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Mathematicians and physicists have long been interested in the subject of water
waves. The problems formulated in this subject can be considered fundamental, but
many questions remain unanswered. For instance, a satisfactory analytic theory of
such a common and important phenomenon as wave breaking has yet to be developed.
Our knowledge of the formation of rogue waves is also fairly poor despite the many
efforts devoted to this subject. One of the most important tasks of the theory of water
waves is the construction of simplified mathematical models that are applicable to
the description of these complex events under the assumption of weak nonlinearity.
The Zakharov equation, as well as the nonlinear Schrödinger equation (NLSE) and
the Dysthe equation (which are actually its simplifications), are among them. In
this article, we derive a new modification of the Zakharov equation based on the
assumption of unidirectionality (the assumption that all waves propagate in the same
direction). To derive the new equation, we use the Hamiltonian form of the Euler
equation for an ideal fluid and perform a very specific canonical transformation.
This transformation is possible due to the ‘miraculous’ cancellation of the non-trivial
four-wave resonant interaction in the one-dimensional wave field. The obtained
equation is remarkably simple. We call the equation the ‘super compact water wave
equation’. This equation includes a nonlinear wave term (à la NLSE) together with
an advection term that can describe the initial stage of wave breaking. The NLSE and
the Dysthe equations (Dysthe Proc. R. Soc. Lond. A, vol. 369, 1979, pp. 105–114)
can be easily derived from the super compact equation. This equation is also suitable
for analytical studies as well as for numerical simulation. Moreover, this equation
also allows one to derive a spatial version of the water wave equation that describes
experiments in flumes and canals.

Key words: Hamiltonian theory, surface gravity waves, wave breaking

1. Introduction
A potential flow of an ideal incompressible fluid with a free surface in a gravity

field is described (Zakharov 1968) by the following Hamiltonian system:

∂ψ

∂t
=−

δH
δη
,

∂η

∂t
=
δH
δψ
. (1.1a,b)

† Email address for correspondence: alexd@itp.ac.ru
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x

z

FIGURE 1. One-dimentional surface profile and velocity potential.

Hereafter, we study only the case of one horizontal direction: unidirectional waves.
Now,

η = η(x, t) – shape of the surface,

ψ = ψ(x, t)= φ(x, η(x, t), t) – potential on the surface,
φ(x, z, t) – potential inside the fluid.

 (1.2)

The Hamiltonian H is

H =
1
2

∫
dx
∫ η

−∞

|∇φ|2 dz+
g
2

∫
η2 dx. (1.3)

The potential φ(x, z, t) satisfies the Laplace equation:

∂2φ

∂x2
+
∂2φ

∂z2
= 0, (1.4)

with the asymptotic boundary conditions:

∂φ

∂z
→ 0, at z→−∞. (1.5)

If the steepness of the surface is small, |ηx|� 1, the Hamiltonian can be represented
by the infinite series

H = H2 +H3 +H4 + · · · ,

H2 =
1
2

∫
(gη2
+ψ k̂ψ) dx,

H3 = −
1
2

∫
{(k̂ψ)2 − (ψx)

2
}η dx,

H4 =
1
2

∫
{ψxxη

2k̂ψ +ψ k̂(ηk̂(ηk̂ψ))} dx,


(1.6)

where k̂ψ means multiplication by |k| in k-space (k̂=
√
−∂2/∂x2).

Equations (1.1), although truncated according to (1.6), even for the full three-
dimensional (3-D) case, can be efficiently used for numerical simulations of water
wave dynamics (see, for instance, (Korotkevich et al. 2008)). However, they are
not convenient for analytic study because η(x, t) and ψ(x, t) are not ‘optimal’
canonical variables. One can choose better Hamiltonian variables by performing a
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Super compact equation 663

proper canonical transformation. This transformation can be achieved in two steps.
In the first step, we eliminate all third-order terms and some fourth-order terms –
all so-called ‘non-resonant’ cubic and quartic terms in the Hamiltonian. What we
obtain as a result of this transformation is the so-called Zakharov equation, which
has been widely used in recent years by many researchers (see, for instance Crawford
et al. 1980; Debnath 1994) and more recent publications (Annenkov & Shrira 2011,
2013). In the second step, one can ‘improve’ the Zakharov equation by applying
an appropriate canonical transformation to simplify the only remaining resonant
fourth-order term. This ‘improvement’ is possible due to a very special property
of the quartic Hamiltonian in the Zakharov equation, specifically, an unexpected
cancellation (Dyachenko & Zakharov 1994) of non-trivial four-wave interactions.
This cancellation only occurs in the one-dimensional case and makes it possible to
replace the ‘generic’ Zakharov equation by a substantially more suitable ‘compact
equation’, (Dyachenko & Zakharov 2012), which was intensively used as a base
for both numerical simulations (Fedele & Dutykh 2012a,b; Dyachenko, Kachulin &
Zakharov 2013a, 2014; Fedele 2014a,b; Dyachenko, Kachulin & Zakharov 2015a,b,
2016) and an analytical proof of the non-integrability of the Zakharov equation
(Dyachenko, Kachulin & Zakharov 2013b).

