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Abstract
We construct a broad class of solutions of the
Kadomtsev–Petviashvili (KP)-I equation by using
a reduced version of the Grammian form of the 𝜏-
function. The basic solution is a linear periodic chain of
lumps propagating with distinct group and wave veloc-
ities. More generally, our solutions are evolving linear
arrangements of lump chains, and can be viewed as the
KP-I analogues of the family of line-soliton solutions of
KP-II. However, the linear arrangements that we con-
struct for KP-I are more general, and allow degenerate
configurations such as parallel or superimposed lump
chains. We also construct solutions describing interac-
tions between lump chains and individual lumps, and
discuss the relationship between the solutions obtained
using the reduced and regular Grammian forms.

KEYWORDS
Grammian form, line-solitons, lump solutions, tau-function

1 INTRODUCTION

The Kadomtsev–Petviashvili equation

[𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥]𝑥 = −3𝛼2𝑢𝑦𝑦 (1)

was derived in Ref. 1 and was first mentioned by its current name in Ref. 2. The KP equation is
the subject of hundreds of research papers and several monographs.3–7 The KP-I and KP-II forms
of the equation are physically distinct and correspond to 𝛼2 = −1 and 𝛼2 = 1, respectively.
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The KP-I and KP-II equations are universal models describing weakly nonlinear waves in
media with dispersion of velocity. However, from a mathematical point of view they are quite
distinct. They have numerous physical applications, such as the theory of shallow water waves
(see, for instance, the monographs3,4) and plasma physics (Kadomtsev and Petviashvili were both
renowned plasma physicists). Both KP-I and KP-II are Hamiltonian systems. The Cauchy prob-
lem for both equations is uniquely solvable for initial data in 𝐿1 (see Refs. 8–10). However, KP-II
is completely integrable, while KP-I, in general, is not (see the Ref. 11 for the analysis of the dif-
ference between the two equations).
Both versions of the KP equation are solvable using the inverse scattering method. The KP

equation is the compatibility condition for an overdetermined linear system

𝛼Ψ𝑦 + Ψ𝑥𝑥 + 𝑢Ψ = 0, Ψ𝑡 + 4Ψ𝑥𝑥𝑥 + 6𝑢Ψ𝑥 + (3𝑢𝑥 + 3𝛼𝑤)Ψ = 0, 𝑤𝑥 + 𝑢𝑦 = 0. (2)

The Lax representation for KP was found independently by Zakharov and Shabat2 and Dryuma.12
ForKP-Iwehave𝛼 = 𝑖 andEquation (2) is a nonstationary one-dimensional Schrödinger equation
with the potential −𝑢, while 𝛼 = 1 corresponds to KP-II, and the linear problem is a heat equa-
tion with a source term. This fact alone reveals the substantial underlying difference between the
theories of KP-I and KP-II.
The KP-I equation has a rich family of rational solutions, describing the interactions of stable,

spatially localized solitons known as lumps. A lump solution of KP-I was first constructed numer-
ically by Petviashvili,13 who developed an original method for numerically constructing station-
ary solutions for a wide class of nonlinear PDEs. Lumps and their interactions were first studied
analytically in Ref. 14, and received their name in Ref. 15, where they were constructed using
the Hirota transform. Krichever16,17 showed that the dynamics of the lumps in KP-I is controlled
by the Calogero–Moser system. Lumps with distinct asymptotic velocities retain their velocities
and phases after scattering, but lumps with the same velocity undergo anomalous scattering, and
may form bound states known as multilumps.18–23 Lump and multilump solutions of KP-I were
described in the framework of the inverse scattering method in Refs. 24, 25.
Unlike the KP-I equation, KP-II is not known to have spatially localized solutions, nor does

it have nonsingular rational solutions. Instead, the KP-II equation has an interesting family of
line-soliton solutions. An individual line-soliton is a translation-invariant traveling wave. When
several line-solitons interact, they form complicated evolving polyhedral arrangements26–30 that
are described by an elaborate combinatorial theory (see Ref. 31 and themonograph4). Line-soliton
solutions also exist for KP-I but are unstable with respect to transverse perturbations; this was
shown in the original paper1 for large perturbations and in Refs. 32, 33 for all scales. For stability
of three-dimensional solitons, see Ref. 34.
The goal of this paper is to initiate a systematic study of a family of solutions of the KP-I equa-

tion, which we call lump chains. A simple lump chain (see Figure 1) consists of a sequence of
lumps evenly spaced along a line and propagating with a common velocity at an arbitrary angle
to the line. Such solutions of KP-I have been described by a number of authors,5,32,35–41 and
are also known as periodic solitons, breathers, and soliton standing waves (interpreting 𝑦 as a
time variable). Lump chains interact with one another by splitting, merging, or interlacing (see
Figures 2–8), and may also emit individual lumps (Figure 10), which can escape to infinity or
be reabsorbed by other lump chains. The large-scale structure of lump chain solutions of KP-I
resembles that of the line-soliton solutions of KP-II, however, lump chains may have degenerate
behavior that does not occur with KP-II line-solitons, such as parallel and superimposed chains.
The interaction of two lump chains (equivalently, the resonant interaction of two breathers) was



LESTER et al. 1427

F IGURE 1 Reduced lump chain of order𝑀 = 1 and rank 𝑁 = 2, given by Equation (11) with 𝜆1 = 1∕2 + 𝑖∕2

and 𝜆2 = 3∕8 − 𝑖∕4 at 𝑡 = 0. (A) 2D profile of 𝑢(𝑥, 𝑦). (B) Amplitude of 𝑢(𝑥̃, 𝑦) along the line 𝐹12 = 0

F IGURE 2 𝑁 = 3 lump chain with 𝜆1 = 1∕2 + 𝑖∕2, 𝜆2 = 3∕8 − 𝑖∕4 and 𝜆3 = 1∕4 + 𝑖∕8 at different moments
of time

previously considered in several papers (see eqs. (5) and (6) in Ref. 42, eqs. (7) and (8) in Ref. 43,
eqs. (10) and (11) in Ref. 44, and eq. (2.13) in Ref. 45). However, to the best of our knowledge, a
general framework for constructing a solution consisting of an arbitrary number of lump chains
and individual lumps has not been considered before.
We construct solutions of KP-I using the Grammian form of the 𝜏-function. This form can be

derived using a number of methods, such as the dressing method,2 Sato theory,46 and the binary
Darboux transformation,47 and is perhaps less known than the Wronskian form. The dressing

