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We study a two-dimensional (2-D) potential flow of an ideal fluid with a free surface with
decaying conditions at infinity. By using the conformal variables approach, we study a
particular solution of the Euler equations having a pair of square-root branch points in the
conformal plane, and find that the analytic continuation of the fluid complex potential and
conformal map define a flow in the entire complex plane, excluding a vertical cut between
the branch points. The expanded domain is called the ‘virtual’ fluid, and it contains a
vortex sheet whose dynamics is equivalent to the equations of motion posed at the free
surface. The equations of fluid motion are analytically continued to both sides of the
vertical branch cut (the vortex sheet), and additional time invariants associated with the
topology of the conformal plane and Kelvin’s theorem for a virtual fluid are explored. We
called them ‘winding’ and virtual circulation. This result can be generalized to a system
of many cuts connecting many branch points, resulting in a pair of invariants for each pair
of branch points. We develop an asymptotic theory that shows how a solution originating
from a single vertical cut forms a singularity at the free surface in infinite time, the rate of
singularity approach is double exponential and supersedes the previous result of the short
branch cut theory with finite time singularity formation. The present work offers a new
look at fluid dynamics with a free surface by unifying the problem of motion of vortex
sheets, and the problem of 2-D water waves. A particularly interesting question that arises
in this context is whether instabilities of the virtual vortex sheet are related to breaking of
steep ocean waves when gravity effects are included.
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1. Introduction

Motion of an ideal fluid with a free surface is one of the oldest problems in applied
mathematics, and the emergence of complex analysis can be attributed to the study of
potential flows in two dimensions. A fluid flow that is coupled to the motion of a free
boundary, as in the motion of waves at the surface of an ocean, becomes particularly rich
and complex. Many classical problems in nonlinear science are tied to the dynamics of the
ocean surface: the nonlinear Schroedinger equation and the Korteweg—de-Vries equation
both can be derived as an approximation to water wave motion under distinct assumptions.
Yet both models share a particularly striking property: integrability. Integrable systems are
quite rare, and one of their special features is a dynamics that is uniquely determined by a
set of integrals of motion and phases, also referred to as action and angle variables see e.g.
Kolmogorov (1954). The state of an integrable system at a given time can be determined by
means of the inverse scattering technique; see the works on integrable systems (Gardner
et al. 1967; Zakharov & Faddeev 1971; Shabat & Zakharov 1972; Ablowitz et al. 1974,
Zakharov & Shabat 1974, 1979).

At present, many nonlinear systems have been discovered, yet integrability of the full
water wave system remains elusive. The search for integrability in water waves is a long
standing problem, and it was proven that, if it indeed exists, it is of a special kind.
Dyachenko, Lvov & Zakharov (1995) applies the Zakharov—Schulman technique to water
waves and shows that the fluid dynamics is not integrable with a time-invariant spectrum.
Nevertheless, new non-trivial integrals of motion have been discovered Tanveer 1993;
Dyachenko e al. 2019, 2021; Lushnikov & Zakharov 2021) that suggest the presence
of a hidden structure, suggesting integrability in a broader sense. The new integrals of
motion are related to contour integrals in the analytic continuation of the fluid domain,
the ‘virtual fluid’ (also sometimes referred to as phantom and/or unphysical), which is
an abstraction defining a fluid flow in a maximally extended domain where the analytic
functions defining the flow reach their natural boundaries of analyticity. In the preceding
work (Dyachenko et al. 2019) the authors found that, if a singularity of the complex
velocity in the virtual fluid is a pole, then its residue is a time invariant. Nevertheless,
the appearance of isolated singularities in a generic flow is observed under very special
circumstances (Galin 1945; Polubarinova-Kochina 1945; Zakharov & Dyachenko 1996).
Even then, isolated singularities alone are incompatible with a fluid flow with a free
surface; see the work Lushnikov & Zakharov (2021). Exact solutions originally found
by Dirichlet and described in Longuet-Higgins (1972) are second-order curves and also
contain square-root branch points. A notable exception is a classical work of Crapper
(1957), who discovered the travelling wave on a free surface subject to forces of surface
tension; the Crapper waves are one of the few exact solutions and their singularities
are isolated poles; the work of Crowdy (2000) discusses the mathematical framework to
construct flows with surface tension and rational solutions in particular. The recent work
by Dyachenko & Mikyoung Hur (2019) and the following theoretical proof by Mikyoung
Hur & Wheeler (2020) show that Crapper waves also occur in the vanishing gravity limit
for waves over a shear current.

