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Abstract

We present a derivation of the Davey-Stewartson (DS) equation from its Lax Pair and solve for rational soliton
solutions by using the dressing method. We express the Kernel of the Marchenko function in terms of a separable
spectral function. We obtain solutions for the general DS in terms of 4 independent arbitrary functions chosen
to be polynomial and apply reductions to obtain regular and singular solutions (parameterized by 2 independent
functions) with physical application. We explore only when polynomials are linear functions. These solutions can
be adapted to other 2 + 1 integrable systems for which only the dispersion relation needs to be adapted.
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1 Introduction

Zakharov and Schulman a derive the Zakharov-Schulman system; a system of partial differential equations from
which one can obtain the Davey-Stewartson equations (DS) [9]. Fokas et al [2] presents the general Davey-Stewartson
equation as

iqt + qzz + qzz + 4(f + q) = 0

2fz − (|q|2)z = 0

and solves it on the half-plane. The quantity q is a complex amplitude and f describes an underlying flow [4].
Applying the proper reduction one obtains the Nonlinear-Schrodinger (NLS) equation, given by

iqt + qzz + qzz = 0 , z = x+ iy , x, y,∈ R, t > 0

Anker and Freeman derive Davey-Stewartson solutions by applying the Dressing Method in [1]. Their paper assumes
the spectral function is exponential in the physical variables

Fij = Aije
lx+my+nz

where the phase of a soliton is parameterized by l,m, and n. In this approach, we use the same technique, but the
spectral function, F , is assumed to be polynomial. As a result, we obtain rational solutions of the general, unreduced
DS equations parameterized by 4 independent arbitrary functions.

Inspired by the Inverse Scattering Transform (IST), the Dressing Method (originally described in [10]) evolves
a spectral function in the time variable (a function representing the scattering data) and uses the Gelfand-Levitan-
Marchenko (GLM) equation

K(x, z) + F (x, z) +

∫ ∞

x

K(x, s)F (x, s)ds = 0 (1)

to transform the spectral function into a time evolved potential which solves a nonlinear PDE. We can obtain the
potential by taking a finite number of derivatives of the kernel

p(x) = (∂x − ∂z)
nK(x, x)|z=x

We present two matrix-valued differential operators D1 and D2 that the spectral function satisfies, D1F = 0
and D2F = 0 and derive the associated differential equation that the kernel K(x, z; y, t) satisfies to obtain solutions
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p = [I,K(x, x)] of DS. This is done by applying the operators D1 and D2 to the GLM equation (1). D1 is a linear
differential operator in variables y, x, z and D2 is a linear differential operator in t, x, z. The z variable is a dummy
variable in the Kernel K.

Then we obtain rational function solutions by assuming rank 1 separability of the spectral function F , so that
F is expressed in terms of four independent functions to be appropriately chosen. This assumption in combination
with equation (1) forces K to be separable too. Then one can solve the GLM (1) for K in terms of F . Applying
reductions correctly, we reduce the number of independent functions and obtain regular and singular solutions. We
also obtain known forms of Dromion solutions.

Zakharov and Fokas applied the dressing method to a non-local Riemann-Hilbert problem [3] to derive dromion
and line dromion solutions to KP 1 and DS 1 equations. Dynamics of rogue waves in Davey Stewartson 2 equation [5]
uses Hirota Bilinear method to derive fundamental rogue waves and their interactions. In [11], Zhang et al. studies
lump and breather N-soliton solutions of the nonlocal Davey-Stewarston 2 equation derived using Darboux Trans-
formations. Exact solutions of Davey-Stewartson equations are obtained by Hirota’s Bilinear method in [6]. Gilson
and Nimmo study asymptotics of dromion solutions in [4]. Lou, in [7], provides a universal formula for creating
dromions, dromion lattices, breather, instantons, among other localized solutions. Lou et al. use the Hirota bilinear
method and then apply separation of variable to obtain dromion solutions in [8].

The structure of this paper is as follows. In Section 2, we derive DS from the Lax Pair formulation. Section
3 details the obtaining the general solution of the DS equations without reduction. Section 3 contains subsections
detailing possible solutions that can be obtained after applying a reduction. Sections 4, 5 give explicit derivation of
equations satisfied by the kernel K if D1F = 0 and D2F = 0, respectively. Section 6 shows how we can extract the
DS Lax Pair from the GLM. i.e. the solutions we obtain are solutions of DS.