F IGURE 3 𝑁 = 3 lump chain with 𝜆1 = 1∕2 + 𝑖∕2, 𝜆2 = 3∕8 − 𝑖∕4 and 𝜆3 = 1∕4 + 𝑖∕8 at 𝑡 = 0, and with
different relative phases. (A) 𝛿12 = 0 and 𝛿13 = 0 (B) 𝛿12 = 𝜋 and 𝛿13 = 0 (C) 𝛿12 = 0 and 𝛿13 = 𝜋
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F IGURE 4 Two parallel lump chains merging into one: 𝑁 = 3, 𝜆1 = 1∕2 + 𝑖∕2, 𝜆2 = 3∕8 − 𝑖∕4 and
𝜆3 = 3∕7 + 𝑖∕8 at different moments of time. (A) 𝑡 = −15.0 (B) 𝑡 = −10.0 (C) 𝑡 = −5.0 (D) 𝑡 = 0.0 (e) 𝑡 = 10.0 (a)
𝑡 = 20.0

F IGURE 5 Quasi-periodic lump chain of order𝑀 = 1 and rank 𝑁 = 3, 𝜆1 = 1 + 𝑖∕2, 𝜆2 = 1∕4 − 𝑖∕4 and
𝜆3 =

1

8
(
√
73 − 5) +

𝑖

24
(13 −

√
73), at times 𝑡 = −20.0, 𝑡 = 0.0, and 𝑡 = 20.0. Inset in (A) shows amplitude along

the quasi-periodic lump chain

method was first used to solve the KdV equation in the pioneering paper,48 and was general-
ized and applied to the KP-II equation in Ref. 2. A more modern treatment can be found in the
papers.49–51
As we have noted, individual lump solutions of KP-I are stable, while line-solitons and lump

chains are unstable. In Ref. 32, it was shown that a line-soliton can emit a lump chain, hence the
latter should be considered as an intermediate stage of the instability development. In the long
run, a line-soliton transforms into an expanding cloud of lumps, which can be treated as a model
of integrable turbulence.

F IGURE 6 H-shaped arrangement of chains of order𝑀 = 1 and rank 𝑁 = 4, with eigenvalues
𝜆1 = 17∕32 + 𝑖∕8, 𝜆2 = 3∕8 − 𝑖∕8, 𝜆3 = 11∕32 + 𝑖∕5, 𝜆4 = 3∕32 + 𝑖∕4 and times 𝑡 = −20.0, 𝑡 = 0 and 𝑡 = 20.0
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F IGURE 7 Triangular arrangement of chains of order𝑀 = 1 and rank 𝑁 = 4, with eigenvalues 𝜆1 = 1,
𝜆2 = 1∕2 + 𝑖

√
3∕2, 𝜆3 = 1∕2 − 𝑖

√
3∕2, 𝜆4 = 1∕

√
3 − 𝑖∕(2

√
3), and times 𝑡 = −2.0, 𝑡 = −1.0, and 𝑡 = 0.0

F IGURE 8 The time evolution of a rank 2 order 4 solution with eigenvalues 𝜆11 = 1∕2 + 𝑖∕8,
𝜆12 = 3∕8 − 𝑖∕8, 𝜆13 = 1∕4 + 𝑖∕5, 𝜆14 = 1∕8 + 𝑖∕4, 𝜆21 = 4∕9 + 𝑖∕9, 𝜆22 = 3∕9 − 𝑖∕9, 𝜆23 = 2∕9 + 𝑖∕3,
𝜆24 = 1∕9 + 𝑖∕7

2 THE GRAMMIAN FORMOF THE 𝝉-FUNCTION

The purpose of this paper is to study a family of solutions of the KP-I equation that can be
constructed using the Grammian form of the 𝜏-function, which we now recall.6,32,46 Fix a pos-
itive integer 𝑀, which we call the rank of the solution. Let 𝜓𝑗 = 𝜓+

𝑗
(𝑥, 𝑦, 𝑡) for 𝑗 = 1,… ,𝑀 be a

F IGURE 10 A lump chain radiates an individual lump, which propagates away. 𝜆1 = 1∕4, 𝜆2 = 1∕2 with
multiplicities of 1 and 2, respectively
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linearly independent set of solutions to the linear system

𝑖𝜕𝑦𝜓 + 𝜕2𝑥𝜓 = 0, 𝜕𝑡𝜓 + 4𝜕3𝑥𝜓 = 0, (3)

and similarly let 𝜓−
𝑗
(𝑥, 𝑦, 𝑡) be solutions to the conjugate system

𝑖𝜕𝑦𝜓 − 𝜕2𝑥𝜓 = 0, 𝜕𝑡𝜓 + 4𝜕3𝑥𝜓 = 0.

Assume that all 𝜓±
𝑗
lie in 𝐿2((−∞, 𝑥0]) with respect to the variable 𝑥 for any 𝑥0, and let 𝑐𝑗𝑘 be an

arbitrary constant𝑀 ×𝑀-matrix. Then the function

𝑢(𝑥, 𝑦, 𝑡) = 2𝜕2𝑥 log 𝜏, 𝜏(𝑥, 𝑦, 𝑡) = det
[
𝑐𝑗𝑘 +

⟨
𝜓+
𝑗
, 𝜓−

𝑘

⟩]
,

⟨
𝜓+
𝑗
, 𝜓−

𝑘

⟩

= ∫
𝑥

−∞

𝜓+
𝑗
(𝑥′, 𝑦, 𝑡)𝜓−

𝑘
(𝑥′, 𝑦, 𝑡)𝑑𝑥′ (4)

is a solution of the KP-I equation (1). To obtain real-valued solutions, we let 𝑐𝑗𝑘 be real-valued,
and we set 𝜓−

𝑗
= 𝜓𝑗 .