In this paper, we analysed this second step in the canonical transformation, which
is not a unique procedure. One can accomplish this in many different ways, thereby
obtaining different forms of the compact equation. Here, we present the most optimal
(in our opinion) version of the compact equation, which we call ‘the super compact
equation’ for water waves. In addition, we present some preliminary results of the
numerical simulations of the super compact equation.

It should be mentioned that this new equation enables a remarkably straightforward
derivation of the spatial version of the equation. The spatial compact equation solves
the Cauchy problem in space and is an exceptionally convenient tool for comparison
of the theory and experimental study in laboratory flumes for nonlinear gravity
waves (Dyachenko & Zakharov 2016).

2. The Zakharov equation

For a detailed derivation of the Zakharov equation, see references Zakharov (1968),
Krasitskii (1990), Zakharov, Lvov & Falkovich (1992). A brief outline starting with
the Hamiltonian (1.6) is given as follows:

(i) We introduce complex normal variables ak:

ηk =

√
ωk

2g
(ak + a∗

−k), ψk =−i
√

g
2ωk

(ak − a∗
−k). (2.1a,b)

Here, ωk=
√

g|k| is the dispersion law for the gravity waves, g is the gravitational
acceleration constant and the Fourier transformations ψ(x)→ ψk and η(x)→ ηk

are defined as follows:

fk =
1
√

2π

∫
f (x)e−ikx dx, f (x)=

1
√

2π

∫
fke+ikx dk. (2.2a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.529


664 A. I. Dyachenko, D. I. Kachulin and V. E. Zakharov

In the new variables ak, the Hamiltonian takes the following form:

H2 =

∫
ωkaka∗k dk,

H3 =

∫
Vk

k1k2
{a∗kak1ak2 + aka∗k1

a∗k2
}δk−k1−k2 dk dk1 dk2

+
1
3

∫
Ukk1k2{akak1ak2 + a∗ka∗k1

a∗k2
}δk+k1+k2 dk dk1 dk2,

H4 =
1
2

∫
Wk3k4

k1k2
a∗k1

a∗k2
ak3ak4δk1+k2−k3−k4 dk1 dk2 dk3 dk4

+
1
3

∫
Gk4

k1k2k3
(a∗k1

a∗k2
a∗k3

ak4 + c.c.)δk1+k2+k3−k4 dk1 dk2 dk3 dk4

+
1
12

∫
Rk1k2k3k4(a

∗

k1
a∗k2

a∗k3
a∗k4
+ c.c.)δk1+k2+k3+k4 dk1 dk2 dk3 dk4.



(2.3)

For our purposes, the exact expressions for the coefficients V , U, W, G and R
of the Hamiltonian are unimportant. Nevertheless, a careful reader can find them
in Zakharov (1998, 1999), Dyachenko et al. (2015b).
The equations of motion (1.1) now yield the following:

∂ak

∂t
+ i

δH
δa∗k
= 0. (2.4)

(ii) In the variables ak, the Hamiltonian contains non-resonant three-wave interactions,
and hence, the variables are still suboptimal. We introduce yet another set of
variables bk by another canonical transformation ak→ bk to cancel all the non-
resonant cubic and quartic terms in the new Hamiltonian. An efficient way to
construct this transformation was offered in Zakharov et al. (1992) and can be
written as follows:

ak = bk +

∫
[2Ṽk1

kk2
bk1b

∗

k2
δk1−k−k2 − Ṽk

k1k2
bk1bk2δk−k1−k2 − Ũkk1k2b

∗

k1
b∗k2
δk+k1+k2] dk1 dk2

+

∫
[Ak

k1k2k3
bk1bk2bk3 + Akk1

k2k3
b∗k1

bk2bk3 + Akk1k2
k3

b∗k1
b∗k2

bk3 + Akk1k2k3b∗k1
b∗k2

b∗k3
]

× dk1 dk2 dk3, (2.5)

where the exact expressions for the coefficients of the transformation (2.5) can
be found in Dyachenko et al. (2015b). The resulting Hamiltonian after the
transformation yields

H =
∫
ωkbkb∗k dk+

1
2

∫
Tk2k3

kk1
b∗kb∗k1

bk2bk3δk+k1−k2−k3 dk dk1 dk2 dk3 + H̃, (2.6)

where H̃ is an infinite series in bk, b∗k starting from the fifth-order terms. The
explicit (and cumbersome) expression for Tk2k3

kk1
can be found in (Zakharov 1968,

1998, 1999). The motion equation

∂bk

∂t
+ i

δH
δb∗k
= 0, (2.7)

(neglecting H̃) is the traditional Zakharov equation.
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Super compact equation 665

3. Canonical transformation for the Zakharov equation
A possibility for further simplification of (2.7) is based on the following remarkable

fact, established in Dyachenko & Zakharov (1994). Let us consider the resonance
conditions for the four-wave interactions:

k+ k1 = k2 + k3,

ωk +ωk1 =ωk2 +ωk3 .

