanning almost 90 years, the evolution of 
a quantum particle in a one-dimensional bounded potential is far 
from being understood. Depending on the properties of the poten-
tial, there is a wide range of possibilities. Many random potentials 
(but not all, see [1]) display Anderson localization, meaning that 
the wave packet expands to a bounded size, and the particle does 
not move freely. In an opposite scenario the wave train propagates 
ballistically, and the particle can move to infinity in both directions 
(see [2]). This can happen, for example, in a periodic potential. 
A number of intermediate possibilities exist, for example the par-
ticle can diffuse to infinity, with the diffusion coefficient being a 
function of energy.

In this letter, we describe a large class of potentials that admit 
ballistic wave propagation. We give an effective analytic method 
for constructing such potentials and support this method with nu-
merical computations.

The character of the evolution of a wave train is determined by 
the spectral properties of the Schrödinger operator
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Lψ = (−∂2
x + u(x))ψ = Eψ, −∞ < x < ∞ (1)

A real number E belongs to the spectrum of L if (1) has one 
(non-degenerate) or two (doubly degenerate) linearly independent 
bounded solutions. The spectrum of a generic bounded potential 
can have a very complicated, fractal-like structure. Ballistic trans-
port is possible for energies lying in an allowed band, in other 
words if there is an open interval such that the spectrum is doubly 
degenerate at each point of the interval.

In what follows we only consider potentials whose spectrum 
has such a band structure, consisting of a union of intervals on 
which it is doubly degenerate, separated by forbidden gaps. Peri-
odic potentials, and certain quasi-periodic ones, have such a spec-
trum (see [3]). A generic periodic potential has infinitely many 
forbidden gaps, however, a dense subset of potentials has finitely 
many. Such finite-gap potentials play a fundamental role and can 
be explicitly described. A finite-gap potential is specified by choos-
ing the gap boundaries on the real axis, a point inside each gap, 
and a choice of sign at each point. This data determines a hyper-
elliptic Riemann surface and a divisor on it, and the potential is 
explicitly given by the Matveev–Its formula in terms of the asso-
ciated Riemann theta functions (see [4,5]). The resulting potential 
is quasi-periodic with k ≤ N periods, and periodic potentials are 
obtained by imposing N − 1 additional conditions.
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Until recently it was believed that the algebro-geometric N-gap 
potentials are the only ones whose spectrum has a band struc-
ture with N gaps. In this letter, we show that this is not the 
case, and we effectively construct a much wider class of poten-
tials that have such a spectrum. We call such potentials primitive. 
Unlike N-gap potentials, which are determined by finitely many 
parameters, primitive potentials are determined by an arbitrary 
continuous function. We hypothesize that all N-gap potentials are 
primitive, but prove this only for N = 1.

Unlike finite-gap potentials, primitive potentials are in general 
neither periodic nor quasi-periodic. Furthermore, numerical exper-
iments show that they can be quite disordered, though we believe 
that they are not entirely random and have a hidden long-range 
order. We do not compute their correlation functions analytically, 
but numerical experiments indicate that these potentials are sta-
tistically almost uniform.

We believe that primitive potentials will have wide-ranging ap-
plications in diverse areas of physics. Let u(x) be the potential of a 
one-dimensional medium consisting of irregularly spaced ions and 
a sea of non-interacting electrons. If Anderson localization holds, 
then the medium is an ideal dielectric. It seems natural to assume 
that a medium can be a conductor only if the potential function is 
periodic or quasiperiodic. We show that this is not the case, and 
that a much wider class of one-dimensional conductors is possible. 
If the potential is primitive, and the Fermi level is in one of the al-
lowed bands, then such a medium is an ideal conductor, despite 
being non-periodic. This may help explain the conductivity of long 
non-periodic organic molecules, such as DNA.