It is customary to choose 𝑐𝑗𝑘 = 𝛿𝑗𝑘 to ensure that the solution (4) is nonsingular; we call solu-
tions of KP-I obtained in this way regular. In this paper, however, we are more interested in the
case 𝑐𝑗𝑘 = 0; we call such solutions reduced. We note that if the solutions 𝜓𝑗 are linearly indepen-
dent, then the reduced 𝜏-function (4) is the determinant of a Grammatrix, and hence the solution
is nonsingular. We discuss the relationship between regular and reduced solutions of KP-I in Sec-
tion 4, for nowwe note that the latter can be obtained from the former by setting𝜓+

𝑗
= 𝐶𝜓𝑗 , where

𝐶 is a real constant, and taking the limit 𝐶 → +∞. It would also be interesting to consider solu-
tions where thematrix 𝑐𝑗𝑘 is nonzero but does not havemaximal rank, however this is beyond the
scope of our paper.
In this paper, we restrict our attention to functions 𝜓𝑗 with finite spectral support. Fix a positive

integer𝑁, called the order of the solution, and fix distinct eigenvalues 𝜆1, … , 𝜆𝑁 with positive real
parts. Denote

𝜙(𝑥, 𝑦, 𝑡, 𝜆) = 𝜆𝑥 + 𝑖𝜆2𝑦 − 4𝜆3𝑡,

and let 𝑝𝑠(𝑥, 𝑦, 𝑡, 𝜆) denote the polynomial (homogeneous of degree 𝑠 in 𝑥, 𝑦, and 𝑡) defined by

𝑝𝑠(𝑥, 𝑦, 𝑡, 𝜆) = 𝑒−𝜙(𝑥,𝑦,𝑡,𝜆)𝜕𝑠
𝜆
𝑒𝜙(𝑥,𝑦,𝑡,𝜆),

so that, for example,

𝑝0 = 1, 𝑝1 = 𝑥 + 2𝑖𝜆𝑦 − 12𝜆2𝑡, 𝑝2 = 𝑝2
1
+ 2𝑖𝑦 − 24𝜆𝑡, …

Any function of the form 𝜕𝑠
𝜆
𝑒𝜙 = 𝑝𝑠𝑒

𝜙 is a solution of (3).
We now consider solutions of KP-I given by the tau-function (4), where the eigenfunctions 𝜓𝑗

are given by (see eqs. (3.3.13) and (3.3.18) in Ref. 47)

𝜓𝑗(𝑥, 𝑦, 𝑡) =

𝑁∑
𝑛=1

𝑆∑
𝑠=0

𝐶𝑗𝑛𝑠𝑝𝑠(𝑥, 𝑦, 𝑡, 𝜆𝑗𝑛)𝑒
𝜙(𝑥,𝑦,𝑡,𝜆𝑗𝑛). (5)
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The highest degree 𝑆 of a polynomial 𝑝𝑠 that occurs in any of the 𝜓𝑗 is called the depth of the
solution. The complex constants 𝐶𝑗𝑛𝑠 are required to satisfy a nondegeneracy condition to ensure
that the functions 𝜓𝑗 are linearly independent. We do not spell out this condition, and instead
verify it in each particular example.
An exhaustive classification of the solutions of KP-I obtained in this manner is far beyond the

scope of this paper. Instead, our goal is to describe several interesting families of solutions that
illuminate the behavior of the generic solution.

1. Line-solitons. The simplest solution of KP-I, called a line-soliton, is the regular solution
obtained from (4) and (5) for 𝑀 = 1, 𝑁 = 1, and 𝑆 = 0, in other words by setting 𝜓(𝑥, 𝑦, 𝑡) =
𝐶𝑒𝜙(𝑥,𝑦,𝑡,𝜆). This solution is a translation-invariant traveling wave, and a similar solution exists
for KP-II. However, unlike the KP-II case, a line-soliton solution of KP-I is unstable (see Refs.
32, 33).

2. Rational solutions: lumps and multilumps. A distinguishing feature of the KP-I equation is the
existence of rational, spatially localized solutions, which are not known for KP-II. Consider
the solution of KP-I given by (4) and (5), where each function 𝜓𝑗 is a polynomial multiple of a
single exponential 𝑒𝜙(𝑥,𝑦,𝑡,𝜆𝑗) (the eigenvalues 𝜆𝑗 corresponding to the𝜓𝑗may ormay not be dis-
tinct). In this case the integral ⟨𝜓+

𝑗
, 𝜓−

𝑘
⟩ occurring in (4) is a polynomialmultiple of 𝑒(𝜆𝑗+𝜆𝑘)𝑥. In

the regular case (when 𝑐𝑗𝑘 = 𝛿𝑗𝑘), the 𝜏-function is a sum of distinct exponentials. However, in
the reduced case (when 𝑐𝑗𝑘 = 0), the 𝜏-function is a polynomial multiple of a single exponen-
tial term exp

∑
(𝜆𝑗 + 𝜆𝑗)𝑥, and the exponential disappears when taking the second logarithmic

derivative. Therefore, the corresponding solution 𝑢 is a rational function of 𝑥, 𝑦, and 𝑡. These
are the so-called lump andmultilump solutions of KP-I. Corresponding to each distinct eigen-
value 𝜆𝑗 there is a lump, or, more generally, a collection of lumps, whose number is related
to the depth 𝑆. The lumps in each collection are either bounded or undergo anomalous scat-
tering, while the collections of lumps corresponding to different 𝜆𝑗 undergo normal scattering
without phase shifts. Multilump solutions of KP-I were obtained in a number of papers (see,
for example, Refs. 16–23). Themost general Grammian form of themultilump solutions of KP-I
was considered in Ref. 52.

3. Lump chains. In this paper, we are mostly concerned with reduced solutions of depth 𝑆 = 0, in
other words when each function 𝜓𝑗 is a linear combination of exponentials. For the solution
to be nonsingular, we require𝑁 ≥ 𝑀. As we will see, the corresponding reduced solution 𝑢 of
KP-I is an arrangement of lump chains, which are sequences of lumps moving along parallel
trajectories (the group velocity of the chain is in general distinct from the velocity of the indi-
vidual lumps). The time evolution of the underlying linear arrangement supporting the lumps
is very similar to that of the line-soliton solutions of KP-II (see Ref. 4). However, the linear
arrangements that can occur for lump chains aremore general than those ofKP-II line-solitons,
and allow for various degenerate configurations such as parallel or superimposed lump chains.
The regular solution of KP-I of depth 𝑆 = 0 and rank𝑀 = 1 consists of a linear arrangement
of lump chains interacting with a single line-soliton of KP-I. We give a detailed description of
certain families of reduced lump chain solutions in Section 3, and we give a single example of
a regular solution of depth 𝑆 = 0 in Section 4.

4. Lumps and lump chains. In Section 4, we also construct an example of a reduced solution of
depth 𝑆 > 0 that is not rational. The solution consists of a chain of lumps that emits, at a certain
moment of time, a single lump, which propagates away from the chain. We conjecture that
the general reduced solution of KP-I with depth 𝑆 > 0 consists of an arrangement of lump
chains, with an additional number of individual lumps being either emitted or reabsorbed by
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the chains. The general regular solution consists of such an arrangement, and additional line-
solitons.