}
(3.1)

In the 1-D case, all solutions of this system of (3.1) can be divided into two parts
– so-called ‘trivial’ and ‘non-trivial’ parts. The ‘non-trivial’ solution can be solved as
follows:

k= a(1+ ζ )2,
k1 = a(1+ ζ )2ζ 2,

k2 =−aζ 2,

k3 = a(1+ ζ + ζ 2)2 here 0< ζ < 1.

 (3.2)

Notice the product kk1k2k3 < 0. Now,

Tk2k3
kk1
= F(a, ζ )= a3f (ζ ). (3.3)

Direct calculation shows that for the ‘non-trivial’ resonance (3.2),

f (ζ )≡ 0. (3.4)

This fact means that ‘non-trivial’ four-wave resonances are absent!
Moreover, Tk2k3

kk1
≡ 0 if the product kk1k2k3 6 0. In addition, it has a very simple

form:

Tkk1
k2k3
= θ(kk1k2k3)

(kk1k2k3)
1/2

4π

[(
ωω1

ω2ω3

)1/2

+

(
ω2ω3

ωω1

)1/2
]

min(k, k1, k2, k3)

min(k, k1, k2, k3) is minimum of (k, k1, k2, k3). (3.5)

Here, θ(k) is the step function

θ(x)=

{
0 if x 6 0,
1 if x> 0.

(3.6)

Obviously, for positive ki with resonant condition

k+ k1 = k2 + k3, (3.7)
min(k, k1, k2, k3)=

1
4(k+ k1 + k2 + k3 − |k− k2| − |k− k3| − |k1 − k2| − |k1 − k3|). (3.8)

This means that a system initially consisting of unidirectional waves retains this
property for all times. Indeed, a wave with negative k can appear only from the
following equation with all positive k on the right-hand side:

i
∂bk

∂t
=ωkbk +

∫
Tk2k3

kk1
b∗k1

bk2bk3δk+k1−k2−k3 dk1 dk2 dk3. (3.9)

However, Tk2k3
kk1

for such a selection of k is identically zero.
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666 A. I. Dyachenko, D. I. Kachulin and V. E. Zakharov

Now, one can see that the Zakharov equation is a compact equation but it can be
further ‘improved’. In other words, the coefficient (3.5) can be simplified even further.

The system (3.1) also has the following ‘trivial’ solution:

k2 = k1, k3 = k, or k2 = k, k3 = k1. (3.10a−d)

We introduce Tkk1 (diagonal part) as the value of the four-wave coefficient on the
trivial manifold (3.10). This was calculated in Zakharov (1968) and is equal to

Tkk1 = Tkk1
kk1
=

1
4π
|k||k1|(|k+ k1| − |k− k1|)=

1
2π
|k||k1|min(|k|, |k1|). (3.11)

Let us introduce T̃k2k3
kk1

as follows:

T̃k2k3
kk1
= θ(kk1k2k3)[

1
2(Tkk2 + Tkk3 + Tk1k2 + Tk1k3)−

1
4(Tkk + Tk1k1 + Tk2k2 + Tk3k3)]. (3.12)

A canonical transformation of the second step replaces Zakharov’s Tk2k3
kk1

from (2.6)
with the simpler T̃k2k3

kk1
while keeping their diagonal part the same.

The simple method to construct the canonical transformation is based on the
fact that a Hamiltonian system (with variable c̃k(t)) is invariant under translation in
time and that the transformation c̃k(0) → c̃k(τ ) is canonical. Let us construct this
transformation (as a power series) using an auxiliary Hamiltonian H̃ (starting from
the quartic term) of the form:

H̃=
1
2

∫
B̃

k2k3

kk1
c̃∗k c̃∗k1

c̃k2dk3δk+k1−k2−k3 dk dk1 dk2 dk3 + · · · , (3.13)

where the symmetry relations

B̃
k2k3

kk1
= B̃

k2k3

k1k = B̃
k3k2

kk1
= (B̃

kk1

k2k3
)∗ (3.14)

are necessary to obtain a real-valued H̃. Using a Taylor series, we can express the
old canonical bk(τ )= c̃k(τ ) in terms of c̃k(0):

c̃k(τ )= c̃k(0)+ τ
∂ c̃k(τ )

∂τ

∣∣∣∣
τ=0

+ · · · ,

∂ c̃k(τ )

∂τ

∣∣∣∣
τ=0

=−i
δH̃(c̃k(τ ), c̃∗k(τ ))

δc̃∗k(τ )