Our results have important applications for a completely dif-
ferent area of physics. The Schrödinger equation is an auxiliary 
tool for integrating the Korteweg–de Vries (KdV) equation, which is 
one of the fundamental models of nonlinear wave dynamics. This 
procedure is known as the inverse spectral transform, or IST, dis-
covered in 1967 in [7]. Under the IST, the potential is assumed to 
be time-dependent, and it turns out that KdV evolution does not 
change the spectrum of the associated stationary Schrödinger op-
erator. Moreover, primitive potentials remain primitive. Hence, our 
method also constructs a new family of exact solutions of KdV, and 
the higher KdV hierarchy, which are bounded but non-vanishing as 
|x| → ∞. Computer simulations show that these solutions are quite 
irregular.

Integrable nonlinear wave equations, such as KdV, describe a 
number of important physical systems: waves on shallow water, 
nonlinear waves in optic fibers, and so on. All of these systems are 
in need of a statistical description. The first steps in such a theory, 
known as integrable turbulence [8], have already been made.

We note that, although this letter describes a somewhat com-
plicated mathematical theory, we state most propositions without 
proof, and we plan to publish them elsewhere. Our method also in-
cludes an intricate numerical algorithm, using multiscale accuracy, 
the details of which will also be published separately.

2. Primitive potentials

We give a construction of a wide class of potentials whose 
spectrum consists of the positive semiaxis and N allowed bands 
on the negative semiaxis.

Primitive potentials are the continuous limits of reflection-
less Bargmann potentials [9], which are also fixed-time slices of 
N-soliton solutions of the KdV hierarchy. We omit the details of 
this limiting transition and give a direct construction using the 
dressing method, following [10]. We consider a distribution T (k)

on the complex k-plane, which we call the dressing function, sat-
isfying the following conditions:

T (k) = −T (−k),

ˆ
|T (k)|dk ∧ dk < ∞, (2)
here and now on we assume integration over the entire complex 
plane unless explicitly specified otherwise. We consider the follow-
ing integral equation on a function χ(x, k) defined on the complex 
k-plane (in what follows we write T (k) and χ(x, k) without as-
suming either to be analytic):

χ(x,k) = 1 − 1

2π

ˆ
T (−q)χ(x,q)e−2iqx

k + q
dq ∧ dq, (3)

where χ(x,−k) = χ(x, k) and x is a parameter.
Suppose that the dressing function is such that the equation 

(3) has for all x in an interval (x1, x2) a unique solution satisfying 
χ → 1 as |k| → ∞. Then the function χ has the following asymp-
totic expansion:

χ(x,k) = 1 + iχ0(x)

k
+ · · ·

The function χ0(x) is real-valued by virtue of (2)–(3). Furthermore, 
χ(x, k) is a solution of the equation:

χxx − 2ikχx − u(x)χ = 0, u(x) = 2
d

dx
χ0(x),

and the function ψ = χeikx is a solution of the Schrödinger equa-
tion (1) with E = k2. This, of course, does not mean that E is a 
point of the spectrum. For this to hold, the following conditions 
need to be satisfied:

1. Equation (3) must have a solution all x, i.e. x1 = −∞ and x2 =
+∞. Otherwise, at the boundaries u(x) will have a singularity 
(generically a pole of order two).

2. The potential u(x) must be bounded for all x.
3. At least one solution of the Schrödinger equation must be 

bounded for all x.

The first two of these conditions impose strong restrictions on the 
dressing function T (k). We choose the dressing function in the 
following way. Let 0 < k1 < k2, and let R1(κ) and R2(κ) be two 
real-valued functions on [k1, k2], which we extend by zero to the 
entire real axis. Let k = kR + ikI , and define

T (k) = iδ(kR)[R1(kI ) − R2(−kI )], (4)

where δ(kR) is the one-dimensional Dirac delta function. The sym-
metry conditions from (2) follow. A function χ(x, k) satisfying (3)
with such a T (k) is analytic on the k-plane away from two cuts 
k1 < Im k < k2 and −k2 < Im k < −k1 on the imaginary axis. It 
has the following representation:

χ(x,k) = 1 + i

k2ˆ

k1

ϕ(x,q)e−qx

k − iq
dq + i

k2ˆ

k1

ψ(x,q)eqx

k + iq
dq. (5)

Substituting (4) and (5) into (3) gives a system of singular integral 
equations on ϕ and ψ . These equations are equivalent a vector 
Riemann–Hilbert problem. Denote 	(k) = [χ(k) χ(−k)]T , and let 
	+ and 	− be the right and left values of 	 on the cuts. Then the 
problem is

	+(iκ) = M(κ)	−(iκ), 	+(−iκ) = MT (κ)	−(−iκ) (6)

for κ ∈ [k1, k2], where the transition matrix is

M(x, κ) = 1

1 + R1 R2

[
1 − R1 R2 2iR1e−2κx

2iR2e2κx 1 − R1 R2

]

We claim that if R1 and R2 are non-negative functions satis-
fying the Hölder condition for some α > 0, then this Riemann–
Hilbert problem has a unique solution for all x with normalization 
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	(k) = [1 1]T as k → ∞. The solutions ϕ(x, κ) and ψ(x, κ) are 
bounded for all x and are eigenfunctions of the Schrödinger oper-
ator corresponding to eigenvalue E = −κ2, where k1 < κ < k2. The 
potential u(x) is given by the formula:

u(x) = 2
d

dx

k2ˆ

k1

[
ϕ(x,q)e−qx + ψ(x,q)eqx]dq.

This potential is bounded and satisfies condition −2k2
2 < u(x) < 0

[11]. The functions ϕ and ψ are orthogonal in the following sense:

∞̂

−∞
ψ(x, κ)ψ(x, κ ′)dx = R1(κ)δ(κ − κ ′),

∞̂

−∞
ϕ(x, κ)ϕ(x, κ ′)dx = R2(κ)δ(κ − κ ′),

∞̂

−∞
ϕ(x, κ)ψ(x, κ ′)dx = 0.

The spectrum of the corresponding primitive potentials has the 
following structure. For any non-negative R1 and R2, it includes 
all positive values of energy. If R1(k) > 0 and R2(k) > 0 for some 
k ∈ [k1, k2], then the spectrum is doubly degenerate at E = −k2, 
making the primitive potential behave like an ideal conductor near 
this energy level. If one of the two functions R1 or R2 vanishes 
along a subinterval of [k1, k2], while the other is positive, then 
the spectrum for the corresponding values of E = −k2 is non-
degenerate. Finally, if both functions vanish along a sub-interval, 
then that interval forms a spectral gap. Hence, if there are N − 1
subintervals of [k1, k2] along which both R1 and R2 vanish, then 
the spectrum is N-gap and the potential is primitive with N gaps. 
We prove all of these assertions in [12].

We remark that, unlike many other Riemann–Hilbert problems 
appearing in scattering theory, (6) involves exponential rather than 
oscillatory terms. See works [13] and [14] for details of application 
of the nonlinear steepest descent method in such a setting.

3. Periodic one-gap potential

The original goal of our project was to construct the algebro-
geometric N-gap potentials as limit of soliton potentials using the 
dressing method. In what follows we give this construction for 
one-gap potentials. We believe that this construction can be gen-
eralized to all finite-gap potentials, which are thus a subclass of 
primitive potentials.

A periodic reflectionless one-gap potential has the form

u(x) = 2℘(x + iω′ − x0) + e3.

Here ℘ is the Weierstrass function with periods 2ω and 2ω′ , 
where ω and ω′ are real [6]. Let e1, e2, and e3 be the values of 
℘ on the half-periods of the lattice, and let

k2
1 = e2 − e3, k2

2 = e1 − e3, e1 + e2 + e3 = 0.

Here x0 is an arbitrary constant. Let x0 = ω and map the k-plane 
onto the period rectangle using the function

k2 = e3 − ℘(z), z(k) → − i

k
as k → ∞.

