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THE PHILLIPS SPECTRUM AND A MODEL OF WIND-WAVE

DISSIPATION

S. I. Badulin∗† and V. E. Zakharov†‡

We consider an extension of the kinetic equation developed by Newell and Zakharov in 2008. The new

equation takes not only the resonant four-wave interactions but also the dissipation associated with the

wave breaking into account. In the equation, we introduce a dissipation function that depends on the

spectral energy flux. This function is determined up to a functional parameter, which should be optimally

chosen based on a comparison with experiment. A kinetic equation with this dissipation function describes

the usually experimentally observed transition from the Kolmogorov–Zakharov spectrum E(ω) ∼ ω−4 to

the Phillips spectrum E(ω) ∼ ω−5. The version of the dissipation function expressed in terms of the

energy spectrum can be used in problems of numerically modeling and predicting sea waves.
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1. Introduction

It is well known that the spectra of sea waves in both the presence and absence of wind have power-
like tails. The shape of the tails in the short-wave range is universal and is given by the famous Phillips
spectrum [1]

E(ω) = αPhg
2ω−5. (1)

Here, αPh = 0.0081 is the Phillips constant. Phillips expressed the reasonable idea that his spectrum owes
its existence and robustness to the phenomenon of wave breaking. But the initial hypothesis that the wave
field in this asymptotic range is an ensemble of the Stokes limiting waves [2] is refuted by the fact that
the mean-square steepness of the Stokes limiting waves μ = 〈∇η2〉1/2 ≈ 0.329 [3], [4] (η is the free surface
elevation, and angle brackets denote averaging in space) significantly exceeds the steepness of even the
most severe waves (μ � 0.1) observed in the ocean. In addition, high-amplitude Stokes waves are extremely
unstable.
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The correct interpretation of the Phillips spectrum was proposed by Newell and Zakharov in [5], where it
was shown that the “Phillips sea” is an ensemble of localized breakers uniformly distributed through inverse
scales. At the same time, Phillips himself noted [6] that the maximum breaker scale is approximately an
order of magnitude smaller than the length of the dominant wave. Analyzing numerous experiments [7]–[12],
Phillips showed that a universal spectrum E(ω) ∼ ω−4 is also realized in the intermediate range of scales
and suggested that this spectrum is the result of the simultaneous action of three factors: wind pumping,
nonlinear wave interaction, and dissipation. This concept is still quite widespread, but it is erroneous if
only because the ω−4 spectrum was established in the numerical simulation of swell [13]. In addition, it
was definitely shown that in the frequency range ωp < ω < 3.5ωp, the nonlinear wave–wave interaction
is the dominating physical effect [14]–[16]. The theoretical explanation of the spectrum E(ω) ∼ ω−4 is
therefore quite simple: this is an exact solution of the stationary Hasselmann equation. This fact was
already established by Zakharov and Filonenko in 1966 [17].

The spectrum in the intermediate region has the form

E(ω, θ) = 2Cp
P 1/3g4/3

ω4
. (2)

Here, P is the energy flux into the region of large wave numbers, and Cp is the Kolmogorov constant.
According to the calculations of Geogjaev and Zakharov [18], Cp ≈ 0.203. Spectrum (2) is just a special
case of the weakly turbulent Kolmogorov–Zakharov (KZ) spectra described in detail in [19].

A remarkable feature of the Phillips dissipation function proposed in [6] is a physically transparent
meaning of the function. An attempt to improve the Phillips dissipation function is our starting point here.
At the end of the paper, we present the versions of the function that we consider “work horses.” An optimal
version can be selected based on extensive numerical experiments.