∣∣∣∣
τ=0

,

 (3.15)

and
bk = c̃k − i

∫
B̃

k2k3

kk1
c̃∗k1

c̃k2 c̃k3δk+k1−k2−k3 dk1 dk2 dk3 + · · · (3.16)

is a canonical transformation. Now, we plug this transformation into the Hamiltonian
(2.6) of the Zakharov equation and obtain the new Hamiltonian:

H =
∫
ωkc̃kc̃∗k dk+

1
2

∫ [
Tk2k3

kk1
− i(ωk +ωk1 −ωk2 −ωk3)B̃

k2k3

kk1

]
× c̃∗k c̃∗k1

c̃k2dk3δk+k1−k2−k3 dk dk1 dk2 dk3 + · · · . (3.17)
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Super compact equation 667

The coefficient B̃
k2k3

kk1
of the auxiliary Hamiltonian is the same as the coefficient of the

canonical transformation. It controls the four-wave coefficient Tk2k3
kk1

in the Hamiltonian
of the Zakharov equation (3.17). To replace Zakharov’s Tk2k3

kk1
by the simpler T̃k2k3

kk1
, the

coefficient B̃
k2k3

kk1
has to be equal to

B̃
k2k3

kk1
= i

T̃k2k3
kk1
− Tk2k3

kk1

ωk +ωk1 −ωk2 −ωk3

. (3.18)

One can check that B̃
k2k3

kk1
has no singularities at k+ k1= k2+ k3. Indeed, in the region

where the product kk1k2k3 6 0, the singularities are cancelled by virtue of the identity
(3.4). In the region where the product kk1k2k3>0, the singularities are cancelled due to
the special choice of T̃k2k3

kk1
. The exact expression for B̃

k2k3

kk1
was published in Dyachenko,

Lvov & Zakharov (1995). This leads to the derivation of the ‘compact water wave
equation’ (not yet the super compact).

Due to the absence of non-trivial resonances, waves moving in the same direction
do not generate waves moving in the opposite direction, and hence, we can assume
without loss of generality that for all wavenumbers ki > 0, this leads to the following
simplification:

T̃k2k3
kk1
=

[
−

1
8π
(kk2|k− k2| + kk3|k− k3| + k1k2|k1 − k2| + k1k3|k1 − k3|)

+
1

8π
(kk1(k+ k1)+ k2k3(k2 + k3))

]
θ(k)θ(k1)θ(k2)θ(k3). (3.19)

Returning from the Fourier space, we can write the following compact expression for
the Hamiltonian in x-space:

H =
∫

c̃∗ω̂c̃ dx+
1
2

∫ ∣∣∣∣∂ c̃
∂x

∣∣∣∣2 [ i
2

(
c̃
∂ c̃∗

∂x
− c̃∗

∂ c̃
∂x

)
− k̂|c̃|2

]
dx, (3.20)

where ω̂ denotes multiplication by
√

g|k| in Fourier space. The compact equation, with
Hamiltonian (3.20), was used for the numerical simulations in Dyachenko & Zakharov
(2012), Fedele & Dutykh (2012a,b).

4. Super compact equation

Note that the choice of (3.12) is not unique for introducing the new Hamiltonian.
The conditions imposed on T̃k2k3

kk1
are rather loose:

(i) the symmetry conditions require that

T̃
k2k3

kk1
= T̃

k2k3

k1k = T̃
k3k2

kk1
= T̃

kk1

k2k3
; (4.1)

(ii) the diagonal part must be strictly defined as

T̃
k2k3

kk1
= Tkk1 =

1
4π
|k||k1|(|k+ k1| − |k− k1|)=

1
2π
|k||k1|min(|k|, |k1|). (4.2)
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668 A. I. Dyachenko, D. I. Kachulin and V. E. Zakharov

The symmetry conditions suggest that T̃
k2k3

kk1
may be invariant under permutations of

all ki. Let us choose T̃
k2k3

kk1
as follows:

T̃
k2k3

kk1
=
(kk1k2k3)

1/2

2π
min(k, k1, k2, k3)θkθk1θk2θk3,

θk is the step function, θk = θ(k) (4.3)

and min (k, k1, k2, k3) is defined in (3.5) and (3.8). We substitute the new T̃
k2k3

kk1
(4.3)

into the coefficient B̃
k2k3

kk1
(3.18) and apply the canonical transformation (3.16). After

that transformation, the functions c̃k satisfy the following equation:

i ˙̃ck =
δH
δc̃∗k
=ωkc̃k +

k1/2θk

2π

×

∫
min(k, k1, k2, k3)(k

1/2
1 θk1 c̃

∗

k1
)(k1/2

2 θk2 c̃k2)(k
1/2
3 θk3 c̃k3)δk+k1−k2−k3 dk1 dk2 dk3. (4.4)

