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Abstract 

In the current review, the most pessimistic events of the globe in history are addressed when we present severe impacts caused by storm surges. 
During previous decades, great progresses in storm surge modeling have been made. As a result, people have developed a number of numerical 
software such as SPLASH, SLOSH etc. and implemented routine operational forecast by virtue of powerful supercomputers with the help of 
meteorological satellites and sensors as verification tools. However, storm surge as a killer from the sea is still threatening human being and 
exerting enormous impacts on human society due to economic growth, population increase and fast urbanization. To mitigate the effects of storm 
surge hazards, integrated research on disaster risk (IRDR) as an ICSU program is put on agenda. The most challenging issues concerned such as 
abrupt variation in TC’s track and intensity, comprehensive study on the consequences of storm surge and the effects of climate change on risk 
estimation are emphasized.  In addition, it is of paramount importance for coastal developing countries to set up forecast and warning system and 
reduce vulnerability of affected areas. 
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1. Introduction 

Storm surge, an extraordinary sea surface elevation induced by atmospheric disturbance (wind and atmospheric 
pressure), is regarded as a most catastrophic natural disaster. According to long term statistical analysis, total death 
toll amounted to 1.5 million and property losses exceeded hundred billions USD globally since 18751. They could 
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Abstract

A self-sustained analytic theory of a wind-driven sea is presented. It is shown that the wave field can be separated into two
ensembles: the Hasselmann sea that consists of long waves with frequency ω < ωH , ωH ∼ 4 − 5ωp (ωp is the frequency of the
spectral peak), and the Phillips sea with shorter waves. In the Hasselmann sea, which contains up to 95 % of wave energy, a
resonant nonlinear interaction dominates over generation of wave energy by wind. White-cap dissipation in the Hasselmann sea
in negligibly small. The resonant interaction forms a flux of energy into the Phillips sea, which plays a role of a universal sink
of energy. This theory is supported by massive numerical experiments and explains the majority of pertinent experimental facts
accumulated in physical oceanography.
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1. Introduction

We will start with the taken-for-granted aphorism that ”there is nothing more practical than a good theory.” Since
the time of Galileo, physicists have tried to develop theoretical models of natural phenomena. They have succeeded for
phenomena of very different scales: from the scale of elementary particles to the scale of the Universe. Geophysical
phenomena - weather forecasting, prediction of earthquakes or origin of hurricanes - are intermediate in scale but
not in complexity. As a rule, these phenomena are very difficult for theoretical investigation because there are too
many factors involved. Creation of a theoretically justified analytic theory of wind-driven sea looks, at first glance,
to be ”mission impossible.” Waves are generated by turbulent winds; these waves break, forming white caps, sprays,
bubbles, etc. Nevertheless, the development of an adequate analytic theory of wind-driven sea is possible. The purpose
of this paper is to demonstrate this possibility.

It is obvious that a wind-driven sea needs a statistical description. In the system under consideration, such a de-
scription can be performed efficiently if we have at least one small parameter. The absence of a small parameter makes
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development of a good theory that describes turbulence in an incompressible fluid quite problematic. Fortunately, in
the case of a wind-driven sea we can find two small parameters. The first one is the ratio of air and water densities,
ρ = ρa

ρw
∼ 1.2× 10−3. Smallness of this parameter is responsible for the fact that generation of waves by wind is a slow

process: development of an intense wave takes thousands of its periods. Another small parameter is the steepness, µ,
defined as follows: µ2(k0) =

∫
|k|<k0

k2ε(k)dk. Here ε(k) is the energy spectrum. Disastrously long and high waves of a
strong storm are just gently sloping. A wave with steepness µ � 0.1 is considered by seafarers as dangerously steep. A
typical value of steepness is µ � 0.04 − 0.07. Smallness of µ allows us to sort out the nonlinear interaction processes
and determine the leading process, which is the four-wave resonant interaction. It was done by O. Phillips in 1960 [1].
A statistical description of weakly nonlinear waves can be accomplished by standard methods of theoretical physics.
It was performed by K. Hasselmann in 1962-63 [2], [3]. He derived what we call the ”Hasselmann kinetic equation,”
which became a new member of the big family of kinetic equations widely used in theoretical physics.

In spite of the fact that the mentioned seminal results were obtained long ago, the development of wind-wave theory
was slow. Some important advances were achieved in research articles of late 1960’s - 1980’s [4-9] but they exerted
little influence on development of the theory.

For half a century oceanographers have constructed operational models for wave forecasting. In these models, the
tuning of parameters made it possible to improve the forecasting, but the use of heuristic models added little to the
understanding of the physical processes that take place on the surface of wind-driven sea. During the last decade the
analytical theory of wind-driven sea got a new life [10-19]. It became obvious that the majority of data obtained in
physical experiments (in ocean and wave tanks) together with numerical experiments can be explained in a framework
of a well-justified simple theory. The presented paper is a first brief systematic description of this theory. Its main
points were reported at the Lorentz lecture on the AGU Fall meeting, December 2016, San Francisco.

The central point of the proposed analytical wind-driven sea theory is the following. Wind-driven waves can be
separated into two ensembles: the Hasselmann sea and the Phillips sea. The Hasselmann sea contains long waves
with frequencies ω < ωH , ωH � 4 − 5ωp. Here ωp is the frequency of the spectral peak. The Phillips sea consists
of shorter waves. In the Hasselmann sea the waves are generated by wind, mostly near the spectral peak, but their
spectral distribution is shaped by a resonant nonlinear interaction. This interaction throws the wave energy into the
Phillips sea, where it dissipates due to breaking. We don’t need to know the details of wave-breaking. The Phillips sea
works as a universal sink that absorbs all energy sent there by resonant interactions. The white-cap dissipation inside
the Hasselmann sea is negligibly small. This is a crucial point that makes possible to develop a self-sustained theory
of the Hasselmann sea, which contains the bulk of the wave energy (up to 95 %).