The Schrödinger equation (1) becomes the Lamé equation:

ϕ′′ − [
2℘(x − ω − iω′) + ℘(z)

]
ϕ = 0,
which has the following solution:

ϕ(x, z) = σ(x − ω − iω′ + z)σ (ω + iω′)
σ (x − ω − iω′)σ (ω + iω′ − z)

exp−ζ(z)x .

This function is doubly periodic in the period parallelogram. Intro-
duce the new function

ξ(x,k) =
(

k − ik1

k − ik2

)1/2

ϕ(x, z)eikx.

It satisfies the equation

ξ ′′ − 2ikξ ′ − u(x)ξ = 0.

It is easy to check that 	(k) = [ξ(k) ξ(−k)]T satisfies the Riemann–
Hilbert problem (6), where

R1(κ) = 1

R2(κ)
=

√
(k2 − κ)(κ + k1)

(κ − k1)(κ + k2)
.

Hence a one-gap periodic potential is primitive.

4. Solutions of integrable systems

Suppose that the wave function and potential of the Schrödinger 
equation (1) depend on time t in the following way:

ψt + 48ψ ′ + 4ψ ′′′ + 3uxψ = 0, ut + 48u′ − 6uu′ + u′′′ = 0 (7)

In other words u(x, t) is a solution of the KdV equation (see [7]) 
in a moving frame. The KdV equation preserves the spectrum, and 
transforms any primitive potential into another. The dressing func-
tions are transformed as follows:

R1(κ) → R1(κ)eS(κ)t, R2(κ) → R2(κ)e−S(κ)t . (8)

Here S(κ) = 8(κ3 − 12κ). The time evolution (8) transforms the 
Schrödinger operator into a unitary equivalent one with a differ-
ent potential, and the same is true for evolution under higher KdV 
flows. For higher KdV flows, S(κ) must be replaced by some odd 
polynomial on κ . But because any continuous function on a fi-
nite interval not containing κ = 0 can be approximated by odd 
polynomials, one can consider that S(κ) in (8) is an arbitrary 
odd continuous function. Then we come to an important conclu-
sion: The unique invariant of unitary equivalence is the product 
ω(κ) = R1(κ) R2(κ). It means that:

1. All Bargmann potentials with the same energy levels are uni-
tary equivalent to each other. Moreover, if the spectrum is 
non-degenerate (single), all operators with the same spectrum 
are unitary equivalent to each other.

2. All finite-gap potentials with the same band structure are uni-
tary equivalent to each other.

5. Numerical solution

We solve the system of integral equations associated to (6) nu-
merically for k1 = 2 and k2 = 4. Denote κ = p + 3, (−1 < p < 1). 
It is convenient to replace ϕ(x, κ) and ψ(x, κ) with the following 
functions:

�(x, p) =
√

1 − p2ϕ(x, p + 3) and

�(x, p) =
√

1 − p2ψ(x, p + 3).

The resulting system of coupled equations for � and �:
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�(x, p) + r1(p)

⎡
⎣ 1ˆ

−1

�(x,q)e−qx dq

(6 + p + q)
√

1 − q2
+

1 

−1

�(x,q)eqx dq

(p − q)
√

1 − q2

⎤
⎦

= r1(p), (9)

�(x, p) + r2(p)

⎡
⎣ 1ˆ

−1

�(x,q)eqx dq

(6 + p + q)
√

1 − q2
+

1 

−1

�(x,q)e−qx dq

(p − q)
√

1 − q2

⎤
⎦

= −r2(p), (10)

holds true for −1 < p < 1 and we denote

r1(p) =
√

1 − q2 R1(p + 3)e−2(3+p)x,

r2(p) =
√

1 − q2 R2(p + 3)e2(3+p)x,

for the sake of brevity.
The continuous functions �(x, q) and �(x, q) are discretized 

at Chebyshev nodes qk = cos (2k−1)π
2M with k = 1, 2, . . . , M . The 

spatial variable x appears as a parameter in (9)–(10) and the 
x-dependence of r1 and r2 becomes a major obstacle, since the 
condition number of the discretized system is exponential in x, it 
requires usage of multiprecision arithmetics to find an accurate so-
lution even in a moderate interval in x.