3 LUMP CHAINS: REDUCED SOLUTIONS OF DEPTH 𝑺 = 𝟎

In this section, we consider solutions of KP-I given by (4) that are reduced (𝑐𝑗𝑘 = 0), and where
the auxiliary 𝜓-functions are given by (5) with depth 𝑆 = 0, in other words are sums of pure expo-
nential terms with no polynomial multiples. Wemostly focus on solutions of rank𝑀 = 1, in other
words having the form

𝑢(𝑥, 𝑦, 𝑡) = 2𝜕2𝑥 log 𝜏, 𝜏(𝑥, 𝑦, 𝑡) = ∫
𝑥

−∞

|𝜓(𝑧, 𝑡, 𝑦)|2 𝑑𝑧, (6)

where the 𝜓-function is a sum of 𝑁 ≥ 2 exponentials (the solution is trivial when 𝑁 = 1). We
will see that such a solution is an arrangement of linear lump chains, with the individual lumps
moving with constant velocity along the chains, and the entire assembly evolving with time. Such
lump chain solutions of KP-I bear a strong resemblance to the well-known line-soliton solutions
of KP-II, which are the subject of an elaborate combinatorial theory (see Ref. 4).
The 𝜓-function defining a lump chain solution of rank 𝑀 = 1 and order 𝑁 ≥ 2 is defined by

2𝑁 complex parameters. It is convenient to introduce them as follows. Let

𝜆𝑛 = 𝑎𝑛 + 𝑖𝑏𝑛, 𝜃𝑛 = 𝜌𝑛 + 𝑖𝜑𝑛, 𝑛 = 1,… ,𝑁,

be complex constants, where we assume that 𝑎𝑛 > 0 and that 𝜆𝑛 ≠ 𝜆𝑚 for 𝑛 ≠ 𝑚. Define the func-
tions

Φ𝑛(𝑥, 𝑦, 𝑡) = 𝜆𝑛𝑥 + 𝑖𝜆2𝑛𝑦 − 4𝜆3𝑛𝑡 + 𝜃𝑛,

then the function

𝜓(𝑥, 𝑦, 𝑡) =

𝑁∑
𝑛=1

√
2𝑎𝑛𝑒

Φ𝑛(𝑥,𝑦,𝑡)

satisfies the linear system (3). Plugging 𝜓 into (6), we obtain the following formula for the 𝜏-
function:

𝜏(𝑥, 𝑦, 𝑡) =

𝑁∑
𝑛=1

𝑒2𝐹𝑛 +

𝑁−1∑
𝑛=1

𝑁∑
𝑚=𝑛+1

2𝜇𝑛𝑚𝑒
𝐹𝑛+𝐹𝑚 cos(𝐺𝑛 − 𝐺𝑚 − 𝜑𝑛𝑚), (7)

where we have denoted

𝐹𝑛(𝑥, 𝑦, 𝑡) = ReΦ𝑛(𝑥, 𝑦, 𝑡), 𝐺𝑛(𝑥, 𝑦, 𝑡) = ImΦ𝑛(𝑥, 𝑦, 𝑡),

and the constants 𝜇𝑛𝑚 and 𝜑𝑛𝑚 are given by

𝜇𝑛𝑚 = 2

√
𝑎𝑛𝑎𝑚

(𝑎𝑛 + 𝑎𝑚)2 + (𝑏𝑛 − 𝑏𝑚)2
, 𝜑𝑛𝑚 = tan−1

(
𝑏𝑛 − 𝑏𝑚
𝑎𝑛 + 𝑎𝑚

)
.
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We first observe that the large-scale structure of the solution (6) given by the 𝜏-function (7) is
determined by the relative values of the linear functions 𝐹𝑛(𝑥, 𝑦, 𝑡). Fix a moment of time 𝑡, and
consider the following sets:

Δ𝑛 = Δ𝑛(𝑡) = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝐹𝑛(𝑥, 𝑦, 𝑡) ≥ 𝐹𝑚(𝑥, 𝑦, 𝑡) for all𝑚 ≠ 𝑛}, 𝑛 = 1,… ,𝑁. (8)

The regions Δ1(𝑡), … , Δ𝑁(𝑡) form a partition of the (𝑥, 𝑦)-plane into finitely many polygons (some
of the Δ𝑛(𝑡)may be finite or empty for some or all values of 𝑡). The partition evolves linearly with
𝑡, and some of the Δ𝑛(𝑡)may appear and disappear.
We claim that the solution (6) determined by the 𝜏-function (7) is exponentially small in the

interiors of the Δ𝑛, and is therefore supported on the union of narrow strips along the boundaries
where two of the Δ𝑛 meet. Indeed, elementary linear algebra shows that there exists a constant
𝑐 > 0with the following property: for all 𝑛, if (𝑥, 𝑦) is a point in Δ𝑛(𝑡) located at a distance 𝑑 from
the boundary of Δ𝑛(𝑡) (in other words, at a distance of at least 𝑑 from all other Δ𝑚(𝑡)), then

𝐹𝑛(𝑥, 𝑦, 𝑡) − 𝐹𝑚(𝑥, 𝑦, 𝑡) ≥ 𝑐𝑑 for all𝑚 ≠ 𝑛.

It follows that near such a point (𝑥, 𝑦) the exponential term 𝑒2𝐹𝑛 in the 𝜏-function (7) is dominant,
in other words

𝜏(𝑥, 𝑦, 𝑡) = 𝑒2𝐹𝑛(1 + 𝑓(𝑥, 𝑦, 𝑡)), |𝑓| < 𝐶𝑒−𝑐𝑑.

The term 𝑒2𝐹𝑛 disappears when taking the second logarithmic derivative, hence the solution
𝑢(𝑥, 𝑦, 𝑡) is exponentially small near (𝑥, 𝑦).
For future use, we introduce the following notation:

𝐹𝑛 − 𝐹𝑚 = 𝐴𝑛𝑚𝑥 + 𝐵𝑛𝑚𝑦 + 𝐶𝑛𝑚𝑡 + 𝐷𝑛𝑚, 𝐺𝑛 − 𝐺𝑚 − 𝜑𝑛𝑚 = 𝛼𝑛𝑚𝑥 + 𝛽𝑛𝑚𝑦 + 𝛾𝑛𝑚𝑡 + 𝛿𝑛𝑚,

where the constants are given by the following formulas:

𝐴𝑛𝑚 = 𝑎𝑛 − 𝑎𝑚, 𝐵𝑛𝑚 = 2(𝑎𝑚𝑏𝑚 − 𝑎𝑛𝑏𝑛), 𝐶𝑛𝑚 = −4
(
𝑎3𝑛 − 𝑎3𝑚

)
+ 12

(
𝑎𝑛𝑏

2
𝑛 − 𝑎𝑚𝑏

2
𝑚

)
, (9)

and

𝛼𝑛𝑚 = 𝑏𝑛 − 𝑏𝑚, 𝛽𝑛𝑚 = 𝑎2𝑛 − 𝑎2𝑚 − 𝑏2𝑛 + 𝑏2𝑚, 𝛾𝑛𝑚 = 4
(
𝑏3𝑛 − 𝑏3𝑚

)
− 12

(
𝑎2𝑛𝑏𝑛 − 𝑎2𝑚𝑏𝑚

)
. (10)

The phases 𝐷𝑛𝑚 and 𝛾𝑛𝑚 play an auxiliary role and we will not require their precise formulas.
We now describe the structure of the corresponding solution 𝑢(𝑥, 𝑦, 𝑡) for 𝑁 ≥ 2. We note that

adding a common complex constant to the 𝜃𝑛 multiplies 𝜏 by a real constant, and hence does not
change 𝑢, therefore the solution is in fact determined by 2𝑁 − 1 complex parameters.

3.1 Lump chain of rank𝑴 = 𝟏 and order𝑵 = 𝟐

The solution of KP-I with 𝜏-function (7) of rank 𝑀 = 1 and order 𝑁 = 2 is the basic building
block for solutions of order𝑁 ≥ 3, so we study it in detail. This solution is a linear traveling wave
consisting of an infinite chain of lumps, and is analogous to the simple line-soliton solution of
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KP-II. In the 𝑁 = 2 case, the 𝜏-function (7) can be simplified by factoring out the exponential
term 𝑒𝐹1+𝐹2 . The corresponding solution of KP-I is given by

𝑢(𝑥, 𝑦, 𝑡) = 2
𝜕2

𝜕𝑥2
log[cosh(𝐹2 − 𝐹1) + 𝜇12 cos(𝐺2 − 𝐺1 − 𝜑21)]. (11)

The regions Δ1 and Δ2 (8) are complementary half-planes separated by the line 𝐹1 = 𝐹2, and the
solution is supported on a narrow strip along this linewhere the argument of the hyperbolic cosine
is small. The vector

𝐔21 = (𝐴21, 𝐵21) = (𝑎2 − 𝑎1, 2𝑎1𝑏1 − 2𝑎2𝑏2)

is a normal direction vector for the line 𝐹1 = 𝐹2, and it is clear that the direction of the line may
be arbitrary. In particular, the line is parallel to the 𝑥-axis if 𝑎1 = 𝑎2, which cannot happen for a
line-soliton of KP-II.
The solution itself is a traveling wave 𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝑥 − 𝑋𝑡, 𝑦 − 𝑌𝑡), where the function𝑈 sat-

isfies the Boussinesq equation. The velocity vector (𝑋, 𝑌) is given by the formulas

𝑋 =
𝐵21𝛾21 − 𝐶21𝛽21
𝐴21𝛽21 − 𝐵21𝛼21

= 4
𝑎3
1
+ 𝑎3

2
+ 2𝑎1𝑎2(𝑎1 + 𝑎2) + 𝑎2𝑏2(2𝑏1 + 𝑏2) + 𝑎1𝑏1(𝑏1 + 2𝑏2)

𝑎1 + 𝑎2
,

𝑌 =
𝐶21𝛼21 − 𝐴21𝛾21
𝐴21𝛽21 − 𝐵21𝛼21

= 4
𝑎1(2𝑏1 + 𝑏2) + 𝑎2(𝑏1 + 2𝑏2)

𝑎1 + 𝑎2
,

and may form an arbitrary angle to the normal vector 𝐔21 (note that we have assumed that all
𝑎𝑛 > 0, which implies that the denominators do not vanish). The line 𝐹1 = 𝐹2 supporting the
solution propagates with normal velocity vector

𝐕21 = −
𝐶21

𝐴2
21
+ 𝐵2

21

(𝐴21, 𝐵21), (12)

which is in general distinct from the velocity vector (𝑋, 𝑌) of the solution itself. Furthermore, the
line is stationary if𝐶21 = 0, which also cannot happen for a KP-II line-soliton. Note, however, that
𝐕21 ≠ 𝟎 if the line 𝐹1 = 𝐹2 is vertical.
Along the line 𝐹1 = 𝐹2, the phase of the solution (11) is determined by the argument of the

cosine function. The solution is periodic along the line (see Figure 1), and consists of a sequence
of lumps each propagating with velocity vector (𝑋, 𝑌) (in fact, Zaitsev showed in Ref. 40 that
this solution can be obtained by a nonlinear superposition of lumps). The distance between two
consecutive lumps is equal to (see eq. (2.11) in Ref. 45)

𝐿21 = 2𝜋

√
𝐴2
21
+ 𝐵2

21

𝐴21𝛽21 − 𝐵21𝛼21
= 2𝜋

√
(𝑎1 − 𝑎2)2 + 4(𝑎1𝑏1 − 𝑎2𝑏2)2

(𝑎1 + 𝑎2)((𝑎1 − 𝑎2)2 + (𝑏1 − 𝑏2)2)
. (13)

To see that the individual peaks are indeed KP-I lumps, we note that the distance 𝐿21 between two
consecutive lumps diverges as 𝜆2 → 𝜆1. Setting

𝑎1 = 𝑎 − 𝜀, 𝑏1 = 𝑏 − 𝜀𝜇, 𝑎2 = 𝑎 + 𝜀, 𝑏2 = 𝑏 + 𝜀𝜇, 𝜃1 = 𝜃2 = 0,
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in the 𝜀 → 0 limit we obtain (for arbitrary 𝜇) the standard lump solution of KP-I (see Refs. 14, 15,
37 and other papers):

𝑢(𝑥, 𝑦, 𝑡) = 2
𝜕2

𝜕𝑥2
log[1 + 576𝑎6𝑡2 + 16𝑎4(72𝑏2𝑡2 − 12𝑏𝑡𝑦 − 6𝑡𝑥 + 𝑦2) + 4𝑎2(12𝑏2𝑡 − 2𝑏𝑦 + 𝑥)2].

(14)
The KP-I equation has infinitely many integrals of motion, the simplest being ∫ ∞

−∞
𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥

(in general, this integral is a linear function of 𝑦, but for our solutions it is in fact constant). It is
easy to verify that for a lump chain of order 𝑁 = 2 we have

1

4 ∫
∞

−∞

𝑢(𝑥, 𝑦, 𝑡) 𝑑𝑥 = 𝐴21.