2. Quasi-Conservative Hasselmann equation

It is accepted by the physical oceanography community (see, for example [20] ) that deep water ocean gravity
surface wave forecasting models are described by the Hasselmann equation [2, 3] This equation is also known as the
kinetic equation for waves [4]. Sometimes it is called the Bolzmann equation [21] or energy balance equation [22].

∂ε

∂t
+
∂ωk

∂k
∂ε

∂r
= S nl + S in + S diss (1)

Here ε = ε(ωk, θ, r, t) is the wave energy spectrum. This spectrum is a function of wave frequency ωk = ω(k), angle
θ, two-dimensional real space coordinate r = (x, y), and time t. The terms S nl, S in and S diss are the nonlinear, wind
input and wave-breaking dissipation source terms. We will consider the deep water case only: the dispersion law is
ωk =

√
gk, where g is the gravitational acceleration and k = |k| is the absolute value of the vector wavenumber

k = (kx, ky). Since Hasselmann’s work, Eq.(1) has become the basis of operational wave forecasting models.
While the physical oceanography community agrees on the general applicability of Eq. (1), there is no consensus

on universal parameterizations of the source terms S nl, S in and S diss. In this paper we put S diss = 0. It is astonishing
how many nontrivial facts extracted from field and numerical experiments confirm this statement [10],[12],[13]. Of
course, S diss = 0 only in the Hasselmann sea.

We start our consideration with the study of the quasi-conservative Hasselmann kinetic equation written for the
wave action spectrum Nk(t).

dN
dt
= S nl (2)
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S nl = πg2
∫

k1,k2,k3

(
Tkk1k2k3

)2 × (NkNk2 Nk3 + Nk1 Nk2 Nk3 − NkNk1 Nk2 − NkNk1 Nk3

) ×

× δ(k + k1 − k2 − k3) δ(ω + ω1 − ω2 − ω3) × dk1 dk2 dk3 (3)

The energy spectrum ε(k) is connected with wave action spectrum by relation ε(k) = 1
2ωk(Nk+N−k). Here ω(k) =

√
gk

is the dispersion law. The coefficient Tkk1k2k3 in Eq. (3) is the coupling coefficient introduced in [23], [24]:

Tk1k2k3k4 =
1
2

(
T̂k1k2k3k4 + T̂k3k3k1k2

)

T̂k1k2k3k4 = −
1
4

1
(k1k2k3k4)1/4

{
1
2

(
k2

1+2 − (ω1 + ω2)4
)
×
(
k1k2 − k1k2 + k3k4 − k3k4

)

−1
2

(
k2

1−3 − (ω1 − ω3)4
)
×
(
k1k3 + k1k3 + k2k4 + k2k4

)

−1
2

(
k2

1−4 − (ω1 − ω4)4
)
×
(
k1k4 + k1k4 + k2k3 + k2k3

)

+

(
4(ω1 + ω2)2

k1+2 − (ω1 + ω2)2 − 1
)
× (k1k2 − k1k2)(k3k4 − k3k4)

+

(
4(ω1 − ω3)2

k1−3 − (ω1 − ω3)2 − 1
)
× (k1k3 + k1k3)(k2k4 + k2k4)

+

(
4(ω1 − ω4)2

k1−4 − (ω1 − ω4)2 − 1
)
× (k1k4 + k1k4)(k2k3 + k2k3)

}
(4)

Here k1+2, k1−3 and k1−4 are the moduli of the k1 + k2, k1 − k3 and k1 − k4 vectors respectively. It should be stressed
that we need to know the coupling coefficient at the resonant manifold only:

k1 + k2 = k3 + k4; ω1 + ω2 = ω3 + ω4 (5)

The coupling coefficient satisfies the symmetry conditions T1234 = T2134 = T1243 = T3412. Now suppose that the
wave vectors k1 and k3 are much shorter than the wave vectors k2 and k4. Taking Eq. (5) into account we see that k1
and k3 have nearly equal length. Vectors k2 and k4 are nearly equal, both in length and direction. An example of such
configuration is shown on Fig. 1.

-0.4
-0.3
-0.2
-0.1
0

0.1
0.2
0.3
0.4

-1 -0.5 0 0.5 1

k2

Fig. 1. A wave vector quadruplet of a long-short interaction. A curve ω1 + ω2 = const is drawn; any two points of the curve constitute a resonant
quadruplet. The θ1 and θ3 angles are given with respect to the vector k1 + k2 = k3 + k4. The eight-shape figure is the Phillips curve.

Let us underline one important property of the resonant manifold (5). Suppose that the three wave vectors, k1, k2, k3
in (5) are bound in length by some number |ki| < k0, i = 1, 2, 3. However, the last term in (5) might have a longer
absolute value. In fact, in virtue of (5) we have |k1| < 5/4 k0.

Hereafter we define k1 = |k1|, k2 = |k2|, etc. We have k1 ≈ k3 � k2 ≈ k4. After tedious algebra one may find the
following asymptotic behavior for the coupling coefficient:

Tk1,k2,k3,k4) →
1
2

k2
1k2Tθ1θ3 , Tθ1θ3 = (cos θ1 + cos θ3)(1 + cos(θ1 − θ3))
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Here θ1 is the angle between the small vector k1 and k1 + k2 (see Fig. 1); the same stands for θ3.
In the diagonal case θ1 = θ3, k1 = k3, k2 = k4.