2. Phillips spectrum and the asymptotic theory of water waves

The Hasselmann kinetic equation [20] for a spatial spectrum Nk of the wave action of wind-driven
waves is written in the form

∂Nk

∂t
+ ∇kωk∇rNk = Snl + Sin + Sdiss. (3)

The subscripts k and r for ∇ are used for the respective gradients in the wave vector k and the coordinate
r. For Nk(x, t) and ωk, the subscript k means dependence on the wave vector. The term Snl in (3) is
responsible for four-wave resonant interactions. The terms Sin and Sdiss represent the respective wave
action inputs from wind and dissipation. In contrast to the theoretically based term Snl derived from first
principles, the description of Sin and Sdiss is mostly based on phenomenological parameterizations [21]. It
gives very high dispersion of estimates of Sin and Sdiss in wave modeling and forecasting [22], [23], [16].
The validity and physical correctness of the empirically based terms Sin and Sdiss are generally beyond
critical consideration: quantitative aspects dominate the obvious questions of physical relevance. In many
cases, these assumptions can be validated in comparison with results of direct simulations using dynamical
phase-resolving models [24]–[28].

The collision integral

Snl(k,x, t) = πg2

∫
|T0123|2(N0N1N2 + N1N2N3 − N0N2N3 − N0N1N3) ×

× δ(k + k1 − k2 − k3)δ(ω0 + ω1 − ω2 − ω3) dk1 dk2 dk3 (4)

plays a central role in our study. Explicit formulas can be found in many papers (see, e.g., [22]). Crucial is
the homogeneity of the power-law dispersion dependence ω(k) =

√
g|k| and consequently the homogeneity
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of the interaction coefficient T0123 on the wave vector k,

|T (κk0, κk1, κk2, κk3)|2 = κ6|T (k0,k1,k2,k3)|2, (5)

and of the collision integral itself on the wave vector,

Snl[κk, νNk] = κ19/2ν3Snl[k, Nk], (6)

or the frequency ω,
Snl[υω, νNω] = υ11ν3Snl[ω, Nω]. (7)

Here, κ, υ, and ν are arbitrary positive coefficients. The basic assumption of the weak-nonlinearity theory
that the wave period T is small compared with the time scale Tnl of nonlinear interactions,

T

Tnl
=

1
ωkNk

dNk

dt
=

Snl

ωkNk
� 1, (8)

can be violated at long times and/or for sufficiently short waves. This is not the case with special distribu-
tions, the so-called generalized Phillips spectra, where the ratios in (8) are independent of the wave scale,
i.e., the weak-nonlinearity assumption inherits the property of the initial wave field [5]. For deep water
waves, the classic Phillips spectrum written for the wave energy

Ek ∼ |k|−4 or Eω ∼ ω−5 (9)

or the wave action
Nk ∼ |k|−9/2 or Nω ∼ ω−6 (10)

satisfies condition (8) for any stretching parameters κ, υ, and ν in (6) and (7). In other words, the
asymptotic approach seems formally valid at any wave scale. Moreover, it can be proved that condition (8)
holds for every term S

(n)
nl that represents the resonant interaction of n waves in the asymptotic series of

collision integral (3) [5],

Snl =
∞∑

n=4

S
(n)
nl . (11)

Generalized Phillips spectrum (9), (10) does not satisfy conservative kinetic equation (3) and can hence
be realized only as a balance of an external forcing (dissipation) and wave–wave resonant interactions. In
this regard, solution (9), (10) differs from the classic KZ solutions for direct and inverse cascading [17], [29]
(see [22] for the notation)

N (1)(k) = CpP
1/3g−2/3|k|−4, N (1)(ω, θ) = 2CpP

1/3g4/3ω−5, (12)

N (2)(k) = CqQ
1/3g−1/2|k|−23/6, N (2)(ω, θ) = 2CqQ

1/3g4/3ω−14/3. (13)

Here,

Q =
∫ ω

0

∫ π

−π

Snl dω dθ, P = −
∫ ω

0

∫ π

−π

ωSnl dω dθ (14)

are the wave action and energy fluxes, and Cq and Cp are the corresponding Kolmogorov constants. The
collision integral Snl for solutions (12) and (13) vanishes (the fluxes are constant), and estimates of the
applicability criteria for kinetic equation (8) requires great care. Most simply (but nontrivially) [14], [15],
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we can split the nonlinear transfer term Snl into two parts: the nonlinear forcing Fk and the positive-definite
nonlinear damping term ΓkNk (Γk is the nonlinear damping rate) as

Snl = Fk − ΓkNk.