2 Derivation of Davey-Stewartson

Consider the Lax Pair of the form

Ψy = LΨ (2)

Ψt = MΨ (3)

where L = I∂x +A and M = ∂2
x +B. I will use the notation ∂n

x := ∂n

∂xn to denote the nth derivative with respect to
x. We define the matrices in our operators by

I =

[
1 0
0 −1

]
, A =

[
0 p
q 0

]
, B =

[
b11 b12
b21 b22

]
Notice that I = σ3 the Pauli basis matrix, A is the unknown potential of the Dirac operator L, and B is a matrix
component of the time evolution operator to be determined. To find a solution to the under-determined system
above, we impose the condition that partial derivatives commute. i.e. Ψyt = Ψty. The corresponding Lax equation
is

Lt −My = [L,M ] (4)

For a given potential A, we will derive the associated time evolution operator B using (4). Note,

Lt = At My = By (5)

We compute the commutator [T, ∂n
x ] of operators acting on the scattering potential Ψ in the following way

[T, ∂n
x ]Ψ = (T∂n

x − ∂n
xT )Ψ

= T∂n
xΨ− ∂n

xTΨ

= T (∂n
xΨ)− ∂n

x (TΨ)

= T (∂n
xΨ)−

n∑
k=0

(
n

k

)
∂n−k
x T∂k

xΨ

=
(
−

n−1∑
k=0

(
n

k

)
∂n−k
x T∂k

x

)
Ψ
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For example,

[I∂x, B]Ψ = (I∂xB −BI∂x)Ψ

= I∂x(BΨ)−BI∂xΨ

= I(BxΨ+B∂xΨ)−BI∂xΨ

= IBxΨ+BI∂xΨ−BI∂xΨ

= IBxΨ+ [I,B]∂xΨ

=
(
IBx + [I,B]∂x

)
Ψ

By convention, we drop the scattering potential Ψ, but it is implied when doing the calculus of operators. Similarly,

[A, ∂2
x] = −Axx − 2Ax∂x

and using that pure differential operators commute

[L,M ] =
[
I∂x +A, ∂2

x +B
]

=
[
I∂x, ∂

2
x

]
+

[
I∂x, B

]
+

[
A, ∂2

x

]
+

[
A,B

]
= IBx + [I,B]∂x −Axx − 2Ax∂x + [A,B]

So that we have

Lt −My = At −By (6)

[L,M ] = IBx + [I,B]∂x −Axx − 2Ax∂x + [A,B] (7)

When equating the above two equations (by (4)) and matching orders of derivatives we see

O(∂1
x) : [I,B]− 2Ax = 0 (8)

O(∂0
x) : At −By = IBx −Axx + [A,B] (9)

The first term in (8) evaluates to

[I,B] =

[
1 0
0 −1

] [
b11 b12
b21 b22

]
−
[
b11 b12
b21 b22

] [
1 0
0 −1

]
=

[
b11 b12
−b21 −b22

]
−
[
b11 −b12
b21 −b22

]
=

[
0 2b12

−2b21 0

]
so that by (8), we get

2

[
0 b12

−b21 0

]
− 2

[
0 px
qx 0

]
= 0 =⇒ B =

[
b11 px
−qx b22

]
Next, we evaluate the terms in (9)

At −By =

[
0 pt
qt 0

]
−
[
b11y pxy
−qxy b22y

]
=

[
−b11y pt − pxy
qt + qxy −b22y

]

IBx =

[
1 0
0 −1

] [
b11x pxx
−qxx b22x

]
=

[
b11x pxx
qxx −b22x

]

Axx =

[
0 pxx
qxx 0

]

[A,B] = AB −BA =

[
0 p
q 0

] [
b11 px
−qx b22

]
−
[
b11 px
−qx b22

] [
0 p
q 0

]
=

[
−pqx b22p
b11q pxq

]
−

[
pxq b11p
b22q −pqx

]
=

[
−(pq)x (b22 − b11)p

(b11 − b22)q (pq)x

]
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Therefore, by (9), we get [
−b11y pt − pxy
qt + qxy −b22y