T (k1, k2) = 2k2
1k2 cos(θ1) (6)

A systematic derivation of the nonlinear term S nl is described in detail in [25]. The expression for the coupling
coefficient presented in that paper differs from Eq. (4), however on the resonant manifold Eq. (5) both expressions
coincide.

The derivation of the Hasselmann equation is based on the assumption that the total steepness µ is small. In fact,
one must demand that µ(k0) < 0.1. In the real sea, the steepness µ(k0) is a function growing with k0. This means that
Hasselmann equation is only valid inside the limited spectral band 0 < ω < (4 − 6)ωp, where ωp is the frequency of
the spectral peak. It is fortunate that in a typical case this ”allowed” band contains more than 95% of the wave energy.

We should stress one important point. The Hasselmann equation is derived not for the real observable energy
spectrum but for the ”refined” spectrum cleared of ”slave harmonics.” This question is studied in detail in [14], [15].
It is shown there that ”slave harmonics” can be neglected only in the case of very small steepness, µ � 1. This is
correct for long enough waves, but in the small-scale spectral area (k > 20 ∼ 30kp) the contribution of slave harmonics
becomes dramatically more important. This fact is supported by direct phase-resolving numerical experiments [26],
[27], [28], [29]. In this spectral area, the sea is a mixture of ”leading harmonics” obeying the dispersion law ω �

√
gk

and slave harmonics that have combined frequencies. Also, in this spectral area we can observe either the formation
of parasitic capillary ripples (for small wind velocity, v < 3 ∼ 5m/sec) or intensive wave breaking (for stronger wind).

For strong enough wind we can separate wind-driven sea into two parts: the ”Hasselmann sea” with long waves
and the ”Phillips sea” with shorter waves. This question was studied theoretically in [30] and numerically in [27]. Can
we ”improve” the Hasselmann equation to make it applicable to description of the Phillips sea? The answer to this
question is still open.

Another important point is the question of conservation laws. The widely accepted opinion is that the quasi-
conservative Hasselmann equation Eq. (2) has basic conservation laws, i.e. wave action, energy and momentum:

N =
∫

Nk dk, E =
∫
ωk Nk dk, M =

∫
k Nk dk

Another widely accepted opinion is the following: A wave field cannot gain or loose energy through resonant interac-
tion; growth or loss of wave action, momentum or energy must therefore take place through other processes such as
wind input, whitecapping or bottom interaction (see, for example Chapter II in the well-known book ”Dynamics and
Modelling of Ocean Waves” [31]. This statement is gravely erroneous. Certainly, the resonant interaction cannot gain
energy, but this interaction provides for the loss of energy and momentum into the spectral area of infinitely small
scales. This process really occurs and takes a leading role in establishing the energy and momentum balance in the
wind-driven sea.

Let us study more carefully the conservation laws. Apparently

dE
dt
=

∫
ωk S nl dk (7)

If we boldly perform the permutation of integration order in Eq. (7) we will end up with relation

dE
dt
= πg2

∫
|Tkk1k2k3 |2Nk1 Nk2 Nk3 × (ωk + ωk1 − ωk2 − ωk3 )δ(ωk + ωk1 − ωk2 − ωk3 ) ×

× δ(k + k1 − k2 − k3) dk dk1 dk2 dk3 (8)

It seems that Eq. (7) means that dE/dt = 0, but this would be correct only if all terms in this relation are finite
and represented by convergent integrals. Now assume that Nk has asymptotic behavior Nk → 1/k4, k → ∞. Then
all terms in Eq. (7) will diverge logarithmically and will actually be infinite. Different terms in dM/dt will diverge
even worse. Thus, in the presence of spectral tails, the conservation of energy and momentum fails. The asymptotic
behavior Nk ∼ 1/k4 means that Ik � k−5/2 and F(ω) � ω−4. These spectra are commonly observed in the wind-driven
sea in the spectral range ωp < ω < 5ωp, where ωp the is frequency of the spectral peak.
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Let us add a little piece of pure mathematics. Strictly speaking, even the simple Eq. (7) is not correct. Permutation
of integration order in multi-dimensional integrals is allowed under strict limitations that are dictated by the so-called
”Fubini theorem.” In our case this theorem demands that action spectra should decay fast enough at k → ∞:

N(k) <
c

k25/6+ε , ε > 0

This means that the energy spectrum F(ω) must decay faster than ω−13/3. In the short-scale region of a real sea we
usually observe the Phillips spectrum F(ω) � αg2/ω5. Because 5 > 13/3 the integrals are conserved.

Let us notice that this takes place in the Phillips sea, consisting of short waves (ω > ωH), outside of the Hasselmann
sea, consisting of long waves (ω < ωH ∼ 5ωp). The resonant nonlinear interaction throws energy and momentum from
the Hasselmann sea into the Phillips sea. Thus:

P = −
∫ 2π

0
dθ
∫ ωH

0

dε(ω, θ)
dt

dω, Rx = −
1
g

∫ 2π

0
dθ
∫ ωH

0
ω cos θ

dε(ω, θ)
dt

dω

P and Rx are fluxes of energy and momentum from the Hasselmann sea into the Phillips sea. Because they are not zero,
one can call Eq. (2) a quasi-conservative equation. Notice, that Eq. (2) is a natural model for study of the ocean swell
evolution. We have solved this equation numerically and have observed a permanent loss of energy and momentum
[44].