The importance of square-root branch points for potential fluid flow has been first
discovered in the work of Tanveer (1993). In the work of Baker & Xie (2011), the
authors concluded that a square-root branch point approaches the fluid region when
a breaking gravity wave becomes overhanging. Formation of a square-root singularity
and whitecapping was also conjectured in Dyachenko & Newell (2016). The work of
Castro et al. (2013) is a study of the formation of a multivalued surface through the ‘splash’
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mechanism: a scenario in which a free surface becomes self-intersecting; the authors
show that splash singularity may appear in a finite time while originating from a perfectly
smooth initial datum. The origin of the appearance of branch points is the complex Hopf
equation (Kuznetsov, Spector & Zakharov 1993; Karabut & Zhuravleva 2014; Karabut,
Zhuravleva & Zubarev 2020) that governs fluid motion in some approximation. Many
non-trivial flows are described by square-root branch points; see for example the works
by Dyachenko et al. (1996), Dyachenko, Zakharov & Kuznetsov (1996), Zakharov (2020)
and Liu & Pego (2021) for the study of a free surface with decaying boundary conditions,
and the recent work of Dyachenko et al. (2021) for the periodic case. To further the case,
a periodic wave that is travelling on a free surface, also known as the Stokes wave, has
square-root branch points as found in the work of Grant (1973) and a numerical study
of its singularities in Dyachenko, Lushnikov & Korotkevich (2014, 2016) by means of a
rational approximation (Alpert, Greengard & Hagstrom 2000), and the singularity of the
limiting Stokes wave is conjectured to be the result of coalescence of multiple square-root
branch points; see the work Lushnikov (2016).

Two-dimensional (2-D) fluid flows can be studied using the conformal variables
approach, which was first introduced in the 19th century. The pioneering work of Stokes
(1880) on travelling periodic waves discusses conformal mapping in the context of 120° at
the crest; see also a recent review paper of Haziot et al. (2022) and references therein. The
problem of finding standing waves is more mysterious, due to their complicated temporal
dynamics. A recent work by Wilkening (2021) discusses a technique for construction of
travelling—standing waves that bridge the gap between travelling and standing waves. The
first application of conformal mapping to time-dependent flows can be traced to the work
of Ovsyannikov (1973), that followed a result of Zakharov (1968) who discovered that the
canonical Hamiltonian variables for fluid flow consist of the free surface and the velocity
potential on it.

The conformal mapping technique is not always the most convenient way to study water
waves numerically, and we will refer the reader to the work of Wilkening & Vasan (2015)
for other highly efficient methods for 2-D fluid dynamics. The recent works by Arsénio,
Dormy & Lacave (2020) and Ambrose et al. (2022) discuss novel methods for simulating
the Euler equation in two dimensions, which generalize to 3-D water waves. The conformal
mapping technique is discussed in the works of Tanveer (1991, 1993), Dyachenko et al.
(1996) and Dyachenko (2001) and has been successfully applied numerically by many
authors, see e.g. the works of Zakharov, Dyachenko & Vasilyev (2002) and Dyachenko &
Newell (2016).

In the present work, we develop an exact theory of a potential 2-D flow in the Euler
equations with a free surface. The theory describes a particular solution that carries a pair
of square-root branch points in the analytic continuation of the complex velocity and the
conformal map (see figure 1), and offers a pair of newly discovered integrals of motion, the
‘winding’ and ‘circulation’ of a virtual fluid. Asymptotic theory is developed that shows
the double-exponential approach of a square-root branch point to the fluid domain that
suggests the formation of a singularity in infinite time, which is distinct from the short
branch-cut theory developed in preceding works.