The relaxation rate Γk gives a physically correct estimate of the time scale of nonlinear wave–wave interac-
tions in kinetic equation (3). In accordance with (8), the asymptotic approximation becomes inapplicable
if (see Eq. (17) in [14])

Γkω � 4πg|k|9N2
k = πω12g−4N2

ω � 1. (15)

For Phillips spectrum (9), (10), dimensionless rate (15) is determined by only the spectrum magnitude and
is independent of the wave scale. For direct cascade KZ solution (12), the applicability criterion becomes

4πC2
pg−1/3P 2/3|kbr| = 4πC2

pg−4/3P 2/3ω2
br � 1 (16)

and can be expressed in terms of the wave scale and the wind speed using an empirical parameterization
of wind–wave spectra in the form [30]

E(ω) =
∫ π

−π

E(ω, θ) dθ = βgu∗ω
−4, (17)

where u∗ is the friction velocity, g is the acceleration of gravity, and the empirical coefficient β ≈ 0.13 [8],
[31], [32]. This gives the estimate (cf. [5])

ωbr ≈ 0.9
u∗
g

. (18)

For the wind speed U10 = 15m/s (at the standard height 10m above the sea surface), break (16) occurs
for a wave length of about 20 cm, which is quite close to the conventional range of wind-driven waves. This
fact leads to the idea of relating the balance of wave–wave interactions and nonlinear dissipation to the
Phillips spectrum that holds formally in the whole range of wave scales.

3. A flux-based model of the Phillips spectrum

The formal applicability criterion for weakly nonlinear approximation (15), (16) can be satisfied by a
dissipation function that absorbs the spectral flux. A one-dimensional version of the kinetic equation in the
flux form (see, e.g., [33])

dE(ω)
dt

= −∂P

∂ω
+ Sdiss(P, ω) (19)

describes a balance of the energy spectral flux divergence (the nonlinear transfer term Snl given by (4)) and
the dissipation function Sdiss that depends on only the flux P and frequency ω. A dimensional analysis
gives the expression

Sdiss = −Ψ
(

Pω3

g2

)
P

ω
. (20)

The term P/ω has the same homogeneity properties as the nonlinear transfer term Snl (see (6)), i.e.,
realizes the general principle “like cures like.” With the same homogeneity properties (6), the dimensionless
argument of Ψ can be related to the Phillips saturation function [34] and the energy (action) spectrum. In
the isotropic case, we have

B(ω) =
μ2

d

2
=

ω6N(ω)
2g2

=
ω5E(ω)

2g2
∼

(
Pω3

g2

)1/3

, (21)
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i.e., B(ω) is proportional to the squared differential wave steepness μd. The corresponding integral

s2 = 2
∫ ω

0

B(ω)
dω

ω
(22)

is called the mean-square slope of the field of surface waves. For the Phillips spectrum, the mean-square
slope s in (22) increases logarithmically with frequency. In the Phillips model [6], B(ω) is used as an
indicator of the degree of saturation of the wave field tending to a finite limit for the spectrum ω−5. The
quantity B(ω) for (1) as a model of a fully developed sea [35] can be easily estimated (cf. Eq. (7) in [36])

lim
ω→∞

B(ω) =
αPh

2
≈ 4.05 · 10−3. (23)

A similar effect of saturation can be found in an explicit form for stationary solutions of (20) with the
power-law dependences

Ψ = a

(
Pω3

g2

)
R

. (24)

The stationary solution of (20) is not unique. The simplest solution corresponds to saturation of the
dissipation function in the whole range of wave frequencies,