3. Kolmogorov-type spectra

Let us study isotropic solutions of the stationary quasi-conservative Hasselmann equation:

S nl = 0 (9)

We assume that the solution of Eq. (8) is a powerlike function N = ak−x. Then

S nl = a3 g
3
2 k−3x+ 19

2 F(x)

where F is a dimensionless function depending on x only.
It was shown in [6], [32] that F(x) = 0 at the two points x = 4 and x � 23/6 only. This is a strict mathematical

theorem, which is supported by careful numerical experiments [33], [12], [13]. Integrals in Eq. (9) converge if 5/2 <
x < 19/4 [19]. Function F is shown on Fig. 2.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

5/2 3 23/6 4 9/2 19/4

f

x

 0

 10

 20

 30

 40

 50

5/2 3 23/6 4 19/4

f

x

Fig. 2. F function graph and its asymptotes. The second picture is the closeup of the function zeroes.

This means that Eq. (9) has exactly two powerlike solutions:

N(1)
k = cp

P1/3
0

g2/3

1
k4 , N(2)

k = cq
Q1/3

0

g1/2

1
k23/6 . (10)
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Here P0 is the energy flux and Q0 is the wave action flux. The dimensionless constants cp and cq are defined from the
first derivatives of F

cp =

(
3

2π F′(4)

)1/3
, cq =

(
− 3

2π F′(23/6)

)1/3

Our numerical calculation of the derivatives of F at x = 4 and x = 23/6 gives

cp = 0.203, cq = 0.194 (11)

One can mention that the ”unidirectional” (integrated by angle) energy spectra E(ω) are connected with the isotropic
wave action spectra by the relation

F(ω) dω = 2πωk Nk k dk (12)

Hence we find the following exact solutions of Eq. (9):

F1(ω) =
4π cp

ω4 g4/3 P1/3
0 (13)

This expression is known as the Zakharov-Filonenko spectrum and was found in 1966 [4]. It is a Kolmogorov-type
spectrum that presumes the presence of a source of energy P0 = dε/dt at k = 0. This is the spectrum of ”direct
inverse cascade” similar to the classical Kolmogorov spectrum in the theory of turbulence in a three-dimensional
incompressible fluid. The second spectrum first introduced in [5], [6] is the following:

F2(ω) =
4π cq

ω11/3 g Q1/3
0 (14)

It describes the ”inverse cascade” of wave action, and can be compared with the Kolmogorov spectrum of the energy
inverse cascade in the theory of turbulence in a two-dimensional incompressible fluid.

The existence of solutions of Eq. (8) originates from possibility of splitting S nl as follows:

S nl = Fk − Γk Nk, (15)

where

Fk = πg2
∫
|Tkk1k2k3 |2 δ(k + k1 − k2 − k3) δ(ωk + ωk1 − ωk2 − ωk3 ) Nk1 Nk2 Nk3 dk1dk2dk3 (16)

and Γk, the dissipation rate due to the presence of four-wave processes, is the following:

Γk = πg2
∫
|Tkk1,k2k3 |2 δ(k + k1 − k2 − k3) δ(ωk + ωk1 − ωk2 − ωk3 ) ×

×(Nk1 Nk2 + Nk1 Nk3 − Nk2 Nk3 ) dk1dk2dk3. (17)

One can call Fk the ”income term” and Γk Nk the ”outcome term”. Solutions of Eq. (8) are the result of competition
between the income and outcome terms. In statistical physics the separate study of income and outcome terms is
a routine procedure. In stationarity they compensate each other, and this is the ”principle of detailed equilibrium”.
Competition of these terms leads to the establishment of of stationary thermodynamic equilibrium spectra like the
Maxwell distribution in the kinetic theory of gases or the Plank distribution in optics and physics of condensed matter.
It is important to mention that Eq. (2) is the limiting case of a more general quantum kinetic equation for bosonic
quasiparticles derived by Nordheim in 1929 [34]. Kolmogorov-type spectra of the Nordheim equation were studied
by Y.V. Lvov et al [35].

There is one more reason why the splitting of S nl is so useful. First of all, it explains why the conservation laws
in reality do not conserve. Suppose, in the initial moment of time, N(k) = 0. Thus S nl > 0 in the spectral area
k0 < |k| < 5/4 k0. As a result, energy inside the area |k| < k0 decreases in time. This fact is very important in connection
with numerical solution of equation (2). Any numerical scheme provides that frequency varies in a bounded interval
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0 < ω < ωmax and automatically provides the leakage of energy outside the area ω < ωmax. A good numerical
experiment can be performed in the absence of all S diss.

We can expect that Eq. (8) has thermodynamic equilibrium solutions, the Rayley-Jeans spectra

ε(k) =
T

ωk + µ

Here T is temperature and µ is chemical potential. However these solutions have no physical meaning because a real
sea is very far from thermodynamic equilibrium. Moreover, the substitution of thermodynamic spectra into S nl leads
to bad divergences of integrals. It is important to stress that the spectra (13) and (14) are the simplest examples of
exact solution of Eq. (9). To outline a broader class of its solutions one can introduce the elliptic differential operator
[14]:

L f (ω, φ) =
(
∂2

∂ω2 +
2
ω2

∂2

∂φ2

)
f (ω, φ) (18)

with following parameters: 0 < ω < ∞, 0 < φ < 2π. The equation

L G = δ(ω − ω′) δ(φ − φ′) (19)

with boundary conditions G|ω→0 = 0, Gω→∞ < ∞, G(2π) = G(0) can be resolved as

G(ω,ω′, φ − φ′) = 1
4π

√
ωω′

∞∑
n=−∞

ein(φ−φ′) ×

(
ω

ω′

)∆n

Θ(ω′ − ω) +
(
ω′

ω

)∆n

Θ(ω − ω′)
 , (20)

where ∆n = 1/2
√

1 + 8n2. Now we define:

A(ω, φ) =
∫ ∞

0
dω′
∫ 2π

0
dφ′G(ω,ω′, φ − φ′) S nl(ω′, φ′). (21)

Then Eq. (2) takes the following form

∂N
∂t
= L A (22)

and the stationary equation is

L A = 0 (23)

The operator A is a regular integral operator. This fact leads to a bold idea. If we assume that

A =
H0

g4 ω
15 N3, (24)

then the nonlinear term S nl turns into the elliptic operator:

S nl =
H0

g4

(
∂2

∂ω2 +
2
ω2

∂2

∂φ2

)
ω15 N3. (25)

This is a so-called ”diffusion approximation”, first introduced in article [23] and later on developed in [36]. In spite of
being very simple, this approximation grasps the basic features of the wind-driven sea theory. We will refer mostly to
this model, having in mind that the real case Eq. (21) does not differ much from it, at least qualitatively.