2. The square-root branch cut
The nonlinear equations for the dynamics of the free surface of a 2-D fluid, written
in conformal variables, have been known since the work of Ovsyannikov (1973) and
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(b)
z(w)

w-plane a

Figure 1. Schematics of conformal map z. The fluid region (green) is mapped to the lower complex plane
Imw < 0, the branch cut of R, V is marked in blue. The branch cuts for complex conjugate functions are
marked red.

Tanveer (1991). We consider the form of these equations given in the work of Dyachenko
(2001)

R=i(UR — UR)
i . (2.1)
V=i(UV' - BR)

The functions R(w,?), V(w,t), U(w,t) and B(w,t) are analytic with respect to

complex variable w = u + iv € C~ (the lower half-plane). Here, U(w, t) and B(w, t) are
analytically continued from the real line, where they are given by the relations

Uu, ) = P"[V(u, DR, t) + V(u, ORw, 1)], B(u, 1) = P~ [V(u, HV(u, H)]. (2.2a,b)

where bar denotes complex conjugation.
Here, P~ is the projection operator from the real axis to the lower half-plane. Given on
the real axis

~ 1 A N ) N I [ f0d, ndd
P =—(1+iH), H-isthe Hilbert transform: Hf = p.v.— —. (2.3)
2 TJ) o UW—u
Let
Rw,t) =14 p(w,t), where p(w — co0) — O. 2.4)

The four analytic functions have square-root branch points at w = ia(f) and w = ib(t), and
thus can be expressed by means of the Cauchy integral formula with the clockwise contour
orientation

1 ,0d i ib — p(s—e)ld
p(w,t):—.f pls,0ds 1 / los+e) =pls=e)lds 5 o
2mi lia,ib] S—W 2T e—0+ Jig s—=w
and we denote p(s =€) — pi(s) as ¢ — 0T. Let T = —is € [a, b], then we rewrite the
formula as follows:
1 (b [pt(r) — p~(ir)]dr
) = — . , 2.6
plw.1) 27[,/; —it +w 2.6)
and define jumps on the cut for p and V
+ . _ _— V+ . _ V_ .
oy = 20D =700 gy = L AD = VD) 2.7a,b)
2i 2i
952 A30-4


https://doi.org/10.1017/jfm.2022.911

https://doi.org/10.1017/jfm.2022.911 Published online by Cambridge University Press

Singularities, invariants and virtual fluid

and note that r(a) = r(b) = 0 and v(a) = v(b) = 0. The associated analytic functions are
then given by

1 (b r(r)de 1 [(Po(r)de
Rw,t)=1— — - and V(w,t) = —— —. (2.8a,b)
TJe T+1w TJeg TH+1w

We also introduce the two additional functions from the following relations to introduce
U and B:

F(t)(r) 4 r(r)o(r)] dr dr’
(t +iw)(t/ —iw)

v — %// v(t)v(r)drdr’ (2.10)
T (

T+ 1iw)(t/ —iw)

, (2.9)

- - - 1
RV+RV=V+V+—2//[
T

We refer the reader to the derivation in Appendix A of the following formulas:

1 u(t)dr 1 b(t)dr
Uw) = ——/ - and B(w) = ——/ —, (2.11a,b)
T T+ 1w T T4+ 1w

where u(t) = v(v)R(it) + r(v)V(ir) and b(t) = v(t)V(it) for T € [a, b].

2.1. Boundary values of analytic function at the cut

Before proceeding, one must be able to evaluate the complex analytic function by its
associated jump on the cut. Given ¢ > 0, one finds that

) 1 [ r()de , 1 [ w)dr
Ritr+e)=1—— —— and V(rtzxe)=—— T EEE—
T Ja TJa T

T —1+is f—14ig’
(2.12a,b)
and we may apply the Sokhotskii—Plemelj theorem to obtain
RE(ir) = lim+ Rt +¢)=1— (HFi)r(r), (2.13)
e—0
VE(ir) = lirgJr Vit £ &) = —(H Fi)v(r), (2.14)
E—>
where we have defined the integral operator H as follows:
R 1 br’yde
Hf(t) = —v.p./ f/— (2.15)
Bl e T —1

Similar relations hold for the functions U and B.