Ψ = a

(
Pω3

g2

)
R

= 3 (25)

for arbitrary parameters a and R. The second solution describes a transition from a finite flux P0 as ω → 0
to a vanishingly small flux with the same limit of the dissipation function Ψ → 3 at high frequencies:

P

P0
=

(
1 +

a

3

(
P0ω

3

g2

)R )−1/R

. (26)

Solutions (25) and (26) are shown in Fig. 1 as functions of the dimensionless frequency

Ω =
(

ω3P0

g2

)
1/3

(
a

3

)
1/(3R)

. (27)

The degenerate solution Ψ = 3 given by (25) corresponds to infinitely large energy fluxes as ω → 0 (see the
solid lines in Figs. 1a and 1b). Solutions (26) for different exponents R show a transition from a finite energy
flux at low frequencies to the power-law flux decay as ω → ∞. The dissipation rate Ψ(Pω3/g2) manifests a
step-like behavior for high exponents R near a characteristic dimensionless frequency Ω = 1 (Fig. 1c). The
energy flux P in (26) with (6) taken into account can be converted into a spectral density, which also shows
a transition from the KZ solution ω−4 to the Phillips spectrum ω−5 (Fig. 1d). This transition is obviously
sharper with higher R.

Solution (26) allows relating the transition parameters to the available experimental data. For the
transition frequency, Forristall’s data [11] give the estimate ωtr = gωtr/U10 ≈ 4 to 5. For typical inverse
wave age of wind-driven waves less than 2, this implies the ratio of the transition frequency to the peak
frequency ωtr/ωp ≈ 2 to 3, which agrees well with the Hwang’s observations [37]. With the experimental
parameterization of wave spectra (17), we have [30]

P0 = 0.12
ρa

ρw

u3
∗
g

(28)

and an estimate of the unknown coefficient in dissipation function (24)

a = 3
(

0.06
ωtru∗

g

)−3R

. (29)

A nonzero R means that the dissipation in terms of fluxes is nonlinear, while Sdiss given by (20) remains
inherently nonlinear as a function of the spectral density E(ω) even for R = 0.
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R = 0.5R = 0.5
R = 1R = 1
R = 2R = 2
R = 5R = 5
PhillipsPhillips
KZKZ

a b

R = 0.5
R = 0.5 R = 1
R = 1 R = 2
R = 2 R = 5
R = 5 Phillips
Phillips KZ

c d

Fig. 1. Stationary solutions for model (20): (a, b) The dimensionless spectral flux for the solutions

with different exponents R plotted on semi-log and log–log axes. (c) Dissipation functions with

different R: Ψ = 3 for degenerate solution (25) and one corresponding to power-law dependence (26)

are shown. (d) Compensated spectra obtained with homogeneity relations (6) for spectral fluxes and

spectra taken into account. For reference, asymptotic KZ spectra (12), (13) and Phillips spectra (9)

are shown.

4. A local substitute for the dissipation function

The proposed dissipation function (20) is nonlocal because it depends on the spectral flux P given
by (14). It is therefore difficult to use in solving problems of modeling and predicting waves. In this
section, we show a way to construct a “local substitute” for the dissipation function Sdiss in the spirit of
widely used parameterizations [21]. We consider power-law distributions of the form

N(k) = b|k|−x or E(ω) = 4πbω4−2xgx−2. (30)

The energy flux for (30) can be calculated analytically [18],

P = −2πb3g3x−10

12 − 3x
ω24−6xF (x), (31)

where the dimensionless function F (x) depends only on the exponent x. For the Phillips spectrum ω−5,
the exponent x = 9/2 gives

Pω3

g2
=

F (9/2)
48π2

(
Eω5

g2

)3

. (32)
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For the saturated state, the dimensionless energy dissipation rate Ψ = 3 in (25) for the Phillips spectrum
with (21) and F (9/2) ≈ 327 [18] becomes

γE =
Sdiss

ωE
=

3P

ω2E
=

F (9/2)
16π2

B2(ω) ≈ 2.07
(

Eω5

g2

)2

. (33)