We call the quantity 𝐴21 the flux of the lump chain.
We note that the integral ∫ ∞

−∞
𝑢(𝑥, 𝑦, 𝑡) 𝑑𝑥 is equal to zero for a one-lump solution (14), because

𝑢(𝑥, 𝑦) is the 𝑥-derivative of a rational function that vanishes at infinity. This agrees with the
limiting procedure, because𝐴21 → 0 as 𝜆2 → 𝜆1. However, for the one-lump solution𝑢(𝑥, 𝑦) given
by (14) the integral over the entire plane is nonzero:

∫
ℝ2

𝑢(𝑥, 𝑦) 𝑑𝑥 ∧ 𝑑𝑦 =
4𝜋

𝑎
> 0.

There is no contradiction here, because 𝑢(𝑥, 𝑦) does not vanish sufficiently rapidly as 𝑥2 + 𝑦2 →

∞, and this improper integral cannot be evaluated using Fubini’s theorem.
It has already been observed by a number of authors that a linear chain of lumps can occur as

part of a solution of theKP-I equation. A chain of lumps appears in Ref. 41, and formula (11) occurs
in Ref. 5 (see p. 74), but is not analyzed in detail. In Ref. 32, chains of lumps parallel to the 𝑦-axis
are shown to result from the decay of an unstable line-soliton. Zaitsev40 developed a procedure
for constructing stationary wave solutions of integrable systems out of spatially localized solitons,
and constructed a lump chain for KP-I in this manner. Burtsev showed in Ref. 35 that a lump
chain is unstable with respect to transverse perturbations, as is the case for a line-soliton. The
development of the instability of the lump chain was studied in Ref. 32.

3.2 Lump chains of rank𝑴 = 𝟏 and order𝑵 = 𝟑

We now consider the reduced solutions 𝑢(𝑥, 𝑦, 𝑡) of KP-I with 𝜏-function given by (7) in the case
𝑁 = 3. As we see, a generic solution of this form consists of three lump chains meeting at a triple
point, and a number of degenerate configurations are also possible. Such solutions, interpreted as
resonant interactions of breathers, were observed in Refs.42–44, and a pair of merging lump chains
was obtained in Ref. 45 (see Figure 3).
The solution is supported on the commonboundaries of the three regionsΔ1,Δ2, andΔ3 defined

in (8). The boundary Δ𝑛 ∩ Δ𝑚 lies on the line 𝐹𝑛 = 𝐹𝑚 for 𝑛,𝑚 = 1, 2, 3, and the normal vectors
to these lines are given by

𝐔𝑛𝑚 = (𝐴𝑛𝑚, 𝐵𝑛𝑚) = (𝑎𝑛 − 𝑎𝑚, 2𝑎𝑚𝑏𝑚 − 2𝑎𝑛𝑏𝑛).
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The three normal vectors satisfy𝐔31 = 𝐔21 + 𝐔32, and hence are either collinear or pairwise lin-
early independent. The collinearity is controlled by the quantity

𝜂123 = 𝐴21𝐵31 − 𝐴31𝐵21 = 𝑎1𝑏1(𝑎2 − 𝑎3) + 𝑎2𝑏2(𝑎3 − 𝑎1) + 𝑎3𝑏3(𝑎1 − 𝑎2). (15)

For generic values of 𝜆1, 𝜆2, and 𝜆3 we have 𝜂123 ≠ 0, and no two of the three vectors 𝐔𝑚𝑛 are
collinear. The three lines 𝐹𝑚 = 𝐹𝑛 for𝑚, 𝑛 = 1, 2, 3 intersect at the triple point where 𝐹1 = 𝐹2 =

𝐹3, and the three regions Δ1, Δ2, and Δ3 are sectors with common vertex at the triple point.
We claim that along the common boundary of any two sectors, the solution is exponentially

close to the order𝑁 = 2 lump chain solution given by (11). Consider, for example, the ray Δ1 ∩ Δ2
lying on the line 𝐹1 = 𝐹2. Along this ray we have 𝐹1 = 𝐹2 ≥ 𝐹3. Because the functions 𝐹𝑛 are
linear, it is clear that there is a constant 𝑐 > 0 such that for any point on this ray we in fact have
𝐹1 − 𝐹3 = 𝐹2 − 𝐹3 ≥ 𝑐𝑑, where 𝑑 is the distance to the triple point. The 𝜏-function (7) for 𝑁 = 3

consists of six terms: three terms whose exponentials do not involve 𝐹3 and whose sum is the
𝑁 = 2 𝜏-function (7), and three terms that are multiples of 𝑒𝐹3 . Factoring out 𝑒𝐹1+𝐹2 as in the
𝑁 = 2 case, we see that the 𝑁 = 3 𝜏-function is equal to

𝜏 = 𝑒𝐹1+𝐹2[cosh(𝐹2 − 𝐹1) + 𝜇12 cos(𝐺2 − 𝐺1 − 𝜑21) + 𝑓],

where |𝑓| ≤ 𝑒−𝑐𝑑 along the ray Δ1 ∩ Δ2. It follows that the 𝑁 = 3 solution is exponentially close
to the 𝑁 = 2 lump chain (11) along this ray.
We see that when 𝜂123 ≠ 0 the 𝑁 = 3 solution consists of three lump chains meeting at the

triple point. Each chain lies on a ray supported on a line 𝐹𝑛 = 𝐹𝑚, and we call this the [𝑛,𝑚]-
chain. Depending on the values of the spectral parameters, there are two possibilities. In the first,
shown on Figure 2, the [2,1]- and [3,2]-lump chains meet at the triple point. The individual lumps
from the two chains interlace one by one and form the new [3,1]-chain. Conversely, the lumps on
the [3,1]-chain may split at the triple point into two new chains. In either case, individual lumps
are preserved, and the fluxes of the three chains satisfy the local conservation law𝐴31 = 𝐴21 + 𝐴32