2.2. Equations of motion on the cut

The equations of motion in w-plane have been derived previously, and are given by

&R = i(UR, — UyR), (2.16)
&V =i(UV, — ByR), 2.17)
952 A30-5
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and can be written in terms of the jumps of the associated functions as follows:

o+ uHr + ¥ Hu + ' (1 — Hr) — rHd' = 0
. . . . . (2.18)
v +uHv +vVHu+b'(1 —Hr) — rHb =0

Given a square-root branch point in z(w) = «/w — ia, the function R = 1/z, ~ ~/w —ia

vanishes at the branch points. Similarly, it is trivial to show that R(w, ) has zeros at the
branch points ia and ib

R@Ga) =R(1b) =0 and R(w — —ic0) — 1, (2.19a,b)

as the solution evolves the branch points do not vanish, but move in the complex plane,
see Dyachenko et al. (2021).

One can use the shifted Chebyshev basis to efficiently represent the complex analytic
functions with a pair of square-root singularities. We introduce the centre of the cut, c(f) =
(a(t) + b(1))/2, and its half-length, I(f) = (b(¢) — a(t))/2, and use f,(w, f) as a basis for
expansion of the analytic functions R(w, t) and V(w, t). It is convenient to work with the
variable & (w, t) = (¢ +iw)/I, then

Ja(§) = [E —\E2 - 1} = (=" [Tn(—é) + Un—1 (=§) /€2 = 1} ; (2.20)

where T,(¢) and U,—1(§) for n = 1,2, ... are the Chebyshev polynomials of the first
and the second kinds, respectively. Note that w € [ia, ib] is mapped to & € [—1, 1] for
convenience.

2.3. Expansion of R(w, t) and V(w, t)
The complex velocity, V, and R may be expanded in the form

VE D =Y u@fi) and RE =1+ n@fi(®). (2.21a,b)

k=1 k=1

In order to satisfy the conditions (2.19a,b) we have two additional constraints on the
coefficients of R that must be satisfied for any # > 0

D or =Y (=D = —1. (2.22)
k=1 k=1

It is convenient to rewrite the series defined in relations (2.21a,b) and (2.20) using the
following substitution:

& =cosx orequivalently w=ic—ilcosy, x =n-+1icg, (2.23)

where x € [—m, 7] is mapped to & € [—1, 1]. Moreover, the relation (2.23) defines a
conformal mapping for complex w, such that x (w € C) — C~ (see also the illustration in
figure 2), and the free surface (blue—white boundary) is located at

X(u):iln[g—,/gZ—l], Where§=c—:iu. (2.24)

Note that the square root in (2.24) is so that va? el = |a| exp(i(¢/2)).
952 A30-6
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(a) (b)

ib '
ia

Figure 2. Schematics of x-map. A periodic strip —t < Re x < m and Im x < O (right) is mapped to w €
C N [ia, ib] (left), and the Im x > O (right) is mapped to the second sheet of the w-plane. (@) The blue region
is mapped to the fluid domain (the real fluid), and the upper half-plane marked white excluding the cut is
the virtual fluid in the first sheet outside the cut. The red circles mark the locations of the branch points, and
arrows indicate the positive orientation for a Cauchy-type integral (2.5). An observer marked with an eye that
is located far away from the cut (large distance from real line is illustrated by the lightning symbols) sees the
dominant term of a far field 1/w whose coefficient is a motion integral defined in (2.34a,b). The green domain
observed on the left is the virtual fluid of the second Riemann sheet which is seen through the cut. (b) After
the conformal map (2.23) the image of a periodic contour around the cut is mapped to the interval [—m, 7],
and the Chebyshev function basis (2.20) becomes the standard Fourier basis (2.25). The image of the real fluid
is located in the lower complex plane enclosed within vertical asymptotes x = 47/2 (dashed lines), and the
virtual fluid from the first sheet is mapped to the white region in the lower half-plane. The second Riemann
sheet is unfolded into the upper half-plane of the x-plane. The singularities in the upper half-plane of x are
located in the second Riemann sheet of w-plane, and can be studied numerically and theoretically.