]
=

[
b11x − (pq)x (b22 − b11)p
(b11 − b22)q b22x + (pq)x

]
from which we derive the following set of equations from the diagonal entries

b11y + b11x = (pq)x (10)

b22y + b22x = −(pq)x (11)

and from the off-diagonal entries, the terms in IBx cancel with Axx to obtain the coupled system of PDEs for which
we’d like to solve for the quantity b22 − b11

pt − pxy = (b22 − b11)p (12)

qt + qxy = −(b22 − b11)q (13)

by subtraction of equations (10) and (11), we get

(b11 − b22)y + (b11 − b22)x = 2(pq)x

From the above equations, define u := b22 − b11 and get a system of coupled PDEs

pt − pxy = up (14)

qt + qxy = −uq (15)

uy + ux = 2(pq)x (16)

We can get rid of the presence of u in the above equations by solving for u in (14) and computing its partial derivatives

ux =
(ptx − pxxy)p− px(pt − pxy)

p2

uy =
(pty − pxyy)p− py(pt − pxy)

p2

Similarly, using equation (15)

ux = − (qtx + qxxy)q − qx(qt + qxy)

q2

uy = − (qty − qxyy)q − qy(qt + qxy)

q2

Summing the partial derivatives, using the property (16), we obtain(
∂x + ∂y

)
(pt − pxy)p− (pt − pxy)

(
∂x + ∂y

)
p = 2p2(pq)x(

∂x + ∂y

)
(qt + qxy)q − (qt + qxy)

(
∂x + ∂y

)
q = −2q2(pq)x

We can write equations for p and q in the form[(
∂x + ∂y

)
, pt − pxy

]
p = 2p2(pq)x[(

∂x + ∂y

)
, qt + qxy

]
q = −2q2(pq)x

Applying the reduction p = ±q, we obtain the Davey-Stewartson equation[(
∂x + ∂y

)
, pt ± pxy

]
p∓ 2p2(|p|2)x = 0 (17)

Notice applying the reduction to our system of coupled PDEs (14,15,16) results in the form

pt + pxy = up (18)

uy + ux = 2(|p|2)x (19)

Using a variable substitution z = x+ iy, and replacing t → it and y → iy, the above equations are equivalent to that
used by Fokas et al.
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3 Solutions of Davey-Stewartson equation

Suppose we require the function F to satisfy the linear equation D1F = 0 where

D1F := ∂yF + I∂xF + ∂zFI = 0 (20)

where I = σ3 is the Pauli basis matrix. By applying D1 to the Marchenko equation,

K(x, z) + F (x, z) +

∫ ∞

x

K(x, s)F (x, s)ds = 0 (21)

we can derive the equation that K satisfies

∂yK + I∂xK + ∂zKI + [I,K(x, x)]K = 0 (22)

or symbolically, D1K + [I,K(x, x)] = 0. We denote p(x) := K(x, x) to be a solution of (17). Now suppose that F is
off-diagonal and K is unknown and expressed in the form

F =

[
0 F12

F21 0

]
K = K̃ =

[
K11 K12

K21 K22

]
After substitution of these matrices into equation (21), we obtain the following entry-wise equations from the top
row

K11(x, z) +

∫ ∞

x

K12(x, s)F21(s, z)ds = 0 (23)

K12(x, z) + F12(x, z) +

∫ ∞

x

K11(x, s)F12(s, z)ds = 0 (24)

We also note

[I,K(x, x)] = 2

[
0 K12(x, x)

−K21(x, x) 0

]
We begin by assuming F is a rank 1 separable function. Let F (x, z) = f(x)g(z) where f and g are diagonal and
off-diagonal matrices, respectively. Notice that their product will be an off-diagonal matrix of the form of F .

f(x) =

[
f1(x) 0
0 f2(x)

]
g(z) =

[
0 g12(z)

g21(z) 0

]
so that,

=⇒ F (x, z) =

[
0 f1(x)g12(z)

f2(x)g21(z) 0

]
(25)

Then equations satisfied by the factors of F when acted upon by D1 (defined by (20)) are D1F = D1(f · g) = 0

∂yf1 + ∂xf1 = 0, ∂yf2 − ∂xf2 = 0 (26)