It is convenient to introduce a new Hamiltonian variable:

ck = k1/2θkc̃k. (4.5)

ck is the Fourier transform of a function analytic in the upper complex half-plane.
Note, the nonlinear term in (4.4) preserves the analyticity property. Multiplying (4.4)
by ik1/2 and using the definition of ck (4.5) results in

ċk + ikθk

[
ωk

k
ck +

1
2π

∫
min(k, k1, k2, k3), c∗k1

ck2ck3δk+k1−k2−k3 dk1 dk2 dk3

]
= 0 (4.6)

which is exactly the super compact equation written in k-space.
The expression in square brackets of (4.6) is the variational derivative of the

following Hamiltonian:

H =
∫
ωk

k
|ck|

2 dk+
1

4π

∫
min(k, k1, k2, k3)c∗kc∗k1

ck2ck3δk+k1−k2−k3 dk dk1 dk2 dk3. (4.7)

Using the following relations between k-space and x-space,

kc∗k⇔ i
∂

∂x
c∗(x), kck⇔−i

∂

∂x
c(x),

|k− k2|c∗kck2⇔ k̂(|c(x)|2), (k+ k1)ckck1⇔−i
∂

∂x
(c(x)2),

 (4.8)

and definition of min(k, k1, k2, k3) (3.8), the new Hamiltonian, whose fourth order is
defined by the new coefficient T̃

k2k3

kk1
(4.3) can be written in x-space:

H =
∫

c∗V̂c dx+
1
2

∫ [
i
4

(
c2 ∂

∂x
c∗2
− c∗2 ∂

∂x
c2

)
− |c|2k̂(|c|2)

]
dx. (4.9)

Here, the operator V̂ is in k-space so that Vk =ωk/k. If one also introduces a bracket
similar to the Gardner–Zakharov–Faddeev one (see Zakharov & Faddev 1971), then

∂+x ⇔ ikθk. (4.10)
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Then, the equation of motion is the following:

∂c
∂t
+ ∂+x

δH
δc∗
= 0. (4.11)

We introduce the advection velocity

U = k̂|c|2, (4.12)

and taking a variational derivative, one can write (4.11) in the following form:

∂c
∂t
+ iω̂c− i∂+x

(
|c|2

∂c
∂x

)
= ∂+x (Uc). (4.13)

Note that |c|2 has dimensions of potential. One can recognize two terms in the
equation:

(i) nonlinear wave term: iω̂c− i∂+x (|c|
2(∂c/∂x));

(ii) advection term: ∂+x (Uc).

Along with the usual quantities, such as energy and both momenta, equation (4.13)
conserves the action, or the number of waves:

N =
∫
∞

0

|ck|
2

k
dk. (4.14)

Equation (4.13) has an exact self-similar solution:

c(x, t)= g(t0 − t)3/2C
(

x
g(t0 − t)2

)
. (4.15)

It is easy to check that C(ξ) satisfies the following condition:

3
2

C− 2ξ
∂C
∂ξ
+ iK̂1/2C− i

∂

∂ξ

(
|C|2

∂C
∂ξ

)
=
∂

∂ξ
((K̂|C|2)C), (4.16)

where C(ξ) is a dimensionless function that is analytic in the upper half-plane and K̂
is a dimensionless operator.

In k-space, this solution (according to (4.6)) has the following form:

c(k, t)= g2(t0 − t)7/2F(gk(t0 − t)2).

It is easy to check that the dimensionless function F(ξ) satisfies the following
equation:

7
2

F+ 2ξ
∂F
∂ξ
= iξ 1/2F+

iξ
2π

∫
min(ξ , ξ1, ξ2, ξ3)F∗(ξ1)F(ξ2)F(ξ3)δξ+ξ1−ξ2−ξ3 dξ1 dξ2 dξ3.

(4.17)
This equation may have a solution with singularities, but this has not been studied
yet.
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5. Back to η and ψ

The physical variables, ηk and ψk, are hidden in the normal complex variable ck and
must be recovered. This is necessary when comparing the theory with experiment.

According to canonical transformation (2.5), ηk and ψk are power series of bk. On
the other hand, using (3.16), the definition of B̃

k2k3

kk1
(3.18) with T̃

k2k3

kk1
(4.3) and relation

(4.5), can be easily written as power series of ck. The accuracy of the super compact
equation provides power series up the third order:

ηk = η
(1)
k + η

(2)
k + η

(3)
k , ψk =ψ

(1)
k +ψ

(2)
k +ψ

(3)
k . (5.1a,b)

The details on recovering the physical quantities η(x, t) and ψ(x, t) are given in
Dyachenko et al. (2015b). Here, we present only the linear and second-order terms.
All of these terms can be written in k-space in a compact form. This is an important
property that allows one to recover physical values without multidimensional integrals.

η(1)(x)=
1

√
2g1/4

(k̂−1/4c(x)+ k̂−1/4c(x)∗), ψ (1)(x)=−i
g1/4

√
2
(k̂−3/4c(x)− k̂−3/4c(x)∗).