H0 is a dimensionless tuning constant. In Eq. (22), N = N(ω, φ), ε(ω, φ) = ωN(ω, φ). Eq. (25) has the following
anisotropic KZ solution

A =
1

2π g

{
P + ωQ +

Rx

ω
cos φ

}
, (26)
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where P and Rx are fluxes of energy and momentum as ω → ∞ and Q is the flux of wave action directed to small
wave numbers. In a general case, Eq. (21) is a nonlinear integral equation; however in the diffusion approximation the
KZ solution can be found in the explicit form:

N(ω, φ) =
1

(2πH0)1/3

g
ω5

(
P + ωQ +

Rx

ω
cos φ

)1/3
. (27)

By comparison with (11) we easily find that in this case

cp = cq =
1

2(2πH0)1/3 = 0.199, H0 = 2.57.

This is exactly the arithmetic mean between the values of Kolmogorov constants given by (11).
By multiplication of Eq. (27) by 2πω we get the general KZ spectrum in the diffusion approximation:

F(ω) = 2.78
g4/3

ω4

(
P + ωQ +

Rx

ω
cos φ

)1/3
. (28)

For the real sea, Eq. (23) is a nonlinear integral equation which can be solved numerically only. The ”toy” diffusion
model allows us to find the explicit equation for the KZ-solution which grasps the main features of real solution. One
can assert that the real KZ solution is

F(ω) =
g4/3 P1/3

ω4 R
(
ωQ
P
,

Rx

gω P
, φ

)
(29)

In the limit P→ 0, Rx → 0 we have R→ 4π cp. In the limit Rx = 0, P→ 0

R→ 4π cq

(
ωQ
P

)1/3

We have to mention that Q is the flux of wave action coming from the spectral area of very small scales. In the majority
of physical situations one can put Q = 0. From the physical viewpoint the most interesting case is Q = 0, for which

F(ω) =
g4/3 P1/3

ω4 R0

(
Rx

gω P
, φ

)
(30)

Here R0 is an unknown function that we believe describes the angular spreading of wave spectra. It was shown long
ago [37] that as ω→ 0

R0 → 4π cp

(
1 +
λRx

gω P
cos φ + · · ·

)
(31)

where λ is a dimensionless constant. In the ”toy” diffusion model λ = 1/3. We should stress that all KZ spectra are
isotropic in the limit ω→ ∞ and are very close to F(ω) ∼ 1/ω4.

Let us return to the representation of S nl in the ”split” form (15). Apparently the solution of the equation S nl = 0 is
given by the expression

Nk =
Fk

Γk
(32)

For KZ-spectra both Fk, Γk diverge as k → ∞. However these divergences are cancelled.
A detailed numerical study of the function R0( Rx

gω, P φ) and its comparison with observed in experiments angular
spectra is the problem of most importance in our agenda.
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4. Energy balance in wind-driven sea

To answer the most painful question - which source terms in Eq. (1) are dominant? - one should present S nl in the
split form. This is clear to any physicist (pity, not to oceanographers). After the splitting, Eq. (1) takes the following
form:

∂N
∂t
+
∂ωk

∂k
∂N
∂r
= Fk − Γk Nk + S in + S diss

In fact, the forcing terms S in and S dis are not known well enough; thus it is reasonable to accept the simplest models
of both terms assuming that they are proportional to the action spectrum:

S in = γin(k) N(k), S dis = −γdis(k) N(k). (33)

Hence

γ(k) = γin(k) − γdis(k). (34)

In reality γdis(k) depends dramatically on the overall steepness µ. So far, let us notice that the stationary balance
equation can be written in the form

Fk − Γk Nk + γk N = 0 (35)

Definitions of Γk and Fk are given by Eq. (16) and Eq. (17).
The stationary solution of Eq. (1) is the following:

Nk =
Fk

Γk − γk
. (36)

The positive solution exists if Γk > γk. The term Γk can be treated as the nonlinear damping that appears due to
four-wave interaction. In the presence of nonlinear damping the dispersion relation must be renormalized

ωk → ωk +
1
2

∫
Tkk1kk1 Nk dk + iΓk

The main point of the proposed theory is that the nonlinear dumping has a very powerful effect. In reality, Γk � γk. A
”naive” dimensional consideration gives

Γk �
4πg2

ωk
k10 N2

k , (37)

However, this estimate works only if k � kp, where kp is the wave number of the spectral maximum.
Let k � kp. Then for Γk we get

Γk = 2πg2
∫
|Tkk1,kk3 |2 δ(ωk1 − ωk3 ) Nk1 Nk3 dk1dk2. (38)

The main source of Γk is the interaction of long and short waves. To estimate Γk more accurately, we assume that the
spectrum of long waves is narrow in angle, N(k1, θ1) = Ñ(k1) δ(θ1). Long waves propagate along the axis x, and �k is
the wave vector of short wave propagating in direction θ. For the coupling coefficient we can use the asymptotic Eq.
(6) and obtain

Γk = 8πg3/2 k2 cos2 θ

∫ ∞
0

k13/2
1 Ñ2(k1) dk1. (39)