∂yg12 − ∂zg12 = 0, ∂yg21 + ∂zg21 = 0 (27)

creating four unknown functions, f1 = f1(y − x), f2 = f2(y + x), g12 = g12(y + z), g21 = g21(y − z). We assume K is
also separable, K = K̃1(x)g(z), where K̃1 has the form

K̃1 =

[
K̃11(x) K̃12(x)

K̃21(x) K̃22(x)

]
so that

=⇒ K(x, z) = K̃1(x)g(z) =

[
K̃11(x) K̃12(x)

K̃21(x) K̃22(x)

] [
0 g12(z)

g21(z) 0

]
=

[
K̃12(x)g21(z) K̃11(x)g12(z)

K̃22(x)g21(z) K̃21(x)g12(z)

]
(28)

Therefore,

K(x, s)F (s, z) =

[
K̃11(x)g12(s)f2(s)g21(z) K̃12(x)g21(s)f1(s)g12(z)

K̃21(x)g12(s)f2(s)g21(z) K̃22(x)g21(s)f1(s)g12(z)

]
(29)
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By substituting equations (28), (25), and (29) into (21), we extract the following equations from the top row

K̃12(x) + K̃11(x)

∫ ∞

x

g12(s)f2(s)ds = 0

K̃11(x) + f1(x) + K̃12(x)

∫ ∞

x

g21(s)f1(s)ds = 0

and from the bottom row

K̃22(x) + f2(x) + K̃21(x)

∫ ∞

x

g12(s)f2(s)ds = 0

K̃21(x) + K̃22(x)

∫ ∞

x

g21(s)f1(s)ds = 0

Denote the integrals A =
∫∞
x

g12(s)f2(s)ds and B =
∫∞
x

g21(s)f1(s)ds and we rewrite the above system as

K̃11A+ K̃12 = 0

K̃11 + K̃12B = −f1

or consider it in matrix multiplication form [
A 1
1 B

] [
K̃11

K̃12

]
=

[
0

−f1

]
Denote the determinant of the above matrix as ∆ := AB − 1 and apply Kramer’s rule

K̃11 =
1

∆

∣∣∣∣ 0 1
−f1 B

∣∣∣∣ = f1
∆

, K̃12 =
1

∆

∣∣∣∣A 0
1 −f1

∣∣∣∣ = −Af1
∆

Similarly, we obtain the following quantities from the bottom row equations

K̃21 =
1

∆

∣∣∣∣−f2 1
0 B

∣∣∣∣ = −Bf2
∆

, K̃22 =
1

∆

∣∣∣∣A −f2
1 0

∣∣∣∣ = f2
∆

Therefore, we can obtain soliton solutions of the DS equation in terms of 4 unknown functions, f1, f2, g12, g21 that
each have implicit dependence on y determined by equations (26) and (27)

p(x; y) = 2K12(x, x; y) = 2K̃11(x; y)g12(x; y) (30)

=
2f1(y − x)g12(y + x)( ∫∞

x
g12(y + s)f2(y + s)ds

)( ∫∞
x

g21(y − s)f1(y − s)ds
)
− 1

(31)

Similarly,

q(x; y) = −2K21(x, x; y) = −2K̃22(x; y)g21(x; y) (32)

=
−2f2(y + x)g21(y − x)( ∫∞

x
g12(y + s)f2(y + s)ds

)( ∫∞
x

g21(y − s)f1(y − s)ds
)
− 1

(33)

3.1 Example

Consider the example when our 4 independent functions are linear functions (we omit the case when they are
constant). Let f1(x) = mx, f2(x) = nx, g12(x) = ax and g21(x) = bx. So that F looks like

F (x, z) =

[
mx 0
0 nx

] [
0 az
bz 0

]
=

[
0 amxz

bnxz 0

]
We can express the integrals A and B as follows

A =

∫ ∞

x

n(y + s)a(s+ y)ds = an

∫ ∞

x

(y2 + 2sy + s2)ds = an
(
y2x+ x2y +

1

3
x3

)
B =

∫ ∞

x

b(s− y)m(s− y) = bm

∫ ∞

x

(y2 − 2sy + s2)ds = bm
(
y2x− x2y +

1

3
x3

)

6
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Figure 1: The top is a 3D surface of the singular solution (35). The bottom left is a cross-section when y = 0. The
bottom right is a cross-section when x = 0.