(5.2a,b)
The operators k̂α act in the Fourier space as multiplication by |k|α.

η(2)(x) =
k̂

4
√

g
[k̂−1/4c(x)− k̂−1/4c(x)∗]2,

ψ (2)(x) =
i
2
[k̂−1/4c(x)∗k̂1/4c(x)∗ − k̂−1/4c(x)k̂1/4c(x)]+

+
1
2

Ĥ[k̂−1/4c(x)k̂1/4c(x)∗ + k̂−1/4c(x)∗k̂1/4c(x)].


(5.3)

Here, Ĥ is the Hilbert transformation with eigenvalue i sign(k).
This accuracy (second-order power series) is sufficient to compare numerical data

with the data in a flume.

6. Numerical simulation
6.1. Breather

The super compact equation (4.13) has a localized breather-type solution:

c(x, t)=C(x− V t)ei(k0x−ω0t) or ck(t)= ei(Ω+Vk)tφk (6.1a,b)

where φk satisfies the following equation:

(Ω + Vk−ωk)φk =
1
2

∫
Tk2k3

kk1
φ∗k1
φk2φk3δk+k1−k2−k3 dk1 dk2 dk3. (6.2)

Here, V is the group velocity and k0 and ω0 are the wavenumber and frequency of the
carrier wave, respectively. Ω is close to ω0/2. This solution can be found numerically
by the Petviashvili method (see Petviashvili 1976). A uniform grid is introduced in the
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FIGURE 2. (Colour online) Narrow breather with three crests. Free surface profile.

periodic domain x∈ [0,L]. Therefore, the wavenumbers k become discrete, with a step
size of 1k= 2π/L, and all integrals over k transform to sums over k.

φn+1
k =

NLn
k

Mk


∑

k′

(φn
k′NLn

k′)∑
k′

(φn
k′Mk′φ

n
k′)


−3/2

, Mk =Ω + Vk−ωk,

NLn
= −

∂+

∂x

(
|φn
|
2 ∂φ

n

∂x

)
+ i
∂+

∂x
(k̂(|φn

|
2)φn).


(6.3)

Here, n is the number of iterations. C(x − V t) has an obvious association with a
soliton for the nonlinear Schrödinger equation.

A free surface profile of the breather solution of this equation in the periodic
domain L= 10 km with k0= (2π/L)100 is shown in figure 2. The gravity acceleration
g = 9.81 m s−2. A breather is a very stable structure. A collision of two breathers
moving with different velocities (or with k0 = (2π/L)100 and k0 = (2π/L)200) is
shown in figure 3. An animation of this collision can be viewed in supplementary
movie 1, available at https://doi.org/10.1017/jfm.2017.529.

6.2. Modulational instability
A freak wave appearing from a slowly modulated Stokes wave of small amplitude
(η' η0 cos(k0x−ωk0 t)), with k0 = (2π/L)100 and η0 ' 1.35 m, is shown in figure 4.

One can see the beginning of the wave breaking in figure 5: the wave is going to
break to the right (the right slope of the wave is steeper than the left slope).

The animation of a typical freak wave arising can be found in supplementary
movies 2 and 3.

The analytical study of the small-scale instabilities by the ‘frozen coefficient’
method allows one to conclude that the Cauchy problem for the super compact
equation is a well-posed problem.
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FIGURE 3. (Colour online) Snapshots of breathers collision.
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FIGURE 4. (Colour online) Amplitude of freak wave in the periodic domain L= 10 km.

7. Spatial compact equation
The simplicity of the super compact equation enables an easy derivation of the

spatial version of the equation. The details of this derivation can be found in
Dyachenko & Zakharov (2016). The idea of the derivation is based on the fact
that the Fourier image (after transforming equation (4.13) in both space and time)
ckω is supported on the shadowed area in the vicinity of the dispersion curve, as
shown in figure 6. Note that for unidirectional waves, both k and ω are positive. This
equation (after multiplying by (ω+

√
gk)) looks like the following:

(ω2
− gk)ckω =

(ω+ωk)kθk

(2π)2

∫
ki,ωi>0

Tkk1
k2k3

c∗k1ω1
ck2ω2ck3ω3

× δk+k1−k2−k3δω+ω1−ω2−ω3 dk1 dk2 dk3dω1 dω2 dω3. (7.1)
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FIGURE 5. (Colour online) Three snapshots showing the beginning of the wave breaking
(zoomed near x= 8.34 km).
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FIGURE 6. Domain (grey) in k–ω space where all waves evolve.