Even for the most mildly decaying KZ spectrum, Nk � k−23/6, the integrand behaves like k−7/6
1 and the integral

converges as k → ∞. Thus the main contribution in (39) is given by k1 ∼ kp. For an accurate estimate of Γk we need
to know the detailed structure of the spectrum near the spectral peak. Let us make the most ”mild assumption” and
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Fig. 3. Split of nonlinear interaction term S nl (central curve) into Fk (upper curve) and Γk Nk (lower curve)

consider that there is no peakedness and the spectrum looks like the Pierson-Moscowitz spectrum of a ”mature sea”
[38]:

Nk �
3
2

E
√

g
k3/2

p

k4 θ(k − kp). (40)

Here E is the total energy. By plugging Eq. (40) into Eq. (39) we get the equation

Γω = 36 πω
(
ω

ωp

)3
µ4

p cos2 θ, µ2
p =

g2 E
ω p4 (41)

that includes a huge enhancing factor: 36π � 113.04. For very modest value of steepness, µp � 0.05, we get

Γω � 7.06 · 10−4ω

(
ω

ωp

)3
cos2 θ. (42)

In the real sea the spectra usually have ”peakedness” which enhances (39) essentially. We must underline that
the splitting of S nl can be studied numerically. We have modified the well-known Resio-Tracy code for solving the
Hasselmann equation to calculate competing terms Fk and Γk N separately [15]. A typical splitting is shown in Fig. 3.
For a nonlinear interaction term S nl = Fk − Γk Nk, the magnitudes of the constituents Fk and Γk Nk essentially exceed
their difference. They are one order higher than the magnitude of S nl.

The dominance of S nl was not apparent for two reasons. First, it is not correct to compare S nl and S in; instead
one should compare Γk and γk. Second, the widely accepted models for S diss overestimate dissipation due to white
capping. As a result, the dominance of S nl is masked.

Concerning interaction with wind, at the moment there are at least a dozen models for Γ(k) = γ(ω, φ). Some of
them are derived by the use of conflicting theoretical models; others are taken from experimental data. None of the
proposed models are convincing. They are essentially different and the scatter is very large, 300 − 500 %. A critical
review of different models is presented in [27].

The dimensionless quantities γ/ω × 103 as functions of dimensionless frequency ω u10/g are plotted on Fig. 4
taken from [12].

We pay special attention to two models:
1. The Plant model [39] γ = 0.03 ρa

ρω
ω
(
ωU

g

)2
cos φ, cos φ > 0

2. ZRP model [17] γ = 0.05 ρa
ρω
ω
(
ωU
g

)4/3
cos2 φ, −π/2 < φ < π/2

In both models γ � ω1+s is a powerlike function on frequency.
Comparison of all known models for S in with the nonlinear dumping term Γk calculated according to Eq. (17) is

presented on Fig. 5 One can see that Γk, at least in order of magnitude, is larger than γin(k). This figure conspicuously
demonstrates that the nonlinear wave interaction is the leading term in the energy balance of a wind-driven sea.
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Fig. 4. Dimensionless wind input for u10 = 10m/sec .

Fig. 5. Comparison of experimental data for the wind-induced growth rate 2π γin(ω)/ω taken from [14], [15] and the damping due to four-wave
interactions 2π Γ(ω)/ω, calculated for narrow in angle spectrum at µ � 0.05 using Eq. (42) (dashed line)

5. Experimental evidence of Snl domination

In the previous chapter we have shown analytically and numerically that the S nl term dominates over the S in term.
Because in the Hassenlmann sea the term S diss cannot be stronger than γin (otherwise waves would not be excited),
the term S nl dominates over both. Both the source term and the nonlinear wave interaction are the dominating physical
processes that take place in a wind-driven sea.

This fact is supported by convincing experimental data collected in a broad ranges of wind velocities: 3m/sec <
U, 30m/sec. Following Kitaigorodski [40], hereafter we will use the dimensionless duration and fetch, as well as the
dimensionless frequency and energy:

τ =
tg
U
, χ =

xg
U2 , σ =

ωU
g
, F =

εg2

U4 (43)

Also, we introduce integral dimensionless quantities

F̃ =
∫ ∞

0
F(σ)dσ, σ̃ =

1
F̃

∫ ∞
0
σF(σ)dσ (44)
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The steepness of the main energy capacity wave can be estimated as follows

µp � F̃ σ̃4 (45)

During the last seven decades many experiments measuring energy spectra of a wind-driven sea and its integral
characteristics were performed in laboratory, on lakes, and in the different parts of the ocean. The most significant
experiments were conducted in the ”fetch dominating frame,” where the sea is stationary in time and the wind has
the opposite direction. In these challenging and expensive experiments, F̃ and σ̃ were measured as functions of fetch
only: F̃ = F̃(χ), σ̃ = σ̃(χ). All experimenters unanimously agree that F̃ and σ̃ are powerlike functions

F̃ = ε0 χp, σ̃ = ω0 χ
−q (46)

Exponents p, q are different in different experiments. They vary inside the following ranges

0.7 < p < 1.1 0.22 < q < 0.33 (47)

Suppose that F obeys the stationary Hasselmann equation. After transition to dimensionless variable this equation
reads

cos θ
2σ
∂F
∂χ
= S nl + γin(σ) F (48)

We include in Eq. (48) the interaction with wind. Let us make a very crude estimate of the different terms in this
equation. Neglecting the wind input term we come to the following balance relation

F
σ̃χ
� σ̃ F µ4

p

or, after cancelling F and using Eq. (45)

χF̃2 σ̃10 � 1 (49)