Then we can express a solution

p(x, y) =
2m(y − x)a(y + x)

abmn
(
y2x+ x2y + 1

3x
3
)(

y2x− x2y + 1
3x

3
)
− 1

(34)

=
2am(y2 − x2)

abmn
(
y4x2 − 1

3y
2x4 + 1

9x
6
)
− 1

(35)

3.2 Complexification and reduction

Suppose that we make the variable y purely imaginary (y → iy). Then our four independent functions can be
expressed as

f1 = f1(iy − x) , f2 = f2(x+ iy)

g12 = g12(z + iy) , g21 = g21(iy − z)

Let’s define the complex variable ξ = x+ iy and apply the reductions p = ±q to equation (31) and (33) to obtain

1

∆
f2(ξ)g21(−ξ) =

1

∆
f1(−ξ)g12(ξ) (36)

7
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If the following reductions are imposed

f1(−ξ) = ±f2(ξ) (37)

g12(−ξ) = ±g21(ξ) (38)

Note that there are 4 reductions due to the choice of signs in equations (37) and (38). To obtain solutions, we apply
one such substitution of the reduction into the solution, and apply complexification of the variable y → iy. If the
signs of the reduction match −,− or +,+, we obtain singular solutions

psing(x; y) =
2f2(x− iy)g21(−x− iy)( ∫∞

x
g21(−iy − s)f2(iy + s)ds

)( ∫∞
x

g21(iy − s)f2(s− iy)ds
)
− 1

(39)

=
2f2(x+ iy)g21(−x+ iy)( ∫∞

x
g21(iy − s)f2(iy + s)ds

)( ∫∞
x

g21(iy − s)f2(s+ iy)ds
)
− 1

(40)

=
2f2(x+ iy)g21(−x+ iy)( ∫∞

x
g21(iy − s)f2(iy + s)ds

)2

− 1
(41)

If we consider reductions with opposite signs −,+ or +,−, we obtain regular solutions

preg(x; y) =
−2f2(x− iy)g21(−x− iy)( ∫∞

x
g21(−iy − s)f2(iy + s)ds

)( ∫∞
x

g21(iy − s)f2(s− iy)ds
)
− 1

=
−2f2(x+ iy)g21(−x+ iy)

−
( ∫∞

x
g21(iy − s)f2(iy + s)ds

)( ∫∞
x

g21(iy − s)f2(s+ iy)ds
)
− 1

=
2f2(x+ iy)g21(−x+ iy)( ∫∞

x
g21(iy − s)f2(iy + s)ds

)2

+ 1

One can see how similar these two solutions are. Now we’ve expressed our solution in terms of 2 independent
functions (instead of 4). If we suppose f2(ξ) = ξ, g21(ξ) = ξ are identity functions, we get

p(x; y) =
2(x− iy)(−x− iy)( ∫∞

x
(−iy − s)(iy + s)ds

)( ∫∞
x

(iy − s)(s− iy)ds
)
− 1

(42)

=
2(x+ iy)(−x+ iy)( ∫∞

x
(iy − s)(iy + s)ds

)( ∫∞
x

(iy − s)(s+ iy)ds
)
− 1

(43)

=
−2(x2 + y2)(

−
∫∞
x

(y2 + s2)ds
)(

−
∫∞
x

(y2 + s2)ds
)
− 1

(44)

=
−2(x2 + y2)(

y2x+ 1
3x

3
)2

− 1
(45)

if both f2 = c and g21 = d are constants, we get

p(x; y) =
2cd

|cd|2x2 − 1
(46)

if f2 is linear and g21 = c ∈ C is constant, we’d get

p(x; y) =
2c(x+ iy)

|c|2(iy + 1
2x)

2x2 − 1
(47)

if one assumes that f2 is constant and g21 is linear, one obtains

p(x; y) =
2c(−x+ iy)

|c|2(iy − 1
2x)

2x2 − 1
(48)
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Figure 2: Using linear functions in (42) with parameters m1 = i, m2 = 1, c1 = 1, c2 = 0.
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Figure 3: Choose m1 = m2 = 0 and c1 = c2 = 1