For all ckiωi , the following relations for their arguments are valid:

ωi =
√

gki + ω̃nl. (7.2)

Here, ω̃nl is a nonlinear frequency shift, which can be estimated from (7.1) as

ω̃nl ∼ |c|2. (7.3)

Then, one can replace Tkk1
k2k3

in Tω
2ω2

1
ω2

2ω
2
3

and drop all the terms with ω̃nl. After
performing the backward Fourier transformation in k-space, the following equation is
derived:

∂cω
∂x
− i
ω2

g
cω = −

2ω3θω

g3

i
2π

∫
Tω

2ω2
1

ω2
2ω

2
3
c∗ω1

cω2cω3δω+ω1−ω2−ω3 dω1 dω2 dω3,

Tω
2ω2

1
ω2

2ω
2
3
=

1
4π
θωθω1θω2θω3min(ω2, ω2

1, ω
2
2, ω

2
3).

 (7.4)
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This is the Hamiltonian spatial equation for water waves with the Hamiltonian

H =
1
g

∫
1
ω
|cω|2 dω−

1
2π

1
g3

∫
Tω

2ω2
1

ω2
2ω

2
3
c∗ωc∗ω1

cω2cω3δω+ω1−ω2−ω3 dω dω1 dω2 dω3. (7.5)

The equation of motion (∂/∂x)cω = iω3θω(δH/δc∗ω) is

∂c
∂x
+

i
g
∂2c
∂t2
=

P̂−

2g3

∂3

∂t3

[
∂2

∂t2
(|c|2c)+ 2|c|2

∂2c
∂t2
+ c2 ∂

2c∗

∂t2

]
+

iP̂−

g3

∂3

∂t3

[
∂

∂t
(cω̂|c|2)+

∂c
∂t
ω̂|c|2 + cω̂

(
c∗
∂c
∂t
− c

∂c∗

∂t

)]
. (7.6)

The operator P̂− is the projection operator:

P̂− = 1
2(1− iĤ), here, Ĥ is the Hilbert transformation, (7.7)

and it is equal to θω in Fourier space.
An analytical study of the small-scale instabilities by the ‘frozen coefficient’ method

also allows one to conclude that the Cauchy problem for the compact spatial equation
is a well-posed problem (although it includes a fifth derivative).

8. Some numerics for spatial equation
8.1. Breather

A breather is the localized solution of a spatial equation of the following type:

c(x, t)=C
(

t−
x
V

)
ei(k0x−ω0t). (8.1)

Fourier transforming over time, one can obtain:

cω(x)=
1
√

2π

∫
C
(

t−
x
V

)
eik0x−i(ω0−ω)t dt=

1
√

2π

∫
C(ξ)e−i(ω0−ω)ξeik0x−i(ω0−ω)x/V dξ,

(8.2)
or

cω(x)= φωei(K+ω/V)x. (8.3)

Here, K= k0 − (ω0/V) is close to −ω2
0/g and φω satisfies the following equation:(

K+
ω

V
−
ω2

g

)
φω =−

2ω3θω

g3

1
2π

∫
T
ω2

2ω
2
3

ω2ω2
1
φ∗ω1
φω2φω3δω+ω1−ω2−ω3 dω1 dω2 dω3. (8.4)

This can be found by use of the iterative Petviashvili method (n is the number of
iterations). A uniform grid is introduced in the periodic domain t ∈ [0, T]. Therefore,
the frequencies ω become discrete, with a step size of 1ω= 2π/T , and all integrals
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FIGURE 7. (Colour online) Breather solution. Free surface profile.

over ω transform to sums over ω.

φn+1
ω =

NLn
ω

Mω


∑
ω′

(φn
ω′NLn

ω′)∑
ω′

(φn
ω′Mω′φ

n
ω′)


−3/2

, Mω =K+
ω

V
−
ω2

g
,

NLn
=
−iP̂−

2g3

∂3

∂t3

[
∂2

∂t2
(|φn
|
2φn)+ 2|φn

|
2 ∂

2φn

∂t2
+
∂2φn∗

∂t2
φn2

]
+

P̂−

g3

∂3

∂t3

[
∂

∂t
(φnω̂|φn

|
2)+

∂φn

∂t
ω̂|φn
|
2
+ φnω̂

(
∂φn

∂t
φn∗
− φn ∂φ

n∗

∂t

)]
.


(8.5)

A free surface profile of the breather solution of this equation, in the periodic domain
T = 320 s, with ω0 = 0.78 (s−1) and K =−6.428× 10−2, is shown in figure 7. The
Fourier harmonics (|cω|) of the breather solution in a logarithmic scale are shown in
figure 8.

An animation of breather generation in a ‘digital’ flume can be found in
supplementary movie 4.

8.2. Modulational instability
In the spatial equation, modulational instability of a monochromatic wave also occurs.
The monochromatic wave

c(x, t)= c0eik0x−iω0t, or c(x, ω)=
√

2πc0eik0xδ(ω−ω0) (8.6a,b)

is the simplest solution of (7.6) and (7.4). Substituting (8.6) into (7.4) yields the
following relation:

k0 =
ω2

0

g
−

2ω5
0

g3
|c0|

2, (8.7)
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FIGURE 8. (Colour online) The Fourier harmonics (|cω|) of the breather solution.