Substituting (46) into Eq. (49) one can see that dependance on χ drops out if the exponents p, q are connected by the
relation

10q − 2p = 1 (50)

We call it the ”magic relation.” In virtue of this relation

q = qth =
2p + 1

10

Moreover, from condition (49) we can conclude that s = ε1/50 ω0 is a universal constant. Comparison with numerical
experiments show that

s = ε1/50 ω0 � 1 (51)

Results of 23 experiments performed in the open sea and Lake Michigan are presented in Table 1, which represents
the majority (but not all) of the field experiments collected in physical oceanography for almost half of a century.
References can be found in [13]. Experimental data are compared with predictions of the analytic theory presented
in the present paper. According to theory, the exponents qchi must coincide with the theoretically predicted value
qth = 2pχ + 1/10. One can see that the relative difference δq � 1

qχ
|qχ − qth| does not exceed 10%. According to theory,

the dimensionless quantity s = ε1/50 ω0 must be a universal constant of order one. More accurate theoretical value of s
(which is actually a slow varying function of p) will be presented shortly. Table 1 shows that experimentally measured
values of s are close to unit. The data accumulated in Table 1 support theory very well.

One can add to Table 1 the composite data presented by I.R. Young in monograph [21] on page 105. This is a result
obtained by the author by averaging over many field experiments. According to Young:

px = 0.8 qx = 0.25 ε0 = 7.5 · 10−7 ω0 = 12.56 s = 0.75
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Table 1. Comparison of experimental data and predictions of theory
Case ε0 × 107 pχ ω0 qχ qth S

1 Wen. et al. (1989) 18.900 0.700 10.40 0.23 0.24 0.75
2 Romero & Melville (2009) stabl 9.230 0.740 8.93 0.22 0.25 0.55
3 Donelan et al. (1985) var. der 8.410 0.760 11.60 0.23 0.25 0.71
4 Dobson et al. (1989) wind. int 12.700 0.750 10.68 0.24 0.25 0.71
5 Kahma & Calkoen (1992) stabl 9.300 0.760 12.00 0.24 0.25 0.75
6 Evans & Kibblewhite (1990) stra 5.900 0.786 16.27 0.28 0.26 0.92
7 Romero & Melville (2009) unstab 5.750 0.810 10.64 0.23 0.26 0.60
8 Hwang & Wang (2004) 6.191 0.811 11.86 0.24 0.26 0.68
9 SMB CERC (1977) by Young 7.820 0.840 10.82 0.25 0.27 0.65
10 Davidan (1996), U10 scaling 5.550 0.840 16.34 0.29 0.27 0.92
11 Evans & Kibblewhite (1990) neut 2.600 0.872 18.72 0.30 0.27 0.90
12 Black. Sea 4.410 0.890 15.14 0.28 0.28 0.81
13 Kahma & Calkoen (1992) composit 5.200 0.900 13.70 0.27 0.28 0.76
14 Kahma & Pettersson (1994) 5.300 0.930 12.66 0.28 0.29 0.70
15 Kahma & Calkoen (1992) unstab 5.400 0.940 14.20 0.28 0.29 0.79
16 JONSWAP no lab (Phllips 1977) 2.600 1.000 11.18 0.25 0.30 0.54
17 Davidan (1980) 4.363 1.000 16.02 0.28 0.30 0.86
18 Walsh, US coast (1989) 1.860 1.000 14.45 0.29 0.30 0.65
19 Mitsuyasu (1971) 1.600 1.000 21.99 0.33 0.30 0.96
20 JONSWAP (1973) 2.890 1.008 19.72 0.33 0.30 0.97
21 Donelan et al. (1992) 1.700 1.000 22.62 0.33 0.30 1.00
22 Kahma (1986)average. growth 2.000 1.000 22.00 0.33 0.30 1.01
23 Kahma (1981, 1986)rapid. growth 3.600 1.000 20.00 0.33 0.30 1.03

Table 2. Data of numerical experiments

Experiment px qx 10q − 2p ε0 ω0 ε1/5
0 ω0

ZRP 1 0.3 1 2.9 ·10−7 21.35 1.05
Snyder 0.7 0.23 1 1.24 ·10−5 9.04 0.94
Tolman-Chalikov 0.5 0.2 0.9 3.2 ·10−5 7.91 1.00
Hsiao-Shemdin 0.5 0.19 0.9 2.0 ·10−5 8.16 0.94
Donelan (with dissipation) 0.6 0.21 0.83 6.1 ·10−6 10.17 0.92
Donelan (without dissipation ) 0.53 0.19 0.84 2.05 ·10−5 7.85 0.91
Plant 0.77 0.254 1 2.9 ·10−6 12.89 1.006
Stuart-Plant 0.5 0.21 1.1 1.15 ·10−5 9.48 0.975

Theory predicts qth = 0.26, s � 1. These data also support our statement on dominance of the nonlinear resonant
process over income from wind. Other experimental and numerical data supporting our theory are collected in article
[16]. In field experiments presented in Table 1 the dimensionless fetch χ varies inside the following range: 102 < χ <
105.

We solved the stationary Hasselmann equation (48) numerically, using various models for γ(ω, θ) (see [18]). The
results are presented in the Table 2. The data for the Plant and Stuart-Plant models will be commented on in the paper
[41].

In these experiments fetch, χ, varies typically in the limits 0 < χ < 105. Numerical modeling shows that asymp-
totically for χ > 103 all models of S in lead to formation of powerlike behavior (46) of functions F̃(χ) and σ̃(χ). The
prediction of the analytic theory, 10q−2p = 1, s ∼ 1, is satisfied very well. In cases when γ(σ) is a powerlike function
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(ZRP and Plant models), the establishment of powerlike behavior of F̃(χ) and σ̃(χ) occurs for much lower fetches,
χ ∼ 102.