The components of the Chebyshev series

Ja) = [%‘ — & - 1} = exp(—iny), (2.25)

become the standard Fourier series in x variable in negative Fourier harmonics. Note that
all functions R, V, U, B and their complex conjugates in the w-plane can be expanded in
the series (2.25) withn > 0

V(x.H) =Y uexp(—iky) and R(x.t) =1+ n(t)exp(—iky). (2.26a.b)
k=1 k=1

In order to determine the functions U and B we will first evaluate the auxiliary functions
u(t) and b(r) at the cut. Then, we will use the Sokhotskii—Plemelj theorem to find the
values of U and B at the cut, x = 1 + 10 € [—mt, 7]. The values of R and V at the reflection
of the contour around the cut in the lower half-plane of w can be determined in the x-plane.
The reflection of the cut is located on the negative imaginary axis at x = 0 + 1..(7) given
by the relation

c+7T

. ! . (2.27)
COS 1¢cc =2—|—27 — &= 2+27 —cosn,

COS 1o =

where t € [a, b] (see also the formula (2.11a,b)). Note that the right-hand side of the
formula is strictly greater than 1, and the values of ¢.. are purely real and negative, given
our choice of the mapping x (w). Solving for ¢.., we find

{ee(€) = —1In |:y+ V- 1] = —acoshy, (2.28)
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where y = 2 + 2(a/l) — &. The functions R and V can then be found on the reflection of
the cut w € [—ia, —ib] (or equivalently x € i¢..) by evaluating the formulas

k
R:l_n§:@(¢ﬁ—1—ﬁ =1 -7 3 (=1 explkteo).
k=1 n=1
k
V=—3 Z Vi (\/)T—l — y) = —T7 Z Uk(—l)k exp(k&ee).
k=1 k=1

We may now form the functions u = VR 4+ VR and b = VV and find the boundary values
of analytic functions U and B as follows:

U(n)zi./” u(—n)—u(n)cotn —ndn/’

(2.29)

2mi J_y 2 2

L (" b(=n)—b) 0~ 230
B(n) = —/ 1 12 cot T ay,

2mi J_; 2 2

which can be efficiently computed by means of the fast Fourier transform.

2.4. Equations in x-plane and integrals of motion

By making additional transformation (2.23) the equations of motion become particularly
simple, and are given by the following relations:

—IsinnR; — (¢ +Icosn) Ry =i (UR, — UyR), (2.31)
—IsinnV, — (¢ +1Icosn) V, =i (UV, — B,R) . (2.32)

These equations have two integrals of motion which are equivalent to the ones found in
Tanveer (1993). Indeed, one can integrate equations (2.31) using expansion (2.26a,b). As
a result, the following expressions are valid:

ril(t) = =20 = const iy (1)
= —— 2.33
{vll(t) = —2I" = const = ¢ 2w asw = 00, ( )
or
(0] 1 r 1
Rwy=1+=+0|—=5), Vw=—+0|—75] Iwl— o0, (2.34a,b)
w w w w

where Q and I are called ‘winding’ and virtual ‘circulation’. Conservation of circulation
can be viewed as Kelvin’s theorem for a virtual fluid, and winding is related to the topology
of the conformal plane.

2.5. Formation of singularity in infinite time
We shall consider the lowest-order expansion so that the initial datum satisfies the
constraints (2.19a,b) and still results in a non-trivial fluid flow. The functions R and V

952 A30-8
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at time ¢ = 0 are given by

V(E) =1f1(§) =ilw—ic— vV (w—ic)? + ] (2.35)
1
RE)=1—fHE) =[1+ l—2(w —ic—Vw—ic)2 + 2)2). (2.36)

It is assumed that, at least for some time, these functions are given by convergent series
of the form (2.21a,b), or equivalently the Fourier series (2.26a,b). This is a crucial
assumption that is only based on the results of numerical simulations of the short branch
cut (Dyachenko et al. 2021), and preceding theoretical work (see Tanveer 1993; Dyachenko
et al. 2019). Approximately speaking, this assumption will hold when the only zeros of R
in the first Riemann sheet are located at the branch points. Naturally, one must ensure that
the initial data (2.35)—(2.36) have no additional zeros in the first sheet.