3.3 Dromion solution

We can obtain known dromion solutions by imposing the conditions that f2 = g12 and f1 = ±g21 which turns
equation (31) into

p(x, y) =
2f1(iy − x)f2(iy + x)( ∫∞

x
|f2(iy + s)|2ds

)( ∫∞
x

|f1(iy − s)|2ds
)
± 1

Suppose we chose f1(ξ) = m1ξ + c1 and f2(ξ) = m2ξ + c2, we can recreate many solutions. See figures (3,4,5)

4 Matrix valued differential Operator, D1

Consider the differential operator

D1F = ∂yF + I∂xF + ∂zFJ

10
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Figure 4: Choose m1 = 0, m2 = −1 and c1 = c2 = 1
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Figure 5: Choose m1 = 1, m2 = 1
3 and c1 = −2, c2 = 1

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4120921

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 6: Two lump soliton solution from equation (47) with c = 1

Figure 7: Two lump soliton solution from equation (47) with c = i
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Figure 8: Example of solution (46)
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Figure 9: Example dark soliton from equation (45)
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where I = σ3 and J is unknown. We impose that D1F = 0 (i.e. F satisfies this linear relation). We will derive the
equation that K satisfies. When D1 is applied to the matrix valued version of equation (21), we must compute

D1

(∫ ∞

x

K(x, s)F (s, z)ds
)
=

∫ ∞

x

(
∂yK + I∂xK

)
F (s, z)ds+ IK(x, x)F (x, z)

+

∫ ∞

x

K(x, s)
(
∂yF + ∂zFJ

)
ds

We note that if D1F (x, z) = 0, so does D1F (s, z) = 0. so we use the identity ∂yF + ∂zFJ = −I∂sF

D1

(∫ ∞

x

K(x, s)F (s, z)ds
)
=

∫ ∞

x

(
∂yK + I∂xK

)
F (s, z)ds+ IK(x, x)F (x, z)

+

∫ ∞

x

K(x, s)
(
− I∂sF

)
ds

Then apply integration by parts∫ ∞

x

K(x, s)
(
− I∂sF

)
ds = −K(x, x)IF (x, z) +

∫ ∞

x

∂sK(x, s)IF (s, z)ds

So that the full expression is

D1

(∫ ∞

x

K(x, s)F (s, z)ds
)
=

∫ ∞

x

(
∂yK + I∂xK

)
F (s, z)ds+ IK(x, x)F (x, z)−K(x, x)IF (x, z)

+

∫ ∞

x

∂sK(x, s)IF (s, z)ds

=

∫ ∞

x

(
∂yK + I∂xK + ∂sKI

)
Fds+ [I,K(x, x)]F

=

∫ ∞

x

D1KFds+ [I,K(x, x)]F

Note that for the operator acting on K to match the operator acting on F , we require J = I. Therefore, applying
D1 to (21), using F = −K −K ∗ F , and denoting u(x) = K(x, x)

D1K +D1K ∗ F − [I, u(x)](K +K ∗ F ) = 0 (49)

If we define the augmented operator D̃1 := D1 − [I, u(x)], then K satisfies

D̃1K + D̃1K ∗ F = 0 (50)

=⇒ D̃1K = 0 (51)

Note that equation (50) represents an integral equation which holds true for all F . By the Fredholm alternative, we
obtain equation (51)

5 Matrix valued differential operator, D2

Now suppose we consider the differential operator D2 defined by

D2F = ∂tF + ∂2
xF − ∂2

zF = 0

We will derive the corresponding equation that K satisfies. As usual, we apply D2 onto equation (21). Below we list
the partial derivatives of (21) making up D2

Kt + Ft +Kt ∗ F +K ∗ Ft = 0

Kxx + Fxx + 2KxF +KFx +Kxx ∗ F = 0

Kzz + Fzz +K ∗ Fzz = 0
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Note that inside the integral when x = s, F satisfies Ft + Fss − Fzz = 0. We express Fzz = Ft + Fss, substitute this
into the last equation above to get