Similar estimates for the experimentally based dissipation function developed by Donelan [38] in terms of
the Phillips saturation function

Sdiss = 36ωE(k)(B(k))n (34)

with n = 2.5 (R = 0.5 in our flux representation) give 4 times lower values than the theoretical estimates
given by (33) and (21):

γE = 1.36 · 10−4 � γDonelan
E = 36 · B2.5(ω) ≈ 3.8 · 10−5. (35)

A “correction” (34) proposed by Donelan that, in his opinion, takes the effect of long waves on the short-
wave range into account [38],

Sdiss = 36ωE(k)(1 + 500 · s2)2(B(k))n (36)

changes estimate (35) dramatically because of the large multiplier (500 !!!) of the formally small value s

given by (22). The conservative estimate s2 = 0.02 [36] gives γDonelan
E ≈ 46 · 10−4, which is now more than

an order of magnitude higher than theoretical value (35).
The considered example demonstrates the previously mentioned problems of experimental estimates of

the dissipation rates, which even in the framework of a single paper [38] can yield a range of two orders of
magnitude. Moreover, we note the qualitative similarity of dependences (35) and (36) and some prognostic
parameterizations (see, e.g., [39]) with their theoretical counterparts developed here. Formulas (35) and (36)
operate exclusively with parameters of the wave field and therefore reflect an inherent physical link between
the breaking phenomenon and the intrinsic wave dynamics. The effects of wind do not appear in these
dependences explicitly.

Simple dissipation model (19) thus shows its consistency with the experimental results. The key
physical effect of saturation of dissipation (25) taken into account by empirical dependences [38] makes
the issue of the particular dependence of the function on the sea state less important. We can propose an
ansatz for the dissipation function that reflects its rather general features:

• a characteristic scale (frequency) of transition from the KZ spectrum to the Phillips spectrum associ-
ated with the dimensionless frequency Ω = 1 in (26) and (27) found experimentally at ωtr ≈ 3 to 4ωp

and

• a nonlinear dependence on dimensionless energy spectrum (33), which is responsible for the saturation
effect of the dissipation function and is expressed in terms of dimensionless energy, the differential
steepness μd given by (21), or the Phillips saturation function B(ω) given by (34).

The result can be written as
Sdiss(ω) = CPhillips ωμ4

dE(ω)Θ(ω − ωtr), (37)

where Θ is the Heaviside function determining the transition from the KZ spectrum to the Phillips spectrum.
We previously showed the correspondence between dissipation function (37) and the problem of saturation
of the Phillips spectrum [40]. An alternative version of the dissipation function was recently used in [28],
where the transition to the Phillips spectrum was provided by a threshold value for the wave steepness
μd. The choice between these two options of the KZ-to-Phillips transition can be made based on extensive
simulations, which we plan to conduct in the nearest future.
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5. Conclusions

We list our main results.

• We proposed a simple model of wind-wave dissipation. This model realizes the classic Phillips spec-
trum ω−5 as a balance of a nonlinear transfer due to wave–wave resonant interactions and a nonlinear
dissipation.

• Stationary solutions of the simple model describe a saturation of the nonlinear dissipation function for
an arbitrary dependence of the function on the dimensionless spectral flux. These solutions correspond
to a transition from the KZ spectrum ω−4 to the dissipative Phillips spectrum ω−5.

• The parameters of the transition from the KZ spectrum to the Phillips spectrum are quantitatively
consistent with experimental findings [11].

• We developed a theoretically consistent substitute for the proposed nonlinear dissipation function that
is local (in spectral scales). A comparison with the experimental nonlinear parameterization of the
dissipation function by Donelan [38] shows a qualitative agreement in the form of dependences. The
dissipation function appears to be almost linear in terms of spectral flux and heavily nonlinear (the
dependence is stronger than cubic) for the wave energy spectrum. The possibility of a quantitative
comparison is substantially complicated by the large scatter of experimental estimates.

Conflicts of interest. The authors declare no conflicts of interest.
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