In order to establish the motion of the branch points we seek the complex conjugated
functions given by

V=—ilw+ic—+vw+ic)? + 2], (2.37)
[1 + = 7 w+ic— v (w+ic)2 +12) ] (2.38)

Then, we must calculate all four functions V, V, R and R on the imaginary axis by replacing
w — iv. We introduce

S=Jw-—a)v—>b) =B — (-0 (2.39)
F=Jw+a@w+b =v@v+0c)?—L2. (2.40)

Now
V=—v+c—iS, (2.41)
V=v+c—F, (2.42)

and we may write

(w—c+iS)? 2

R=l-"p—"= 1—2[52 —i(v — ¢S], (2.43)
R=1—(”+‘;—2_F)2=132F(v+c—1~*). (2.44)
Then we introduce
Q =RV +RV, (2.45)
to end up with transport velocity U
U=P Q. (2.46)

Notice that the singularities of Q in the upper half-plane are the ones coming from the
function S. We can replace Q — Qs Where Q. only includes the terms proportional to S.

952 A30-9
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A simple calculation reveals the following expression:

24
Qess = 1—21 |:21FS — (62 + ab + ZCU) S] . (2.47)

Then

U= (1 - ié{) Ouss (2.48)
where H is the Hilbert transform. To calculate the ‘Hilbert’ transform one should
remember that, after projecting to the lower half-plane, Q. must be replaced by its

analytic continuation to the upper half-plane. This is done by restoring the regular part
by the corresponding singular part as in formula (2.20). It amounts to writing

iS$—iS—(v—o), (2.49)
S — ivS —v(v — ) + 5. (2.50)
Collecting all terms together we find following expression for transport velocity U:
2 5 , P
U=Qess+l—2 2cv° +abv —c|c +5+ab + 2cl |, (2.51)
where

1 b 2 22 — 2)d

1) = —v.p.f V(& )~ ds. (2.52)
| a §—v

Now we calculate U(a). As long as S(a) = 0 this expression is purely real. After tedious
calculations we find that

_ 8 b e
Ule) = (1_8)2[ g ety te —H(e)], (2.53)
here, & = a/b and
_ 2
Ie) = / (q+8)(1 ) dg. (2.54)

This integral is expressed in terms of elliptic functions, but we will not provide explicit
formulas. We study the asymptotic behaviour of I(¢) at ¢ — 0. To do this we use the

expansion

q—¢&

00 k+2
I I &
:1+—+§:ck<—> : (2.55)
qa = \q

Thus we must estimate the integral

1 1 e 0o e k+2
I(e) = —/ l+-+) a <—) 1 —¢2dg. (2.56)
7 Je 9 — \4
Now we mention that
1 ! 1
— 1 —q2dg = —. 2.57
Y AN e

952 A30-10
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One can show that

1 1 1
UE)=8b|——4+ -4+ —¢clne+ 0() ), (2.58)
4 4 =
and therefore
8b
U(e) = —elne + O(e), (2.59)
T

where O(¢) denotes terms of order ¢ and all higher orders. It is not necessary to determine
them precisely.
We end up with the following result:

8
Ua) — —alnf-7 +0(a) ata— 0. (2.60)
T
The differential equation
. 8 a
a= —aln— (261)
T b
with initial data
b
s =—In-=—c (2.62)
b ao
gives solution
8t
me = _cexp (-) : (2.63)
b T
and
8t b
a=bexp (—c exp (—)) c=—In—. (2.64a,b)
T ap

This means that singularity ¢ = 0 is never achieved in a finite time, while it approaches
the real line faster than exponential estimates predict.