∂2
zK(x, z) + ∂2

zF (x, z) +

∫ ∞

x

K(x, s)
(
∂tF (s, z) + ∂2

sF (s, z)
)
ds = 0

=⇒ ∂2
zK(x, z) + ∂2

zF (x, z) +

∫ ∞

x

∂2
sK(x, s)F (s, z)ds

+

∫ ∞

x

K(x, s)∂tF (s, z)ds+

∫ ∞

x

K(x, s)∂2
sF (s, z)ds = 0

=⇒ ∂2
zK(x, z) + ∂2

zF (x, z) +

∫ ∞

x

∂2
sK(x, s)F (s, z)ds

+

∫ ∞

x

K(x, s)∂tF (s, z)ds+K(x, x)∂xF (x, z)− ∂xK(x, x)F (x, z) = 0

Express the last equation above symbolically

Kzz + Fzz +K ∗ Ft +KFx −KxF +Kss ∗ F = 0

Thus, apply D2 to equation (21),

D2K +D2F +D2K ∗ F +K ∗ Ft + 2KxF +KFx −K ∗ Ft −KFx −KxF = 0

D2K +D2F +D2K ∗ F +KxF = 0

Now we can express F = −(K +K ∗ F ) and substitute into the above equation

D2K +D2F +D2K ∗ F −Kx(K +K ∗ F ) = 0

D2K +D2K ∗ F −KxK −KxK ∗ F = 0

D2K −KxK + (D2K −KxK) ∗ F = 0

For which we can define the augmented operator D̃2 := D2 −Kx(x, x) such that K satisfies

D̃2K + D̃2K ∗ F = 0 (52)

=⇒ D̃2K = 0 (53)

Therefore, K satisfies the PDE

∂tK + ∂xxK − ∂zzK − ∂xK(x, x)K = 0 (54)

The corresponding potential is p(x) = ∂xK(x, x).

6 Extracting the Lax Pair

If we were to suppose K(x, z; y) = Ψ(x, y)Ψ0(z, y) and substitute this into equation (51), we obtain

ΨyΨ0 +ΨΨ0y + IΨxΨ0 +ΨΨ0zI − [I, u]ΨΨ0 = 0

(Ψy + IΨx − [I, u]Ψ)Ψ0 +Ψ(Ψ0y +Ψ0zI) = 0

resulting in the following system of equations

Ψy + IΨx − [I, u]Ψ = 0 (55)

Ψ0y +Ψ0zI = 0 (56)

Substituting a similar ansatz, K(x, z; t) = Ψ(x, t)Ψ0(z, t), into equation (54) we obtain

ΨtΨ0 +ΨΨ0t +ΨxxΨ0 −ΨΨ0zz −
(
ΨxΨ0

)∣∣∣
z=x

ΨΨ0 = 0(
Ψt +Ψxx −

(
ΨxΨ0

)∣∣∣
z=x

Ψ
)
Ψ0 +Ψ

(
Ψ0t +Ψ0zz

)
= 0
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from which we can derive the system of equations

Ψt +Ψxx −
(
ΨxΨ0

)∣∣∣
z=x

Ψ = 0 (57)

Ψ0t +Ψ0zz = 0 (58)

From equations (55) and (57) we can extract the Lax pair

L1 := I∂x − [I, u]

L2 := ∂xx − (ΨxΨ0)
∣∣∣
z=x

so that our Lax equations can be expressed as (
∂y − L1

)
Ψ = 0(

∂t − L2

)
Ψ = 0

7 Conclusion

We’ve derived the Davey-Stewartson equation from within the Lax Pair framework. Then we’ve applied the dressing
method to express the Kernel of the Marchenko equation in terms of a rank 1 separable spectral function. Potential
well solutions of the Davey-Stewartson are extracted from some number of derivatives of the diagonal of the Kernel
and are parameterized by 4 arbitrary functions. We impose reductions to construct normal solutions as well dromion
solutions in terms of 2 arbitrary independent functions. We choose these functions to be linear and constant and
plot examples of rational solutions only in the case that the independent functions are linear functions. However,
this class of functions is much bigger and one can choose any polynomial.

The solutions presented here are static in time and are general solutions of the Dirac operator. We do not study
time dependence in this paper. However, time dependence would be extracted in the same way spatial dependence
was attained using equations (26) and (27). Instead, we’d apply D2(f · g) and note that with the second order
dispersion relation, our independent functions evolve according to the heat kernel (for real t) and according to the
Schrodinger equation (for imaginary t). We’d expect this surface to oscillate in time in the latter case.

If we were to change the dispersion relation in the Lax Pair, say equip the Dirac operator with the 3rd order
dispersion (giving the 2+ 1 MKDV equation), the solutions presented here still hold. The only difference is the time
dependence of the independent functions.
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