Fig. 1. Simulation A: dressing functions are R1 = 1 and R2 = 0(a).
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The Chebyshev grid is used for the spatial coordinate x which 
es optimal polynomial interpolation between the grid points, for 
erpolation we use Lagrange basis.

Simulation A

In this simulation we solve the coupled integral system (9)–(10)
obtain a one-sided primitive potential. The choice of dressing 
ctions is R1 = 1 and R2 = 0 (see the illustration in Fig. 1).

Simulation B

In this simulation we solve the coupled integral system (9)–(10)
ere the dressing functions are:

(p) = 1

π
eλS(p)+t S0(p), (11)

(p) = 1

π
eλS(p)−t S0(p), (12)

ere S(p) is a polynomial of degree 16 with 14 roots chosen ran-
mly from a uniform distribution on the interval −1 < p < 1 and 
 remaining two are p = ±1. The function S0(p) is a cubic poly-

mial associated with KdV time evolution in the moving frame of 
erence:

(p) = 8(p + 3)
[
(p + 3)2 − 12

]
.

e illustration of the random polynomial is in Fig. 2 and Fig. 3,
 position of the roots are −1, −0.9424, −0.8123, −0.7551, 
.5190, −0.4894, −0.2893, 0.3376, 0.4271, 0.4493, 0.4756, 
128, 0.6258, 0.7349, 0.9452 and 1. And the resulting polyno-
al is:

p) =
16∏
j=1

(p − p j),

ere the p j are listed above.

Conclusion

The procedure of closing the set of Bargmann potentials de-
ibed above can be generalized to a wide class of linear op-
tors, such as the Dirac operator. This is especially important 
 various nonlinear integrable systems, such as the Nonlin-
Fig. 2. The random polynomial S(p) of degree 16 plotted versus p (left); primitive potential computed with dressing functions (11)–(12) for the value λ = 8192 and t = 0.
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Fig. 3. The primitive potential computed with dressing functions (11)–(12) for the value λ = 8192, t = 0.02 (left) and t = 0.04 (right).
ear Schödinger Equation and the Kadomtsev–Petviashvili equation, 
where these linear operators play a fundamental role and which 
are solved using the IST.

The term “integrable terbulence” is rapidly becoming popular 
and there has been numerous papers devoted to this new and ex-
citing field, see e.g. [15–18] and [8]. The present work contributes 
to understanding the effects randomness in integrable systems.

We hesitate to claim the potentials that we have constructed 
numerically to be the snapshots of integrable turbulence because 
there is no theoretical proof that the resulting fields are statisti-
cally homogeneous. The role of the numerical experiment here is 
twofold: firstly, they show the strength of dressing method for-
mulation, in particular its usefulness for numerical simulation; 
secondly, our simulations give a hint that at least some of the 
dressings may result in a statistically uniform potentials.

To apply the theory that has been developed for these sys-
tems to real physical problems, it is necessary to develop a sta-
tistical theory of integrable systems with an infinite number of 
degrees of freedom. This theory of integrable turbulence is still 
very much in its infancy, the first stages have been suggested 
in [8]. The technique described in this letter shows an approach to 
constructing strongly nonlinear statistically homogeneous solutions 
to integrable systems such as KdV and the nonlinear Schrödinger 
equation. In fact, integrable turbulence is a common physical phe-
nomenon. This turbulence takes place in the coastal areas of seas, 
and describes effects occurring in optical fibers. Thus the natural 
extension and our next step will be the study of random non-
periodic potentials with a continuous spectrum, with this work 
being at the core of the theory of integrable turbulence.
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