It is important to emphasize that this conclusion will hold only provided that no
singularity from the second sheet crosses the branch cut and invalidates the assumption of
a single pair of branch points in the first Riemann sheet. Nevertheless, numerical evidence
suggests that at least one such solution does exist, see the figure 2(a) in Dyachenko et al.
(2021)

3. Conclusion

A potential fluid flow in the 2-D Euler equations with a free boundary is considered with
V and R having a pair of square-root branch points w = ia and w = ib in the conformal
plane. We obtain the following main results:

(1) The equations of motion have been transplanted to the cut connecting ia to ib in the
w-plane, and we introduced a new conformal mapping y (w) that allows the study
of singularities in higher Riemann sheets. With the second sheet of the w-plane
unfolded, one can study the singularities in multiple sheets, and possibly obtain new
integrals of motion from pairs of cuts in higher sheets. This conjecture will have
implications for a further study of the integrability of water waves.
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(ii) We developed an asymptotic theory based on the exact equations formulated at the
cut that shows a double-exponential rate of approach of the singularity at w = ia(¢)
to the fluid domain. The presented theoretical answers to a long-standing question
about the formation of a singularity at the free surface in finite vs infinite time when
no gravity or capillarity is present. However, it remains unclear whether a solution
with only a single pair of branch points in the first sheet can exist for infinite time.

(iii) The physical fluid can be complemented with a virtual fluid, which is a mathematical
object whose motion is defined by the analytic continuation of R and V into C*
excluding the branch cut. The expanded domain contains a virtual fluid vortex
sheet, for which Kelvin’s theorem for circulation holds true: a ‘virtual circulation’ is
conserved and is one of the two new invariants discovered in this work. The second
invariant, the ‘winding’, is related to the genus of conformal plane of the virtual
fluid — the number of holes.

The present work offers a new look at the problem of water waves and illustrates a deeply
rooted connection between water waves and the vortex sheet problem that was overlooked
by the water waves community. Despite the fact that the present work is devoted to only
a pair of square-root branch points, one may consider a general system of many pairs of
branch points connected by branch cuts, yx(¢). The equations for analytic functions R and
V are then formed at each y(¢) and fully determine the flow of the ‘virtual fluid’. Each of
the branch cuts, yx(¢) is equivalent to a ‘virtual’ vortex sheet, whose dynamics is governed
by the 2-D Euler equations. An open question one could address is related to the rolling of
a vortex sheet: Is breaking of a steep water wave related to instabilities of a ‘virtual” vortex
sheet? The answer to this question is presently a work in progress.

Each pair of square-root branch points is associated with a new pair of integrals
of motion: ‘winding’ and virtual ‘circulation’. A particle analogy springs into mind.
Nevertheless, these invariants alone do not fully describe the fluid flow, this follows
from (2.31), which requires all Fourier modes to be defined, however, ‘winding’ and
‘circulation’ only define the first Fourier modes of R and V. Nevertheless, the conformal
domain x (w) opens the second Riemann sheet for R and V which must contain more
singularities and fully define the analytic functions R and V at the cuts. We conjecture
that tracking of all singularities and their associated invariants uniquely describes the
fluid flow, and these variables are analogous to the ‘action’ variables in the long standing
problem of integrability of 2-D potential Euler equations.
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Appendix A. Derivation of U and B

We will provide a derivation for the function B, and a calculation for U can be done
analogously. Let us consider the product

v — Lz// v(t)v(r')dr d’ (AD)
T (

T +iw)(t/ —iw)’

and use the relation

1 1 1 1
|: + :| . (A2)

(t +iw)(t/ —iw) - T+t |t+iw T —iw
The product VV then becomes
vV = l/ 1/ B dr’) v() de +l/ l/ vdr) smde
T T U+ [ T+iw 0w T T4+ | T —iw

One can observe that the terms enclosed in square bracket are given by the following:

., 1 [ v(r)dr _ 1 [ o(r)dr
V(—l‘[ ) = —; - and V(lf) = —; ﬁ, (A4a,b)

and result in the following formula for VV:

‘—,V:_l/w_l/wzp—[W]+p+[w]. (AS)
b T+ 1w b1 T —1w

Thus, the function B(w) is defined in the complex plane via

_ 1 fu@VGndr 1 [ b(r)de
B(w) = n/— /t+iw’

A6
T +iw T (A6)

where we defined b(t) := v(7)V(it) at the interval T € [a, b] to be the jump at the branch
cut. Analogous calculation for U results in

Uw) = _l/ u(r) dr 1 / [U(T)R(if) + F-(T)V(i‘[)] dr
R T +iw

) (A7)

T+ iw o

where we defined u(t) := v(7)R(it) + r(t)V(it) at the interval T € [a, b].