(−2ω5
0/g

3
|c0|

2 could be called a ‘nonlinear wavelength shift’). The perturbed solution
has the following form:

c(x, ω)=
√

2π
(
c0δ(ω−ω0)+ c+(x)δ(ω−ω+)eik+x

+ c−(x)δ(ω−ω−)eik−x
)

eik0x. (8.8)

Here, ω± =ω0 ±ω and k+ =−k− with the following condition:

|c+|, |c−| � |c0|. (8.9)

Substituting (8.8) into (7.4), one can obtain the sum of two independent equations:[
∂c+
∂x
+ i(k0 + k+)c+ −

i
g
ω2
+

c+ +
4iω3

+

g3
T
ω2
+ω

2
0

ω2
+ω

2
0
|c0|

2c+ +
2iω3

+

g3
Tω

2
+ω

2
−

ω2
0ω

2
0

c2
0c∗
−

]
eik+x

+

[
∂c−
∂x
+ i(k0 + k−)c− −

i
g
ω2
−

c− +
4iω3

−

g3
T
ω2
−ω

2
0

ω2
−ω

2
0
|c0|

2c− +
2iω3

−

g3
Tω

2
−ω

2
+

ω2
0ω

2
0

c2
0c∗
+

]
eik−x
= 0.

(8.10)

Expressions for T
ω2
+ω

2
0

ω2
+ω

2
0
, Tω

2
+ω

2
−

ω2
0ω

2
0

and T
ω2
−ω

2
0

ω2
−ω

2
0

can be easily obtained from (4.3). Suppose
that c± grow according to

c±⇒ c±eγωx. (8.11)

Then, we can obtain the formula for γω given by a tenth-degree polynomial. By
introducing steepness for the monochromatic wave η(x)= η0 cos k0x as µ= η0k0, one
can easily find (see § 5) that in terms of c(x)= c0eik0x,

µ=

√
2|c0|ω

3/2
0

g
. (8.12)

The growth rate squared γ 2(ω) for ω0 = 0.78 (s−1), and the steepness of the carrier
wave µ= 0.1 is shown in figure 9. Perturbations whose frequencies ω are such that
γ 2(ω)> 0 are unstable, and they grow as c±∼ eγ (ω)x. Perturbations whose frequencies
ω are such that γ 2(ω)<0 are stable; therefore, they only change phase c±∼ ei

√
−γ 2(ω)x.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.529


Super compact equation 677

–0.10 –0.05 0.05 0.10

–1

1

2

3

4

–2

FIGURE 9. The growth rate squared γ 2(ω) of the perturbation c± of the monochromatic
wave solution of the spatial equation (7.4). Here, ω0= 0.78 (s−1) and the steepness of the
carrier wave µ≈ 0.1.

9. Conclusion
We derived and discussed a new compact and elegant form of the Hamiltonian and

equation for the gravity waves at the surface of deep water. Starting with the classical
canonical variables (ηk, ψk), the equation was derived in four steps.

First, the normal complex variable ak was introduced in § 2. Second, a canonical
transformation was applied to eliminate the non-resonant terms (third and fourth order)
in the Hamiltonian. As the result, we obtained the Zakharov equation and observed
that the four-wave coefficient has a remarkable property in the 1-D case:

Tk2k3
kk1
≡ 0 if the product kk1k2k3 6 0. (9.1)

The fact that Tk2k3
kk1

is zero on the resonant manifold is just part of the above. Third,
this property allowed us to simplify Tk2k3

kk1
by applying another canonical transformation.

As a result, the compact equation with an explicit form for Tk2k3
kk1

in x-space was
derived (see (3.20)).

Fourth, we derived probably the simplest form of the Hamiltonian and equation for
1-D water waves, where the order of the differential equation was reduced from 3 to
2. We call this the super compact equation.

The equation allows one to obtain a spatial version of the water wave equation that
is suitable for the simulation of a laboratory experiment whereby the free surface is
governed by wavemakers. Cauchy problems for both temporal and spatial equations
are well-posed problems.

Thus,

(i) the Hamiltonian of the super compact equation, in both k-space (4.7) and x-space
(4.9), is very simple;

(ii) the equation itself is very straightforward, consisting of only two terms -
nonlinear waves and advection;

(iii) advection is obviously responsible for wave breaking and the super compact
equation can describe the pre-breaking wave; and

(iv) it can be easily implemented for numerical simulations.
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The equation can be generalized for ‘almost’ 2-D waves, just as the Korteweg–de
Vries equation is generalized to the Kadomtsev–Petviashvili equation:

H =
∫

c∗V̂c dx dy

+
1
2

∫ [
i
4

(
c2 ∂

∂x
c∗2
− c∗2 ∂

∂x
c2

)
− |c|2k̂x(|c|2)

]
dx dy. (9.2)

Here, the operator V̂ in k-space is Vk =ωk/kx.
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