We must stress that in spite of demonstrated universality, different models of wind input lead to completely different
predictions on growth of wave energy with fetch. Models of Snyder and Hsiao-Shemdin differ especially dramatically.
For all values of fetch 0 < χ < 105 we have F̃S nyder(χ) > 5F̃Hsiao−S hemdin(χ)

6. Self-similaruty of wind-driven sea

Now we can answer the most ”sharpest” questions: Why do both field and laboratory experiments assert that
F̃ = F(χ) and σ = σ(χ) are powerlike functions (46)? Why are the exponents p, q are contained inside intervals (47)?
We will discuss the Hasselmann sea only, where the Hasselmann equation is applicable.

Let us consider Eq. (48) and assume that γin(σ) is a powerlike function

γin(σ) = γ0 σ
1+l · f (φ) (52)

One can check that Eq. (48) has the following self-similar solution

F = χp+q G(σ, χ, φ) (53)

which leads to powerlike expressions (46) where

ε0 =

∫ 2π

0
dφ
∫ ∞

0
G(σ, φ) dσ ω0 =

1
ε0

∫ 2π

0
dφ
∫ ∞

0
σG(σ, φ) dσ (54)

In Eq. (53)

q =
1

2 + l
, p =

8 − l
2(2 + l)

(55)

The function G(ξ, φ), ξ = σχq, satisfies the following equation:

cos φ[(p + q)G + qξ
∂G
∂ξ

] = S̃ nl + γ0ξ
1+l f (φ) G (56)

Here S̃ nl is a dimensionless S nl and γ0 � 10−5 is a dimensionless small parameter. An explicit equation for S̃ nl is
presented in [19]. This term can be split into income and outcome terms. Each of them dominates over S in; thus near
the spectral peak S in can be neglected and the condition s = ε1/5 ω0 ∼ 1 still holds.

Now let us notice that in the ZRP model of S in , l = 4/3. This gives q = 0.3, p = 1, in good accordance with
experiments 13-23 presented in Table 1. For the Plant model, l = 2; this gives q = 0.25, p = 0.75, in good accordance
with experiments 3-7 in Table 1. In all offered models for S in, γ(σ)/σ is a growing function, and 1 < S < 2.3. This
gives, in virtue of Eq. (55) the following frames for the variation of exponents:

0.67 < p < 7/6, 0.22 < q < 0.33

These frames are very close to experimentally observed frames (47) and results presented in Table 1. The results of
numerical experiments collected in Table 2 show that models of S nl different from the ZRP and Plant models lead to
exponents outside the frame (47). This is not a weak point of theory; rather it is a weakness of the discussed models.
The major prediction of the theory, the magic relation 10q − 2p = 1, is satisfied pretty well.

In these models, γ(σ) are not pure powerlike functions. However S in is still a small term in Eq. (48), and we may
seek ”quasimodular solutions” such that exponents are ”slow functions” of fetch p = p(χ), q = q(χ).

Critical analysis of data from field, wave tanks and numerical experiments is summarized in [16], [45]. In these
articles the data that cover variation of averaged functions F̃(χ) and σ̃(χ) are collected. In a huge range of fetches,
10 < χ < 106 the magic relation is valid!

But it doesn’t mean that all models for S in are equally good. The analytic model predicts the ”magic relation”
between p and q as well as a relation between ε0 and ω0, but it says nothing about absolute values of these quantities.
Comparing the first line of Table 1 (Wel et al experiments) with the second line in Table 2 (Snyder model prediction)
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we see very good qualitative coincidence but large quantitative differences. The Snyder model overestimates the rate
of energy growth with fetch by almost an order of magnitude. Because of the limited length of this article we cannot
discuss an extremely important question: the shape of spectra in the universal spectral range 1 < σ < 5. Eq. (48)
does not preserve energy that leaks from the Hasselmann sea to the Phillips sea, forming an energy flux P. Thus the
solution of Eq. (48) must have asymptotic behavior

G(ξ)→ βP1/3

σ4 (57)

Because γ0 � 1, β is a small number. This implies the inevitable formation of Zakharov-Filonenko spectral tails
F(ω) ∼ 1/ω4. Such tails are routinely observed in numerous field and laboratory experiments, see for example [42],
[43]. This important subject deserves a special consideration.

7. Conclusions

Let us summarize the results. We claim that the majority of data obtained in field and numerical experiments can
be explained in a framework of a simple model

dε
dt
= S nl + γin(ω, φ)ε

Moreover, most of the facts can be explained by the assumption that γin(ω, φ) is a powerlike function on frequency,
γin(ω, φ) = γ0 ω

1+s f (φ). Here 1 < s < 2.3 and f (φ), γ0 are tunable. This model pertains only to the description of the
Hasselmann sea, 0 < ω < ωH , ωH � (4 − 5)ωp.

In fact, this model is a simplification of the widely accepted model in oceanography (1). What is the difference
between these models? The main difference is obvious: we excluded from our consideration any mention of wave
energy dissipation. This does not mean that we deny a crucial role of wave-breaking in the dynamics of ocean surface.
But, from the spectral viewpoint, the wave-breaking takes place outside the Hasselmann sea. It is going into the
Phillips sea, in the spectral area of short scales. This very important statement is supported by experimental data and
by numerical solutions of dynamical phase-resolving equations for a free surface.

What we offer could be called ”poor man’s oceanography.” A ”poor man” refuses attempts to derive the equation
for S in from ”first principles,” but has in his possession powerful analytic and computer models to use as test beds for
compatibility of models for γin(ω, φ) with experimental data. The Snyder model does not pass this test and should be
excluded from operational models.
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