(see eq. (12) in Ref. 42). In addition to the orientation of the chains, the position of the triple point,
and the velocities of the lumps along the chains, there are two free parameters that determine the
solution, namely, the relative phases 𝛿𝑚𝑛 = Im(𝜃𝑚 − 𝜃𝑛). Figure 3 shows the solution for three
different sets of values of the relative chain phases.
There are additionally a number of degenerate configurations, corresponding to 𝜂123 = 0. In

this case the three vectors 𝐔21, 𝐔31, and 𝐔32 are collinear, and hence so are the lines 𝐹𝑛 = 𝐹𝑚.
Depending on the values of the 𝜆𝑛, there are two possibilities for a fixed value of 𝑡. It may happen
that all three regions Δ1, Δ2, and Δ3 are nonempty, in which case two of them are half-planes (say
Δ1 and Δ3) and the third is a strip of finite width. The solution then consists of two infinite [2,1]-
and [3,2]-lump chains supported on the lines Δ1 ∩ Δ2 = {𝐹1 = 𝐹2} and Δ2 ∩ Δ3 = {𝐹2 = 𝐹3}. It is
also possible that one of the regions (say Δ2) is empty, so that 𝐹2 ≤ max(𝐹1, 𝐹3) everywhere on
the (𝑥, 𝑦)-plane. The solution is then supported near the line 𝐹1 = 𝐹3, and is generically a simple
[3,1]-lump chain (but see below).
If we now turn on time, then for generic values of 𝜆𝑛 satisfying 𝜂123 = 0 the intermediate region

Δ2 either disappears or appears at a finitemoment of time. In the former case, the solution consists
of two parallel [2,1]- and [3,2]-chains merging into the [3,1]-chain, as shown on Figure 4. The
opposite case is also possible: a single [3,1]-chain may, at a certain moment of time, split into two
lump chains, both parallel to the original chain. A similar splitting process was observed in32 (see
also fig. 3 in Ref. 45).
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Imposing the condition𝐴21𝐶31 − 𝐴31𝐶21 = 0 in addition to 𝜂123 = 0, we obtain a further degen-
eration: the three lines 𝐹𝑛 = 𝐹𝑛 that can support the chains move are not only parallel, but move
with equal velocity. Depending on the values of the phases, the intermediate regionΔ2 either exists
for all 𝑡 (and has constant width) or is empty for all 𝑡. The solution consists either of two parallel
lump chains propagating at a fixed distance, or of a single lump chain (in the latter case, the solu-
tion may be visually indistinguishable from a lump chain of order𝑁 = 2 if the linear function 𝐹2
is sufficiently small compared to 𝐹1 and 𝐹3).
Finally, it is possible that the three lines𝐹𝑛 = 𝐹𝑚 are the same for all values of 𝑡. The three lump

chains merge into a complex, periodic or quasi-periodic chain supported along the common line,
which propagates linearly (see Figure 5).

3.3 Lump chains of rank𝑴 = 𝟏 and order𝑵 ≥ 𝟒

We now discuss the general form of the solution (7) for arbitrary 𝑁, which is determined by
the spectral parameters 𝜆𝑛. As discussed before, the linear functions 𝐹𝑛 determine a polygonal
partition Δ𝑛 (see (8)) of the (𝑥, 𝑦)-plane. The boundaries 𝐹𝑚 = 𝐹𝑛 that determine the partition
evolve linearly with time, and finite polygonal regions may appear or disappear. Along a bound-
aryΔ𝑛 ∩ Δ𝑚, we have 𝐹𝑚 = 𝐹𝑛 ≥ 𝐹𝑘 for 𝑘 ≠ 𝑛,𝑚. The 𝜏-function has three dominant exponential
terms (involving 𝑒2𝐹𝑚 , 𝑒𝐹𝑚+𝐹𝑛 , and 𝑒2𝐹𝑛 ) and can be approximated with exponential accuracy by
the 𝑁 = 2 𝜏-function, and hence the boundary Δ𝑛 ∩ Δ𝑚 supports an [𝑛,𝑚]-lump chain. At the
points where three or more of the boundaries Δ𝑛 ∩ Δ𝑚 meet, the corresponding lump chains join
or split, with the individual lumps interlacing, and the flux𝐴𝑚𝑛 is locally conserved. The structure
of the lump chains closely resembles the arrangement of line-solitons in KP-II (see Refs. 4, 26).
We do not develop a general theory describing the line structure of the solutions. Instead, we

give two generic examples of order𝑁 = 4, and discuss the possible degenerate behavior. The first
example, shown on Figure 6, may be called an 𝐻-configuration. It consists two triple points that
are separated by a lump chain bridge. The bridge contracts and disappears at 𝑡 = 0, and the triple
points scatter along a different bridge. A similar configuration appears in the KP-II equation (see
Refs. 4, 26).
The second example, shown on Figure 7, has three triple points bounding a finite triangular

region. The region shrinks and disappears at 𝑡 = 0, and the solution henceforth resembles a solu-
tion of order𝑁 = 3. This configuration can be reversed in time, with a triangular region appearing
out of a triple point. We stress that both these examples are generic, in other words the structure
of the lump chains does not change under small perturbations of the 𝜆𝑛.
The reader may recognize that the structure of lump chain solutions of KP-I is very similar to

the structure of line-soliton solutions of KP-II.We point out that the line structure in the KP-I case
may in fact be more complex. Specifically, the following kinds of behavior, all of them forbidden
for KP-II line-solitons, can occur for KP-I lump chains of rank𝑀 = 1 and order 𝑁.

3.3.1 Generic solutions: The number of chains at infinity and forbidden
configurations

We first consider the casewhen the eigenvalues 𝜆𝑛 are sufficiently generic. A natural first question
is to determine the linear configurations of chains that may occur, in particular, the number of
lump chains extending to infinity. Anorder𝑁 line-soliton ofKP-II always has𝑁 solitons extending



1438 LESTER et al.

to infinity, but a generic order 𝑁 solution of KP-I may have anywhere between 3 and 𝑁 infinite
lump chains. Similarly, certain configurations of lines are forbidden for KP-II line-solitons but
may occur for KP-I lump chain solutions. For example, the solution given on Figure 7 has 𝑁 =

4 and three infinite chains, and represents a line arrangement that cannot occur in KP-II (see
Exercise 4.6 in Ref. 4).

3.3.2 Degenerate solutions: Stable points, parallel chains, and higher order
chains

Various degenerate configurations may be achieved by imposing appropriate conditions on the
eigenvalues 𝜆𝑛. The triple points where lump chains meet may be stationary relative to one
another, and may even coincide for all times, producing stable quadruple points and points of
higher multiplicity. A solution may have sets of parallel lump chains, in which case the number
of chains at infinity may be greater than the order𝑁. Finally, lump chains may coincide, produc-
ing quasiperiodic chains of higher order.