Appendix B. Supplemental relations with Chebyshev polynomials

We consider an auxiliary contour integral around interval [—1, 1] and apply residue
theorem

I f (Tn(x) + Vx2 — 1U, 1 (x))dx 7§ (x + v/x? — 1)"dx B1)
[—1,1] [—1,1] '

xX+y xX+y

where we used the following identity for Chebyshev polynomials:

Ta(x) + Va2 = 1Up—1(x) = (x + Va2 = D" (B2)

We consider the branch of square root +/x2 — 1 = i+/1 — x2 above the cut, and V12 — 1 =
—i+/1 — x% below. The auxiliary integral / is related to integral of interest by the following
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formula:
/1 V1I=x2Upde 1 (Tr(0) + Vx> = 1Up—1(x)dx 1 @3)
-1 x+y C2i Jiog §+y 20

where we have noted that integral of regular function 7}, (x)/(x 4+ y) around a closed curve
vanishes. The contour integral / consists of four parts, however, circular integrals around
x = =£1 vanish because the integrand has no poles at these points, therefore leaving only
the two integrals above and below the cut

I /1 (x4 iv1 —x2)" — (x—iﬂ)”dx
—1

x+y B

We make a substitution x = cost, 0 < t < 7 and symmetrize the interval of integration

0 . . T . .
1) — —int 1 1) — —int
I / exp(int) — exp(—in )(_ sinf) dr _/ exp(int) — exp(—int) sinrdr, (BS)
T cos(t) +y 2 ) x cost+y
and after the substitution z = e", |z| = 1 and dr = dz/iz

1 n__ ,—n _ 1

[= __f (z = )@=, (B6)
2 Jiz=1 74+ 2yz+1

The integrand has a pole of order (n 4 3) at z = 0 and a pair of simple poles at z = —y +

Vy*—1.Wheny=£& +2+2a/l > 1, only the poles at 7 = 0 and z = —y + /y* — 1 lie
within the unit circle. Note that poles switch if y < —1! Also it is straightforward to obtain
result for complex y.

The residues at z = —y & 1/y? — 1 can be computed explicitly and by virtue of (B2) are

given by
n__ ,—n _ 1
Res O 212)(:12 ) — 2\ U (), (B7)
e

where we used symmetry for Chebyshev polynomials of even and odd 7.
For the residue at zero we first note the generating function of Chebyshev polynomials

@ =M= ([, 1 1 ad o
1+2yz42 _<Z Zn) (Z Z)gUk( )z (B8)

to write Laurent series, and note that only the following terms contribute to the principal
part:

- -
g > Uk(=y)dt - e > U(=p, (B9)
k=0 k=0
and the residues are
Ui(—y), n=1
Un(=y) = Up—2(=y), n>1. (B10)

It is convenient to use recursion relations for Chebyshev polynomials 27}, (x) = Uy, (x) —
Uy—2(x) and 2T1(x) = Uj(x) to have the residue written in the compact form
@ —ME—z)
Res = 2T, (—y). Bl1l
R —— n(=y) (BI1D)
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The final result for y > 1 is obtained by summing the two residues (B7) and (B11)

1 1 q/l_ 2Ul’l— dx .
P /1 : = - [Tn(—y) + \/}T_IU”—l(_y)} = - <\/y27—1—y) .

xX—+y
(B12)
Note that this can be extended for —1 < y < 1, as follows:
1 'V =20, (x) dx
—p.v./ ~ = —Tu(y). (B13)
il -1 X—=Yy
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