3.4 Lump chains of rank𝑴 ≥ 𝟐

The structure of reduced solutions of KP-I of depth 𝑆 = 0 and higher rank𝑀 ≥ 2 is broadly sim-
ilar to the𝑀 = 1 case. The 𝜏-function (4) is a sum of purely exponential terms and mixed terms
involving trigonometric multipliers. For a given moment of time 𝑡, the (𝑥, 𝑦)-plane is partitioned
into finitely many polygons, in the interior of which the 𝜏-function has a single dominant expo-
nential term and hence produces an exponentially small solution. This decomposition evolves
linearly with time, and finite polygonal regions may appear and disappear. The boundaries of the
polygons support lump chains, and the total flux of the lump chains arriving at a given vertex
is equal to the flux of the chains that are leaving. In degenerate cases, there may be coinciding
polygonal boundaries supporting quasiperiodic superpositions of lump chains. We give a single
example of such a solution with rank𝑀 = 2 and order 𝑁 = 4 in Figure 8.

4 REGULAR SOLUTIONS AND SOLUTIONS OF DEPTH 𝑺 > 𝟎:
LINE-SOLITONS AND INDIVIDUAL LUMPS

We now discuss the relationship between regular and reduced solutions of depth 𝑆 = 0, and solu-
tions of positive depth.We first consider regular solutions, and for simplicity restrict our attention
to rank 𝑁 = 1. The 𝜏-function of such a solution is nearly identical to that of the reduced solu-
tion (7), and has the form

𝜏(𝑥, 𝑦, 𝑡) = 1 +

𝑁∑
𝑛=1

𝑒2𝐹𝑛 +

𝑁−1∑
𝑛=1

𝑁∑
𝑚=𝑛+1

2𝜇𝑛𝑚𝑒
𝐹𝑛+𝐹𝑚 cos(𝐺𝑛 − 𝐺𝑚 − 𝜑𝑛𝑚). (16)

As before, the (𝑥, 𝑦)-plane is partitioned into polygonal regions Δ1,… , Δ𝑁 in each of which one of
the terms 𝑒2𝐹𝑛 in (16) is dominant. However, there is now a new regionΔ0, on which the dominant
term in the 𝜏-function is the constant 1. Because 𝑎𝑛 = Re 𝜆𝑛 > 0, this region contains, for a given
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F IGURE 9 Regular solution of rank𝑀 = 1 and order 𝑁 = 3, with eigenvalues 𝜆1 = 1∕2 + 𝑖∕2,
𝜆2 = 3∕8 − 𝑖∕4, and 𝜆3 = 1∕4 + 𝑖∕8, at different moments of time

fixed 𝑦, all points (𝑥, 𝑦) with sufficiently large negative 𝑥. Inside this region the 𝜏-function is
approximately constant, and the solution 𝑢 is exponentially small. At the boundary of this region,
the two dominant terms in the 𝜏-function are the 1 and one of the exponentials 𝑒2𝐹𝑛 . Hence the
boundary of the region where 1 dominates is a line-soliton of KP-I, instead of a lump chain. In
other words, the solution consists of an infinite line-soliton of KP-I coupled with an arrangement
of lump chains (see Figure 9).
It is possible to degenerate a regular solution to a reduced solution by replacing the 1 in Equa-

tion (16)with an 𝜀 and taking the limit 𝜀 → 0. The line-soliton occurs on the boundary of the region
where the 𝜀 is the dominant term, and this region moves in the negative 𝑥-direction as 𝜀 → 0. In
the limit, the line-soliton disappears to infinity, and we are left with a solution consisting entirely
of lump chains. Therefore, the limiting procedure that produces reduced solutions out of regular
solutions has the effect of removing the line-soliton and isolating the lump chain structure.
We also briefly consider the structure of reduced solutions of depth 𝑆 > 0. Consider again the

general form of the 𝜏-function (4), where 𝑐𝑗𝑘 = 0 and the 𝜓𝑗 are given by (5). As discussed in Sec-
tion 2, the 𝜏-function is rational if each 𝜓𝑗 is a polynomial multiple of a single exponential term
𝑒𝜙(𝑥,𝑦,𝑡,𝜆𝑗). The corresponding solution is localized in the (𝑥, 𝑦)-plane and represents the normal (if
all 𝜆𝑗 are distinct) or anomalous scattering of lumps, or even bound states of lumps. We now con-
sider what happens in general, when each 𝜓𝑗 is a multiple of several exponentials. For sufficiently
large 𝑥 and 𝑦, the polynomial terms are negligible compared to the exponentials, and the 𝜓𝑗 can
be assumed to be purely exponential. Hence the solution can be assumed to have depth 𝑆 = 0 and
is an arrangement of lump chains, as described in Section 3. In the finite part of the (𝑥, 𝑦)-plane,
however, the polynomial terms in the 𝜓𝑗 produce individual lumps. Hence, the overall structure
of the solution is an arrangement of lump chains interacting with finitely many individual lumps:
A lump chain may emit or absorb an individual lump, and the lumps may scatter on one another.
A detailed classification of such solutions appears to be a challenging combinatorial problem. In
Figure 10, we give a single example of such a solution, consisting of a lump chain emitting an
individual lump.We note that the local number of lumps is conserved: Two lumps from the chain
meet and scatter, with one lump propagating away and the other filling the resulting gap in the
chain. Figure 10 gives an example of such a solution with rank 𝑀 = 1, order 𝑁 = 2, and depth
𝑆 = 1, with the 𝜓-function given by

𝜓(𝑥, 𝑦, 𝑡) = 𝑒
1

4
(−2𝑡+2𝑥+𝑖𝑦)

(−3𝑡 + 𝑥 + 𝑖𝑦 + 1) + 𝑒
1

16
(−𝑡+4𝑥+𝑖𝑦)

.
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5 SUMMARY AND CONCLUSION

We have constructed a new family of lump chain solutions of the KP-I equations using the Gram-
mian form of the 𝜏-function. A simple lump chain consists of an infinite line of equally spaced
lumps. The lumps propagate with equal velocity, which is in general distinct from the group veloc-
ity of the line. The general solution consists of an evolving polyhedral arrangement of lump chains.
At a point where three ormore lump chainsmeet, the individual lumps from the incoming chains
are redistributed along the outgoing chains, with the number of lumps being locally conserved.
The linear structure of the solutions is very similar to that of the line-soliton solutions of KP-II.
However, various degenerate configurationsmay occur for KP-I lump chains that cannot occur for
KP-II line-solitons: parallel chains, chains of equal velocity, quasiperiodic superimposed chains,
stable points of high multiplicity, and forbidden polyhedral configurations. We have also con-
structedmore general solutions of KP-I using the Grammianmethod. Such solutions consist of an
arrangement of lump chains as described above, together with line-solitons and individual lumps
that are emitted and/or absorbed by the lump chains. A detailed classification of the solutions of
KP-I that may be obtained by the Grammian method is an interesting and difficult problem, and
is beyond the scope of this paper. We plan to return to this problem in future work.
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